
The Multi-Program Performance Model:
Debunking Current Practice in Multi-Core Simulation

Kenzo Van Craeynest Lieven Eeckhout
ELIS Department, Ghent University, Belgium

Abstract

Composing a representative multi-program multi-core
workload is non-trivial. A multi-core processor can execute
multiple independent programs concurrently, and hence,
any program mix can form a potential multi-program work-
load. Given the very large number of possible multi-
program workloads and the limited speed of current sim-
ulation methods, it is impossible to evaluate all possible
multi-program workloads.

This paper presents the Multi-Program Performance
Model (MPPM), a method for quickly estimating multi-
program multi-core performance based on single-core sim-
ulation runs. MPPM employs an iterative method to model
the tight performance entanglement between co-executing
programs on a multi-core processor with shared caches.
Because MPPM involves analytical modeling, it is very
fast, and it estimates multi-core performance for a very
large number of multi-program workloads in a reasonable
amount of time. In addition, it provides confidence bounds
on its performance estimates. Using SPEC CPU2006 and
up to 16 cores, we report an average performance predic-
tion error of 2.3% and 2.9% for system throughput (STP)
and average normalized turnaround time (ANTT), respec-
tively, while being up to five orders of magnitude faster than
detailed simulation.

Subsequently, we demonstrate that randomly picking a
limited number of multi-program workloads, as done in
current pactice, can lead to incorrect design decisions in
practical design and research studies, which is alleviated
using MPPM. In addition, MPPM can be used to quickly
identify multi-program workloads that stress multi-core per-
formance through excessive conflict behavior in shared
caches; these stress workloads can then be used for driv-
ing the design process further.

1 Introduction

Simulation and modeling are at the foundation of proces-
sor design and computer architecture research, i.e., research

and development is driven by the careful evaluation of de-
sign alternatives in order to make correct design decisions.
A key aspect of experimental evaluation is the workload
that serves as input to simulation and modeling. A work-
load that is unrepresentative of a processor’s target work-
load may lead to a suboptimal design, hence, it is absolutely
crucial to have a representative workload.

Building a representative workload is very challenging,
especially for multi-core processors. A multi-core proces-
sor has multiple hardware thread contexts, and each hard-
ware thread context can execute a different program. As
a result, a multi-core processor workload may consist of
a mix of multiple independent programs. In fact, multi-
program workloads are a very important and significant
fraction of today’s workloads. Given the limited amount of
multi-threading in current desktop applications [3], multi-
program workloads are predominant in today’s computer
systems, including mobile devices, laptops, desktops and
even servers.

Evaluating multi-program workloads is non-trivial
though. For a given number of programs, the number of
multi-program workloads quickly explodes. For N pro-
grams and M hardware contexts, there are M combina-
tions with repetition out of N programs, or

(
N+M−1

M

)
multi-

program workloads in total. This means there are 435 possi-
ble multi-program workload mixes for 29 SPEC CPU2006
benchmarks on a dual-core processor; 35,960 workload
mixes for a quad-core processor; and more than 30.2 mil-
lion workload mixes for an eight-core processor. Assum-
ing detailed cycle-accurate processor simulation at a speed
of 300 KIPS and assuming 1B instruction workloads—as
in our setup—this would result in 54 days for simulating
all possible two-program workloads. For four- and eight-
program workloads, total simulation time would need to
be counted in years. Clearly, simulating all possible multi-
program workloads using detailed simulation is completely
infeasible in practice.

Hence, current practice in computer architecture re-
search and development is to pick a limited number of
multi-program workload mixes, typically a dozen or a cou-
ple tens that are randomly chosen. Often, architects com-

pose classes of multi-program workload mixes with each
class representing a particular set of multi-program work-
loads. For example, one class may comprise combinations
of memory-intensive programs, another class may com-
prise mixes of compute-intensive and memory-intensive
programs, and yet another class may comprise a set of
compute-intensive workloads. Within each class, architects
then select a number of random multi-program workload
mixes. It is unclear though whether a limited number of
randomly chosen multi-program workloads is representa-
tive for the very large set of multi-program workloads.

In this paper, we propose the Multi-Program Perfor-
mance Model (MPPM), a method for quickly estimat-
ing multi-program multi-core performance from single-core
simulation runs; this allows for quickly estimating multi-
core performance for a large number of multi-program
workloads in a reasonable amount of time. We collect a
profile during single-core simulation that captures a pro-
gram’s memory behavior as well as its phase behavior; this
is a one-time cost. We then employ an iterative method
that models the performance entanglement between the co-
executing programs on a multi-core processor with shared
caches: the iterative method captures how per-program per-
formance affects the amount of resource sharing, and, vice
versa, how resource sharing in its turn affects per-program
performance. Since this iterative method involves an ana-
lytical model, it is very fast, while being accurate. Using
this powerful technique, we demonstrate that current prac-
tice of simulating a limited number of multi-program mixes
may lead to incorrect design decisions. Instead, we advo-
cate MPPM which allows for evaluating performance for a
very large number of multi-program workload mixes in a
reasonable amount of time. The method can also be used to
identify workload mixes that stress multi-core performance
due to excessive conflict behavior in shared resources.

More specifically, we make the following contributions
in this paper.

• We propose the Multi-Program Performance Model
(MPPM) for estimating multi-core processor perfor-
mance for multi-program workloads. MPPM uses
single-core simulation profiles and estimates multi-
core processor performance while taking into account
resource sharing in shared caches when running multi-
program workloads. The performance entanglement
between co-executing programs due to resource shar-
ing is solved through an iterative approach that esti-
mates the amount of resource sharing and how it af-
fects per-core performance, and vice versa. We report
an average performance prediction error of 2.3% and
2.9% for system throughput (STP) and average nor-
malized turnaround time (ANTT), respectively, com-
pared to detailed simulation across SPEC CPU2006
using the x86 CMP$im simulator [9] and up to 16

cores.

• We demonstrate that MPPM can quickly estimate
multi-core processor performance from single-core
simulation runs, which enables estimating multi-core
performance for a large number of multi-program
workload mixes in a reasonable amount of time. In-
deed, the key feature of the proposed method is that it
decouples per-core simulation from multi-core simu-
lation, yielding a multi-core processor simulation and
modeling approach for multi-program workloads with
only linear time complexity in the number of pro-
grams. Our method is shown to be up to five orders
of magnitude faster than detailed multi-core processor
simulation.

• We demonstrate that current practice of randomly
choosing a limited number of multi-program work-
loads may lead to incorrect design decisions. Instead, a
more accurate approach is to use MPPM for evaluating
all, or at least a very large number of, multi-program
workload mixes. In addition, MPPM provides confi-
dence bounds on its performance estimates.

• We demonstrate that MPPM can identify multi-
program workloads that yield very poor multi-core
processor performance due to excessive conflict be-
havior in shared resources. Architects can then focus
on these stress workloads and fine-tune the design to
yield better performance.

This paper is organized as follows. Section 2 presents
MPPM in great detail, after which we present the experi-
mental setup in Section 3. We evaluate MPPM in Section 4,
debunk current practice in Section 5, and use MPPM for
identifying multi-program stress workloads in Section 6.
Finally, we discuss related work and how MPPM differs
from prior work in this area in Section 7, and we conclude
and describe future work in Section 8.

2 Multi-Program Performance Model

Figure 1 gives a general overview of the Multi-Program
Performance Model (MPPM). We first perform single-core
simulation profiling runs for all the benchmarks in the
benchmark suite. This is a one-time cost. Once these single-
core profiles are collected, they serve as input to the multi-
program performance model. In other words, MPPM esti-
mates multi-program performance from single-core simula-
tion profiling runs. Because the single-core simulation runs
are a one-time cost only, and because MPPM is an analytical
approach, the proposed method is very effective at estimat-
ing multi-program performance on multi-core processors.
In fact, estimating multi-program performance for an arbi-
trary set of benchmarks is done very quickly — typically

bench
mark

...

profile

...

...

single-core
simulation

one-time cost

Multi-Program
Performance Model

estimated multi-program performance

Figure 1. General overview of MPPM.

around a couple tenths of seconds per multi-program wor-
load — hence, MPPM enables predicting multi-core perfor-
mance for a large set of multi-program workloads in a rea-
sonable amount of time. As an example, MPPM estimates
multi-core performance for 5,000 four-program workloads
in half an hour.

MPPM assumes a particular multi-core processor ar-
chitecture of interest for the single-core simulation runs.
In other words, if one were to predict performance for a
multi-core processor with out-of-order processor cores and
a cache hierarchy with three levels of cache, this same or
derived processor architecture needs to be considered dur-
ing the single-core simulations as well. This means that the
single-core simulations need to be performed with the same
core architecture and the same or derived cache hierarchy,
however, the benchmark is run in isolation, i.e., there are no
co-executing programs. (In fact, in our setup, we can run
single-core simulations and derive performance models for
cache hierarchies with reduced associativity at each level of
the hierarchy. For example, we can run single-core simu-
lations and collect the single-core profiles for a 16-way set-
associative cache, and derive single-core simulation profiles
for an 8-way set-associative cache without having to run ad-
ditional single-core simulations.) Although this may seem
like a limitation of MPPM — single-core simulation runs
need to be performed for different multi-core architectures
of interest — it is not a major limitation in practice: it re-
quires single-core simulation runs only. There are no time-
consuming multi-core simulations required, and the MPPM
model makes multi-core performance predictions quickly
for a large set of multi-program workloads. Further, once
the single-core simulation profiles are obtained, MPPM can
estimate performance for a varying number of cores, dif-

ferent cache associativities, and different combinations of
co-executing programs very quickly.

We now detail on the two major steps in MPPM: single-
core simulation profiling and the performance model itself.

2.1 Single-core Simulation Profiling

Single-core simulation profiling collects three character-
istics:

• Single-core CPI is the number of Cycles Per Instruc-
tion (CPI) when running the single-core workload in
isolation, i.e., there are no co-executing programs. CPI
is easily obtained by dividing cycle count with the
number of dynamically executed instructions.

• Memory CPI is the fraction of the single-core CPI
waiting for memory. There are two ways for comput-
ing the memory CPI. One way is to employ the counter
architecture proposed by Eyerman et al. [8] for com-
puting CPI stacks on out-of-order processors; imple-
menting this counter architecture in the simulator en-
ables computing the memory CPI component from a
single simulation run. Alternatively, the memory CPI
can be computed from two simulation runs: one run
with a perfect Last-Level Cache (LLC), i.e., all ac-
cesses to the LLC are hits and there are no memory
accesses, versus one run with an imperfect LLC, i.e.,
LLC misses go off to memory. The CPI obtained from
the latter minus the CPI obtained from the former then
is the memory CPI.

• Stack Distance Counters (SDCs) capture a program’s
temporal memory access behavior in set-associative
(or fully associative) caches [12]. We collect SDCs for
each program on the LLC without cache sharing, i.e.,
by running the program in isolation. An SDC for an
A-way set-associative cache involves A + 1 counters,
C1, C2, . . . , CA, C>A, and is computed as follows. On
each access, one of the counters is incremented. If the
access is to the ith position in the LRU stack for that
set, the ith counter Ci is incremented. If the cache
access involves a miss, then the C>A counter is incre-
mented.

Each of these performance characteristics are measured
on a per-interval basis. The reason is to be able to model
the impact of time-varying phase behavior on resource con-
tention in multi-core processors. In our setup, we measure
these characteristics for every interval of 20 million (dy-
namically executed) instructions. For a 1 billion instruction
trace, this implies 50 intervals in total per benchmark with
the above characteristics measured for each interval. This is
done for each benchmark in the benchmark suite.

For all programs p:
 Rp = 1 // slowdown compared to single-core execution
 Ip = 0 // current position in execution trace

Determine the program p with the highest multi-core CPI over the course of the next interval
of L instructions, i.e., determine the program p with the highest Cp = CPISC,p x Rp x L.

Define C = maxp {Cp}.

Compute the instruction progress for all programs:
Np = C / (CPISC,p x Rp)

Compute the SDCs for all
programs for the

next Np instructions

cache contention
model

Compute the average latency per LLC miss for
each program:

LLC_miss_penaltyp = CPImem,p x Np /
#LLC cache misses over the next Np insns

Compute the number of lost cycles due to conflict misses in LLC for each program p:
miss_cyclesp = #conflict_missesp x LLC_miss_penaltyp

Re-compute the slowdown due to multi-core execution:
Rp = f x Rp + (1-f) x (1 + miss_cyclesp / C)

Ip = Ip + Np

stop criterion
is met?

report CPISC,p x Rp for each program

Figure 2. The Multi-Program Performance Model.

2.2 MPPM

The single-core performance characteristics as men-
tioned in the previous section then serve as input to the
Multi-Program Performance Model (MPPM). The concept
of the MPPM is to initially start from the single-core perfor-
mance measurements and then iteratively converge on how
resource contention in shared resources affects per-core per-
formance in a multi-core processor. The reason for the it-
erative process is the tight performance entanglement be-
tween per-core performance and resource contention, i.e.,
per-core performance affects the amount of resource con-
tention, and vice versa, resource contention affects per-core
performance. In order to model this tight performance en-
tanglement, the model initially estimates the amount of re-
source contention assuming each program makes progress
as per the single-core simulations; however, the amount of
resource sharing affects per-core progress, which in its turn
affects resource sharing. Hence, in the next iteration, per-
core progress is adjusted to incorporate how resource con-
tention affects per-core progress. This, in its turn, may again
affect the amount of resource contention seen, which leads
to the second iteration, etc. This iterative process continues
until convergence.

Figure 2 gives a schematic overview of the MPPM
model. We define Rp as the slowdown for a program p in
the multi-program workload mix relative to isolated execu-
tion. We assume all programs experience the same relative
slowdown of Rp = 1 and execute at single-core speed ini-
tially. Further, we assume that all programs start at the be-
ginning of the execution trace, i.e., the instruction pointer is
set to zero: Ip = 0. Once these initial conditions are set, the
iterative process starts.

At each step in the iterative process, we first determine
the slowest program in the workload mix, or the program
in the multi-program workload mix with the highest multi-
core CPI over the next L instructions. L is 200M instruc-
tions in our setup. A program’s multi-core CPI is computed
as the single-core CPI (CPISC,p) multiplied with its rela-
tive slowdown Rp. We define C to be the number of cycles
it takes for the slowest program to execute L instructions.
We then determine how much progress each program in the
workload mix can make during the next C cycles. We de-
fine Np as the number of instructions each program p can
execute during the next C cycles.

Once we know how many instructions each program will
execute during the next time interval of C cycles, we can
compute the SDCs for each of the programs over this time
interval. This is done by adding the per-interval SDCs. As
mentioned in the previous section, the single-core perfor-
mance characteristics are measured on a per-interval basis
of 20M instructions. Computing the SDCs for the next
time interval of C cycles is done by simply adding the

per-interval SDCs for the next Np instructions. The SDCs
serve two needs. First, it serves as input to a cache con-
tention model that estimates the additional number of con-
flict misses due to cache sharing in the LLC. There exist
several cache contention models [4, 5, 10]. We use the Fre-
quency of Access (FOA) model proposed by Chandra et
al. [4] because it is a fairly simple model and we found it
to be accurate enough for our needs. Second, the SDCs al-
low for estimating the average penalty per LLC miss. This
is done by dividing the number of cycles lost due to memory
accesses with the number of LLC misses; we assume here
that the average LLC miss penalty is the same under multi-
core execution versus single-core execution. The number of
cycles waiting for memory is computed as the memory CPI
component (CPImem,p) multiplied with the number of in-
structions in the next time interval Np. The number of LLC
misses is obtained from the SDC’s C>A counter, as men-
tioned above. We estimate the number of cycles lost due
to conflict misses in the LLC by multiplying the number
of additional conflict misses due to cache sharing (obtained
from the cache contention model) and the average penalty
per LLC miss (computed as described above).

We can now estimate the (current) relative slowdown for
each program in the workload mix due to resource con-
tention. This is done using an exponential moving aver-
age of the average slowdown observed so far and the cur-
rent slowdown according to the above model. The rea-
son for taking an exponential moving average is to include
a smoothing effect, which we found to be important for
achieving good accuracy, especially for programs with sig-
nificant time-varying execution behavior. We also compute
the current position in the execution for each program. This
is done by simply advancing the instruction pointer by Np

instructions for each program.
This iterative process is repeated multiple times until

a stop criterion is met. Each iteration involves 200M in-
structions for the slowest running program, and the iterative
process continues until the slowest running program in the
workload mix has executed 5B instructions in total. Given
that our instruction traces are 1B instructions in size, this
means that the slowest program needs to iterate over its en-
tire trace five times. Faster running programs may iterate
over their trace more than five times. We found that the
performance numbers converged given this stop criterion.

2.3 Discussion

We want to emphasize again that MPPM itself does not
involve detailed cycle-accurate multi-core simulation. The
process as explained above only involves ‘analytical’ simu-
lation in which we employ analytical models for estimating
multi-core performance. This yields a very fast multi-core
performance estimation technique: MPPM makes a multi-

ROB 128 entries
pipeline 8-stage, 4-wide
ld/st max of two loads & one store per cycle
L1 I-cache 32KB, 4WSA, LRU, 1 cycle
L1 D-cache 32KB, 8WSA, LRU, 1 cycle
L2 cache private, 256KB, 8WSA, 10 cycles
L3 cache shared, see Table 2
memory 200 cycles
branch prediction perfect

Table 1. Baseline processor configuration.

size assoc latency
config #1 512KB 8 16
config #2 512KB 16 20
config #3 1MB 8 18
config #4 1MB 16 22
config #5 2MB 8 20
config #6 2MB 16 24

Table 2. Last-level cache (LLC) configura-
tions.

core performance estimate in less than one second, provided
that the single-core simulation runs were done beforehand.

It is also important to stress that MPPM is indepen-
dent of the cache replacement and/or partitioning strategy
employed in the shared cache. In fact, the cache con-
tention model is an integral part of the approach, and if
the cache contention model supports multiple cache re-
placement and/or partitioning strategies, so does MPPM.
The cache contention model used in this paper is the FOA
model [4], as mentioned before. FOA assumes that the ef-
fective cache space for a program is proportional to its ac-
cess frequency. The intuition is that a program that has a
high access frequency tends to bring in more data into the
cache, and hence it effectively occupies a larger fraction of
the caches. We found FOA to be accurate enough for our
purpose. Part of our future work will focus on other cache
contention models that can potentially model other cache
replacement and/or partitioning strategies.

3 Experimental Setup

We use a multi-core processor simulator based on
CMP$im [9], which is an x86 simulator built on top of Pin.
CMP$im is a user-level simulator and allows for simulat-
ing multi-core processor architectures. Our version of the
CMP$im simulator is the one available from the Cache Re-
placement Championship1. The processor architecture that
we simulate is detailed in Tables 1 and 2. We consider 4-
wide out-of-order processor cores with private L1 instruc-

1http://www.jilp.org/jwac-1/

tion and data caches. Each core has a private L2 cache.
The L3 cache is shared among the cores and is the last-level
cache (LLC) in our setup: we apply our method to the L3
cache. All caches implement an LRU replacement policy.
We consider different LLC configurations, as shown in Ta-
ble 2. If not explicitly mentioned, we report performance
results for configuration #1 which has the smallest LLC;
this is to stress our model.

We consider all the SPEC CPU2006 benchmarks with
their reference inputs. All the benchmarks were compiled
with the GNU C compiler version 4.3.4 and optimization
level -O2. We use SimPoint [13] to pick representative sim-
ulation points of one billion instructions each.

When quantifying multi-core processor performance
we consider two performance metrics, namely system
throughput (STP) and average normalized turnaround time
(ANTT) [7]. STP measures multi-core performance from a
system perspective and quantifies the accumulated progress
by all the programs in the multi-program workload mix.
STP equals weighted speedup by Snavely and Tullsen [14],
and is a higher-is-better metric:

STP =
n∑

p=1

CPISC,p

CPIMC,p
.

ANTT focuses on user-perceived performance and quanti-
fies the average slowdown during multi-core execution rel-
ative to single-core, isolated execution. ANTT is the recip-
rocal of the hmean metric proposed by Luo et al. [11]:

ANTT =
1
n

∑
p

CPIMC,p

CPISC,p
.

4 Model Evaluation

We evaluate MPPM along two criteria: accuracy and
speed. However, before doing so, we first quantify per-
formance variability across random sets of multi-program
workloads — this will demonstrate that obtaining tight con-
fidence bounds requires a sufficiently large number of work-
load mixes.

4.1 Variability

Figure 3 shows the variability in STP and ANTT as a
function of the number of random sets of multi-program
workloads on a four-core processor. These graphs clearly
illustrate that selecting a limited number of random multi-
program workloads yields limited confidence in the over-
all performance measurements. For example, selecting 10
workload mixes yields a 10% and 18% confidence interval
for STP and ANTT, respectively. Doubling the number of

(a) STP (b) ANTT

3.0

3.2

3.4

3.6

3.8

4.0

4.2

0 30 60 90 120 150

ST
P

Number of workload mixes

95% confidence interval

average

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 30 60 90 120 150

A
N

TT

Number of workload mixes

95% confidence interval

average

Figure 3. Variability in (a) STP and (b) ANTT as a function of the number of multi-program workload
mixes.

(a) STP (b) ANTT

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

m
e

as
u

re
d

 S
TP

predicted STP

2 cores

4 cores

8 cores

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

m
e

as
u

re
d

 A
N

TT

predicted ANTT

2 cores

4 cores

8 cores

Figure 4. Accuracy of MPPM for predicting (a) STP and (b) ANTT; measured STP/ANTT on vertical
axis versus predicted STP/ANTT on the horizontal axis.

workload mixes to 20 does not increase confidence dramat-
ically: the confidence intervals are still around 7% and 13%
for STP and ANTT, respectively. Such confidence intervals
may be too large for many practical research and design
studies. Comparing design alternatives that differ in the
percent range with a performance evaluation method with
this large confidence intervals may be problematic. At 150
workload mixes, the confidence bounds are down to 2.6%
and 4.5% for STP and ANTT, respectively; hence, we re-
port performance numbers for 150 workload mixes in the
remainder of the paper.

4.2 Accuracy

Figure 4 shows scatter plots for STP and ANTT. These
graphs assume the baseline processor configuration with 2,
4 and 8 cores, and 150 multi-program workload mixes. We
simulate these workload mixes through detailed simulation
using CMP$im; this yields the ‘measured’ STP and ANTT
metrics. We also estimate multi-core performance using
MPPM which yields the ‘predicted’ metrics. The scatter
plots show the predicted metrics versus the measured met-

rics. Each dot represents one of the workload mixes. Per-
fect prediction would imply all dots to lie on the bisector.
We observe a strong correlation between the measured and
predicted performance metrics, i.e., all the dots lie around
and are close to the bisector. The average error across these
workload mixes equals 1.4%, 1.6% and 1.7% for STP and
2, 4 and 8 cores, respectively; and 1.5%, 1.9% and 2.1% for
ANTT and 2, 4 and 8 cores, respectively.

We also ran a number of experiments for 16 cores using
25 16-program workload mixes; here, we consider a larger
1MB LLC (configuration #4). We were unable to run more
than 25 16-program workload mixes because of time con-
straints — the simulations took extremely long, which is
exactly the problem we are addressing with MPPM. (These
results are not shown in Figure 4.) The average error equals
2.3% and 2.9% for STP and ANTT, respectively.

The fact that MPPM is accurate for predicting STP and
ANTT suggests that it is also effective for predicting the
relative per-program slowdown, or by how much a pro-
gram gets slowed down due to multi-program execution on
a multi-core processor. Figure 5 reports both the measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m
e

as
u

re
d

 s
lo

w
d

o
w

n

predicted slowdown

2 cores

4 cores

8 cores

Figure 5. Measured versus predicted relative
per-program slowdown due to multi-core ex-
ecution.

and the predicted relative slowdown for each program. Cor-
relation is good and the average error equals 7% across
the 150 workloads for 2, 4 and 8 cores; for the 25 multi-
program workloads on the 16-core processor (not shown in
Figure 5), we obtain an average error of 4.5%. Figure 6
makes this more concrete and shows an example for the 4-
program workload with the worst STP; this workload con-
sists of two copies of gamess along with hmmer and so-
plex. The gamess copies are slowed down substantially
through multi-core execution (more than 2×), whereas so-
plex is slowed down somewhat only, and hmmer is barely
affected by multi-core execution. MPPM predicts these
slowdowns accurately.

It is worth noting that the error for predicting per-
program performance, although low, is larger than the error
for predicting STP and ANTT. The reason is that STP and
ANTT measure total system performance and average per-
program performance, respectively, and given how STP and
ANTT are computed, see Section 3, positive and negative
errors in predicting per-program performance get smoothed,
which leads to more accurate overall STP/ANTT predic-
tions.

4.3 Speed

MPPM is substantially faster than detailed simulation.
As mentioned before, MPPM requires single-core simula-
tions, but this is a one-time cost only. In our setup with
1B instruction simulation points this takes around 1 hour
of simulation time per benchmark on CMP$im, or slightly
more than an entire day for the entire SPEC CPU2006
benchmark suite on a single machine. The MPPM model
itself is very fast because it does not involve detailed sim-
ulation. Instead, it uses analytical modeling for estimating
multi-core performance. MPPM takes less than one second
per multi-program workload; typically, a couple tenths of
seconds. In contrast, simulating a multi-program workload

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hmmer gamess soplex gamess

C
P
I isolated CPI

measured multi-core CPI

predicted multi-core CPI

Figure 6. Tracking the performance of indi-
vidual programs in a multi-program workload
consisting of two copies of gamess along with
hmmer and soplex: isolated execution CPI,
measured multi-core execution CPI (through
simulation), and predicted multi-core execu-
tion CPI (through MPPM).

on a detailed cycle-accurate simulator is extremely time-
consuming. For example, simulating one multi-program
workload for an eight-core processor takes around 12 hours
in our setup. In summary, depending on the scenario,
MPPM is up to 5 orders of magnitude faster than detailed
simulation. Considering 150 multi-program workloads on
an 8-core processor, MPPM (including the cost of single-
core simulations) is 62× faster than detailed simulation.
Assuming that the single-core simulations were done be-
forehand, MPPM is more than 53,000× faster.

5 Debunking Current Practice

Now that we have demonstrated that MPPM is both ac-
curate and fast for estimating multi-program workload per-
formance on multi-core processors, we leverage MPPM to
evaluate (and debunk) current practice in simulating multi-
program workloads. One of the critical concerns when
simulating multi-program workloads is which workloads to
pick out of the very large set of possible multi-program
workloads. Current practice is to pick a limited number
of multi-program workloads. The reason for limiting the
number of workloads is that simulation is extremely time-
consuming. Hence, researchers pick a limited number of
workloads at random out of the very large set of possible
multi-program workloads. Alternatively, researchers often
classify their benchmark programs in a number of classes,
e.g., compute-intensive versus memory-intensive programs,
and then randomly pick multi-program workloads from
these classes to form multi-program workload categories.
For example, one category may be workload mixes con-
sisting of compute-intensive programs only; another cate-
gory may be workload mixes with memory-intensive pro-

(a) Random (b) Random per category

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

av
g

M
P
P
M

Sp
e

ar
m

an
 r

an
k

co
e

ff
ic

ie
n

t

random sets of 12 workload mixes per set

STP ANTT

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

av
g

M
P
P
M

Sp
e

ar
m

an
 r

an
k

co
e

ff
ic

ie
n

t

random sets of 4 MEM / 4 COMP / 4 MIX workload mixes per set

STP ANTT

Figure 7. Evaluating current practice of selecting random workload mixes: Rank correlation coeffi-
cient for 20 sets of 12-program workloads versus MPPM. (a) Random selection of programs; and (b)
Random selection of programs within program categories.

grams only; a third category may contain mixed compute-
and memory-intensive programs.

To evaluate whether current practice is adequate, we con-
sider the following setup. We compare six multi-core con-
figurations that differ in their LLC configuration in terms
of size, associativity and access time, see Table 2. Without
detailed experimental evaluation, it is unclear which config-
uration yields the best overall performance. For example,
configuration #2 has a higher associativity than configura-
tion #1, and thus a lower miss rate, but its access latency
is also higher. Similar trade-offs are possible between all
pairs of configurations. So, it is unclear which configura-
tion yields the best overall performance without detailed
analysis. We now evaluate how well current practice and
MPPM can rank these six configurations. The results are
shown in Figure 7. These graphs show the rank correla-
tion coefficients for current practice assuming 12 randomly
selected multi-program workloads on a quad-core proces-
sor. This experiment is repeated 20 times, hence the 20
bars on the left-hand side of the two graphs in Figure 7.
The second but last bars on the right-hand side, labeled
‘avg’ reports the average correlation coefficient for current
practice. We then compare against MPPM while consid-
ering 5,000 multi-program workloads, see the right-most
bars in Figure 7. The Spearman rank correlation coefficient
quantifies how well two rankings compare to each other,
or more formally, how well the relationship between two
rankings can be described using a monotonic function; a
Spearman rank correlation coefficient of one means a per-
fect match in the rankings. Our point of reference is the
ranking obtained from detailed simulation with 150 multi-
program workloads. MPPM is clearly more accurate than
current practice. For some of the randomly picked work-
load mixes, the rank correlation coefficient is as low as 0.5
and below, see for example mixes 7 and 8 in Figure 7(a) and
mixes 2, 9 and 15 in Figure 7(b). MPPM on the other hand

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

conf2 conf3 conf4 conf5 conf6

fr
ac
ti
o
n

disagree; MPPM right disagree; detailed right

agree; both right agree; both wrong

Figure 8. Fractions of when current practice
agrees or disagrees with MPPM, and when
MPPM is correct and current practice is not.

achieves a rank correlation coefficient of 1 and 0.93 for STP
and ANTT, respectively.

In order to make it more concrete we now pairwise com-
pare design points, namely configuration #1 versus all the
other configurations #2 through #6. Figure 8 quantifies how
often current practice (assuming multi-program categories)
disagrees with MPPM, and, when they disagree, how of-
ten MPPM is correct compared to the reference of detailed
cycle-accurate simulation of 150 multi-program workloads,
and thus by consequence, how often current practice leads
to incorrect conclusions. In the most extreme comparison
between configuration #1 and #6 we observe that in approx-
imately 40% of the cases current practice disagrees with
MPPM, and current practice leads to an incorrect conclu-
sion with respect to which configuration yields the best per-
formance.

These experiments collectively illustrate that current
practice of selecting a limited number of multi-program
mixes may lead to misleading and incorrect conclusions in
practical research and design studies. MPPM on the other

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0 30 60 90 120 150

ST
P

workloads sorted by increasing STP

MPPM detailed simulation

Figure 9. Identifying 4-program workloads
with the worst STP.

hand leads to correct conclusions because it considers a very
large number of multi-program mixes. In addition, MPPM
does so in only a small fraction of the time needed through
current practice.

6 Identifying Stress Workloads

As mentioned before, MPPM’s unique ability is to
quickly estimate multi-program performance on multi-core
processors. One important application of the MPPM frame-
work is to identify workload mixes that stress the multi-
core processor in the sense that performance is substantially
lower for these workloads compared to the other workloads.
Once these stress workloads are identified, they can be an-
alyzed in more detail in order to understand why the multi-
core processor fails to deliver good performance for these
workloads, which may ultimately lead to an improved de-
sign. We find MPPM to be accurate in ranking the multi-
program workloads with respect to how severe these work-
loads stress the processor architecture. Figure 9 shows
sorted STP values obtained through detailed simulation and
MPPM; more precisely, the workloads on the horizontal
axis are sorted by increasing value of the STP values ob-
tained through detailed simulation. This graph once again
illustrates that MPPM is accurate compared to simulation,
and in addition, it illustrates that MPPM can identify the
worst-case workloads. MPPM is able to identify the top-
23 worst-case workloads out of the 25 worst-case work-
loads obtained through detailed simulation. Further analy-
sis showed that one particular benchmark, namely gamess,
is very sensitive to multi-core execution: we found that
gamess gets a slowdown by a factor 2.2×, whereas the
other benchmarks experience a slowdown of at most 1.3×
(gokmk) and 1.2× (soplex, omnetpp, h264 and xalan);
the remaining benchmarks are less sensitive to cache shar-
ing.

7 Related Work

There exists some work in simulating and modeling
multi-program workloads on multicore processors. These
techniques differ from MPPM in several ways, as decribed
below.

The work most similar to ours is the work by Eklöv et
al. [5]. They present StatCC which is a cache contention
model that, given the relative CPIs of the co-scheduled pro-
grams and their individual reuse distance distributions, es-
timates the reuse distance distribution of the interleaved ac-
cess stream to the shared cache. The reuse distance is de-
fined as the number of memory references between two con-
secutive accesses to the same cache line. Once they have the
reuse distance distribution of the interleaved access stream,
they leverage their prior StatCache [2] and StatStack [6]
work to estimate the cache miss rates for the co-scheduled
programs. They use an equation solver to solve the inter-
dependence between the programs’ CPIs and cache miss
rates. There are a number of key differences between Eklöv
et al.’s approach and this work. We use an iterative method
for solving the CPI versus cache miss rates interdependence
while taking into account time-varying workload behavior,
instead of the general-purpose equation solver by Eklöv et
al. In addition, we use a stack distance counter distribution
instead of a reuse distance distribution. Finally, we evaluate
our approach for up to 16 cores; Eklöv et al. limited their
evaluation to 2 cores only.

Lee et al. [10] use (spline-based) regression modeling
to build multi-core processor performance models. They
build three regression models: a core model, a contention
model for the shared resources (i.e., the shared memory
hierarchy), and a model that combines the core and con-
tention models to form an overall multi-core processor per-
formance model. This approach does not address the chal-
lenge of having to deal with the explosion in the number
of multi-program workload mixes, because the contention
model needs to be trained for each workload mix. Although
the contention model can be trained through cache simu-
lation, which is much faster than multi-core simulation, it
is fundamentally limited by the explosion in the number of
multi-program workload mixes. Our method on the other
hand, addresses this fundamental challenge through analyt-
ical modeling. Further, our method takes into account time-
varying execution behavior for determining the amount of
contention through shared resources and its impact on per-
formance.

Chandra et al. [4] propose three cache contention mod-
els. The input to the models is the shared cache stack dis-
tance distribution or a circular sequence profile for each pro-
gram. The output is the number of additional cache misses
due to cache sharing for each of the threads. The three mod-
els proposed by Chandra et al. include the Frequency of Ac-

cess (FOA) model, the Stack Distance Competition (SDC)
model and the Inductive Probability (Prob) model. The key
difference between our work and Chandra et al.’s work is
that we predict overall multi-core processor performance,
in contrast to Chandra et al.’s method which estimates cache
miss rates only. Further, they do not take into account time-
varying phase behavior, and their evaluation is limited to
two-program workload mixes only.

Van Biesbrouck et al. [18] propose the co-phase matrix
as a method to quickly simulate multi-program workloads
on multi-threaded architectures. The co-phase matrix takes
into account a program’s time-varying execution behavior
and basically keeps track of the performance for all the co-
phases in a two-program workload mix. The key idea here
is that each co-phase needs to be simulated only once, its
performance is stored in the co-phase matrix, and when-
ever the same co-phase is encountered again, the relative
progress for each of the co-executing programs is simply
picked from the co-phase matrix, and does not to be sim-
ulated again. This greatly reduces overall simulation time.
In follow-on work, Van Biesbrouck et al. [16] consider mul-
tiple starting points for each of the programs in the multi-
program workload mix. The co-phase matrix does not ad-
dress the challenge of having to deal with an explosion in
the number of multi-program workloads, i.e., the co-phase
matrix needs to computed for each multi-program workload
mix of interest.

Van Biesbrouck et al. [17] propose a method for picking
a representative set of multi-program workloads. They pro-
file each program using a set of micro-architecture indepen-
dent characteristics, and they then apply statistical analysis
techniques such as Principal Component Analysis and Clus-
ter Analysis to pick a limited but representative set of multi-
program workload mixes. Similar to our work, they aim at
addressing the explosion in the number of multi-program
workload mixes, however, their solution differs from ours in
a fundamental way. Their approach comes up with a limited
set of multi-program workload mixes that need to be simu-
lated in detail, whereas our approach estimates the perfor-
mance of a multi-program workload mix through analytical
modeling. This implies that we can estimate performance
for a large number of multi-program workload mixes much
more quickly, and in addition, in contrast to Van Biesbrouck
et al., we compute confidence bounds on performance by
considering a very large number of workload mixes.

Tuck and Tullsen [15] propose a methodology for quan-
tifying performance on multi-threaded architectures, which
is also applicable to multi-core processors. A challeng-
ing problem when evaluating multi-threaded processor per-
formance is that the relative progress of independent co-
executing programs may differ across processor architec-
tures, and hence, the effective multi-program workload may
be different across architectures, leading to biased and in-

correct design decisions. Tuck and Tullsen propose to
re-iterate the execution of a program in a multi-program
workload execution as soon as it reaches the end of its
execution. This process is re-iterated until convergence.
Whereas Tuck ad Tullsen apply this approach on real hard-
ware experiments, Vera et al. [19] propose a similar ap-
proach for simulation purposes. Both approaches run either
real hardware or simulation experiments to evaluate multi-
program performance; instead, MPPM employs an analyt-
ical model which allows for evaluating a large number of
multi-program workload mixes in limited time.

Alameldeen and Wood [1] study non-determinism when
evaluating multi-threaded programs on multi-processor pro-
cessors. Non-determinism refers to the fact that small tim-
ing variations can cause executions that start from the same
initial state to follow different execution paths. They pro-
pose adding non-determinism in deterministic simulators to
model this effect, and they report confidence bounds when
simulating multi-threaded programs. Our work is orthog-
onal and targets multi-program workloads. MPPM quan-
tifies how variability in multi-program workload mixes af-
fects performance; this is done by computing confidence
bounds.

8 Conclusion and Future Work

Current practice in multi-core simulation is to consider
a limited number of multi-program workloads. In this pa-
per, we have shown that tens of multi-program workloads
are not representative, and may lead to incorrect decisions
in practical design and research questions. Instead, we
advocated and proposed the Multi-Program Performance
Model (MPPM), which is an analytical approach for esti-
mating multi-program multi-core performance from single-
core simulation runs. MPPM incorporates a program’s
time-varying execution behavior, and accurately estimates
the tight performance entanglement between co-executing
programs because of resource contention in shared caches.
MPPM was shown to be accurate within 2.3% and 2.9%
on average for STP and ANTT, respectively, for SPEC
CPU2006 and up to 16 cores, while being up to five or-
ders of magnitude faster than detailed simulation. Hence,
MPPM estimates multi-program performance for a very
large number of multi-program workloads in a reasonable
amount of time, while providing confidence bounds on its
performance estimates. An appealing usage of MPPM is
to identify multi-program workloads that yield poor per-
formance due to excessive conflict behavior in shared re-
sources.

There is ample room for further evaluation, improve-
ments and extensions to MPPM. Multi-threaded workloads
not only incur negative interference among co-executing
threads but also positive interference, i.e., one thread fetch-

ing data that is later accessed by other threads. We believe
that MPPM can accurately model the impact of positive in-
terference on overall performance because MPPM models
the impact of cache sharing behavior of per-thread perfor-
mance, but this needs to be further evaluated using multi-
threaded workloads. Other avenues for future research in-
clude using MPPM for modeling heterogeneous multi-core
performance and exploring the heterogeneous multi-core
design space, as well as modeling resource sharing in simul-
taneous multi-threading (SMT) cores. Yet other avenues are
to improve the modeling of sources of contention other than
cache sharing, such as bandwidth sharing, TLB sharing and
the impact of prefetching.

Acknowledgments

We thank the anonymous reviewers for their constructive
and insightful feedback. Kenzo Van Craeynest is supported
through a doctoral fellowship by the Agency for Innovation
by Science and Technology (IWT). Additional support is
provided by the FWO projects G.0255.08 and G.0179.10,
the UGent-BOF projects 01J14407 and 01Z04109, and the
European Research Council under the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement no. 259295.

References

[1] A. Alameldeen and D. Wood. Variability in architectural
simulations of multi-threaded workloads. In HPCA, pages
7–18, Feb. 2003.

[2] E. Berg and E. Hagersten. Fast data-locality profiling of
native execution. In SIGMETRICS, pages 169–180, June
2005.

[3] G. Blake, R. G. Dreslinski, T. N. Mudge, and K. Flaut-
ner. Evolution of thread-level parallelism in desktop appli-
cations. In ISCA, pages 302–313, June 2010.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip-multiprocessor architec-
ture. In HPCA, pages 340–351, Feb. 2005.

[5] D. Eklöv, D. Black-Schaffer, and E. Hagersten. Fast model-
ing of cache contention in multicore systems. In HiPEAC,
pages 147–158, Jan. 2011.

[6] D. Eklöv and E. Hagersten. StatStack: Efficient modeling
of LRU caches. In ISPASS, pages 55–65, Mar. 2010.

[7] S. Eyerman and L. Eeckhout. System-level perfor-
mance metrics for multi-program workloads. IEEE Micro,
28(3):42–53, May/June 2008.

[8] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A performance counter architecture for computing accurate
CPI components. In ASPLOS, pages 175–184, Oct. 2006.

[9] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A
pin-based on-the-fly multi-core cache simulator. In Proceed-
ings of the Fourth Annual Workshop on Modeling, Bench-
marking and Simulation (MoBS), held in conjunction with
ISCA, June 2008.

[10] B. Lee, J. Collins, H. Wang, and D. Brooks. CPR: Com-
posable performance regression for scalable multiprocessor
models. In MICRO, pages 270–281, Nov. 2008.

[11] K. Luo, J. Gummaraju, and M. Franklin. Balancing through-
put and fairness in SMT processors. In ISPASS, pages 164–
171, Nov. 2001.

[12] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Eval-
uation techniques for storage hierarchies. IBM Systems Jour-
nal, 9(2):78–117, June 1970.

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
ASPLOS, pages 45–57, Oct. 2002.

[14] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for
simultaneous multithreading processor. In ASPLOS, pages
234–244, Nov. 2000.

[15] N. Tuck and D. M. Tullsen. Initial observations of the si-
multaneous multithreading Pentium 4 processor. In PACT,
pages 26–34, Sept. 2003.

[16] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Consider-
ing all starting points for simultaneous multithreading simu-
lation. In ISPASS, pages 143–153, Mar. 2006.

[17] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Represen-
tative multiprogram workloads for multithreaded processor
simulation. In IISWC, pages 193–203, Oct. 2007.

[18] M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase
matrix to guide simultaneous multithreading simulation. In
ISPASS, pages 45–56, Mar. 2004.

[19] J. Vera, F. J. Cazorla, A. Pajuelo, L. J. Santana,
E. Fernández, and M. Valero. FAME: Fairly measuring
multithreaded architectures. In PACT, pages 305–316, Sept.
2007.

