
A Rigorous Benchmarking and Performance
Analysis Methodology for Python Workloads

Arthur Crapé Lieven Eeckhout
Ghent University, Belgium

Abstract—Computer architecture and computer systems re-
search and development is heavily driven by benchmarking and
performance analysis. It is thus of paramount importance that
rigorous methodologies are used to draw correct conclusions and
steer research and development in the right direction. While
rigorous methodologies are widely used for native and managed
programming language workloads, scripting language workloads
are subject to ad-hoc methodologies which lead to incorrect and
misleading conclusions. In particular, we find incorrect public
statements regarding different virtual machines for Python, the
most popular scripting language. The incorrect conclusion is a
result of using the geometric mean speedup and not making a
distinction between start-up and steady-state performance.

In this paper, we propose a statistically rigorous benchmarking
and performance analysis methodology for Python workloads,
which makes a distinction between start-up and steady-state
performance and which summarizes average performance across
a set of benchmarks using the harmonic mean speedup. We
find that a rigorous methodology makes a difference in practice.
In particular, we find that the PyPy JIT compiler outperforms
the CPython interpreter by 1.76× for steady-state while be-
ing 2% slower for start-up, which refutes the statement on
the PyPy website that ‘PyPy outperforms CPython by 4.4×
on average’ based on the geometric mean speedup and not
making a distinction between start-up and steady-state. We
use the proposed methodology to analyze Python workloads
which yields several interesting findings regarding PyPy versus
CPython performance, start-up versus steady-state performance,
the impact of a workload’s input size, and Python workload
execution characteristics at the microarchitecture level.

I. INTRODUCTION

Benchmarking and performance analysis is at the foundation
of computer architecture and computer systems research and
development. A lack of rigorous methodologies may lead
to incorrect and misleading conclusions which steer research
and development in unfruitful directions. Benchmarking and
performance analysis is a well understood problem for native
programming language workloads (i.e., applications written
in C or C++). In particular, architects know how to select
representative regions of execution [19], they know how
to deal with non-determinism [1], and they know how to
compose a diverse and representative set of benchmarks [8].
Benchmarking managed language workloads (i.e., applications
written in Java or C#) requires additional care because of the
virtual machine which dynamically optimizes application code
and automatically manages memory. State-of-the-art method-
ologies hence make a distinction between start-up and steady-
state performance [3], [10].

The situation is quite different for scripting languages, such
as Python, Javascript, PHP, Ruby, etc. Python is a particularly

popular scripting language: it is the most popular scripting
language and the third most popular programming language
after C and Java, according to the TIOBE index as of July
2020.1 Unfortunately, rigorous benchmarking and performance
analysis methodologies are lacking for scripting language
workloads, and different researchers and practitioners use dif-
ferent ad-hoc methodologies [14], [15], [21]–[23]: some seem
to measure start-up performance while others seem to measure
steady-state performance (without explicitly stating so), and
most seem to lack statistical data analysis. In particular, the
PyPy website2 mentions that ‘on average, the PyPy Just-in-
Time (JIT) compiler is 4.4 times faster than the CPython
interpreter’. We find that this is an incorrect and misleading
conclusion for at least two reasons.

First, this average performance number is based on the
geometric mean speedup which misguides the overall con-
clusion. The geometric mean speedup implicitly assumes that
the individual speedup numbers are log-normally distributed.
We find that this is not the case using three statistical tests.
In addition, the geometric mean speedup does not have a
physical meaning. Instead, we argue that the harmonic mean
should be used to compute the average speedup across a set
of benchmarks. The physical meaning of the harmonic mean
speedup is that it quantifies the average reduction in execution
time. We find that PyPy is on par with CPython (in fact, PyPy
is 3% slower than CPython) using the harmonic mean speedup,
in contrast to what the geometric mean speedup suggests.
In other words, using the correct mean speedup matters in
practice and is critical to reach valid conclusions.

Second, the average performance number reported on the
PyPy website does not make a distinction between start-up and
steady-state performance. This is unfortunate and inappropri-
ate because it does not acknowledge the fact that PyPy is a
JIT compiler, i.e., PyPy dynamically identifies, compiles and
optimizes frequently executed code. An inherent property of a
JIT compiler is that it requires time to identify and optimize
hot code, hence it is expected that performance will be modest
initially before reaching higher levels of performance as more
and more code gets optimized. It is therefore critical to make
a distinction between start-up and steady-state performance
when evaluating JIT compilers. Start-up accounts for library
loading and JIT compilation overheads, whereas steady-state
measures optimized code performance. We find that PyPy

1https://www.tiobe.com/tiobe-index/
2https://www.pypy.org/

Lieven Eeckhout

Lieven Eeckhout
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

outperforms CPython by 1.76× on average for steady-state
while being on par (actually, 2% slower) for start-up.

In this paper, we propose a statistically rigorous benchmark-
ing and performance analysis methodology for Python work-
loads. This methodology makes a distinction between start-up
and steady-state performance. Start-up measures performance
of a single benchmark execution across multiple invocations of
the Python virtual machine (VM) assuming no libraries have
been loaded by the system. Steady-state measures performance
across multiple executions of the same benchmark within a
single VM invocation so that library loading and compilation
overheads are amortized. Average performance across bench-
marks is computed using the harmonic mean speedup, rather
than the geometric mean. (While we focus on Python in this
paper, the contributions made in this paper are applicable to
workloads written in other scripting languages as well as other
programming languages.)

We subsequently use this methodology to analyze PyPy
versus CPython performance, yielding various interesting find-
ings. For example, we find that the PyPy website primarily
focused on start-up performance, not highlighting PyPy’s JIT
compiler ability to optimize steady-state performance; PyPy’s
performance advantage over CPython improves with increas-
ing input data set size; PyPy’s performance advantage comes
from a reduced dynamic instruction count which compensates
for a lower IPC (useful instructions executed per cycle)
compared to CPython; steady-state performance is substan-
tially higher than start-up performance for PyPy compared
to CPython and is due to reduced dynamic instruction count
and improved IPC; Python performance is strongly inversely
correlated with branch MPKI, more so than LLC MPKI — this
suggests that branch behavior is a more critical contributor to
Python performance than cache behavior.

In summary, we make the following contributions:
• We argue based on a statistical argument and physi-

cal meaning that the average speedup across a set of
benchmarks should be computed using the harmonic
mean and not the geometric mean, and we show that
computing the correct mean matters in practice, i.e., using
an inappropriate mean speedup may lead to incorrect and
misleading conclusions.

• We propose a statistically rigorous performance evalu-
ation methodology for measuring Python start-up and
steady-state performance. Start-up performance includes
library loading and JIT compilation overheads, whereas
steady-state performance is largely determined by the
application code and the JIT compiler’s optimizations.

• We use this methodology to evaluate and analyze Python
workload performance using the CPython interpreter and
the PyPy JIT compiler. We provide a list of 10 findings
regarding PyPy versus CPython performance, start-up
versus steady-state performance, input size sensitivity,
and Python workload execution characteristics at the
microarchitectural level.

The remainder of this paper is organized as follows. We first
provide background on the Python programming language and

its implementations (Section II). We then elaborate on how to
compute average speedup across a set of benchmarks in a
meaningful way (Section III). We describe our proposed rig-
orous performance evaluation methodology for Python work-
loads measuring start-up and steady-state performance (Sec-
tion IV). After detailing our experimental setup (Section V),
we comprehensively analyze Python performance along a
number of dimensions including JIT compilation versus inter-
pretation, start-up versus steady-state, and microarchitecture-
level characteristics (Section VI). Finally, we discuss related
work (Section VII) and conclude (Section VIII).

II. BACKGROUND: PYTHON

Python is a high-level general-purpose scripting language
designed for programmer productivity. Python is dynamically
typed and uses garbage collection to automatically manage
memory. Python supports multiple programming paradigms,
including procedural, object-oriented, and functional program-
ming, and offers an extensive standard library.

Python is interpreted by default. CPython is the open-
source reference interpreter, developed and maintained by a
global community of programmers.3 PyPy is an alternative
implementation to CPython and leverages Just-in-Time (JIT)
compilation to dynamically identify, compile and optimize
frequently executed code (so-called hot code). Interpreters are
easier to write and develop than JIT compilers. On the flip side,
interpreters typically run slower, especially for long-running
applications for which the JIT compiler has time to optimize
the code [2]. Beyond CPython and PyPy, there exists a wide
variety of implementations for (restricted subsets of) Python,
including Cython (compilation of Python to C and C++),
Jython (use of Java class library from a Python program),
Numba (LLVM-based Python compiler), etc.

Python was conceived in the late 1980s, and several revi-
sions were released including Python 2 in 2000 and Python 3
in 2008. There is no complete backward-compatible between
Python 2 and 3. Python 2 was officially discontinued in 2020
of which Python 2.7 is the last Python 2 release. Since Python
2’s end-of-life, only Python 3.5 and beyond are supported.

III. COMPUTING AVERAGE PERFORMANCE

Before describing how to rigorously and comprehensively
benchmark and analyze Python performance, we first discuss
how to compute average speedup numbers across a set of
benchmarks in a meaningful way. How to compute average
performance has been a topic of controversy and debate
for several decades. Even today, performance engineers and
computer architects do not seem to agree on how to summarize
performance across a set of benchmarks.

The debate started in 1986 with Fleming and Wallace [9]
arguing for the geometric mean. Smith [20] advocated the op-
posite, shortly thereafter. Cragon [5] also argues in favor of the
arithmetic and harmonic mean. Hennessy and Patterson [12]
describe the pros and cons of all three averages. More recently,

3https://www.python.org/

Lieven Eeckhout
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

[-
1.

55
, -1

.2
3]

(-
1.

23
, -0

.9
1]

(-
0.

91
, -0

.5
9]

(-
0.

59
, -0

.2
7]

(-0
.2

7,
 0

.0
5]

(0
.0

5,
 0

.3
6]

(0
.3

6,
 0

.6
8]

(0
.6

8,
 1

.0
0]

(1
.0

0,
 1

.3
2]

(1
.3

2,
 1

.6
4]

(1
.6

4,
 1

.9
6]

(1
.9

6,
 2

.2
7]

(2
.2

7,
 2

.5
9]

(2
.5

9,
 2

.9
1]

(2
.9

1,
 3

.2
3]

0

5

10

15

20

25

30
co

un
t

(a) Start-up.

[-
2.

26
, -1

.8
0]

(-
1.

80
, -1

.3
3]

(-
1.

33
, -0

.8
6]

(-
0.

86
, -0

.3
9]

(-0
.3

9,
 0

.0
8]

(0
.0

8,
 0

.5
4]

(0
.5

4,
 1

.0
1]

(1
.0

1,
 1

.4
8]

(1
.4

8,
 1

.9
5]

(1
.9

5,
 2

.4
1]

(2
.4

1,
 2

.8
8]

(2
.8

8,
 3

.3
5]

(3
.3

5,
 3

.8
2]

(3
.8

2,
 4

.2
9]

(4
.2

9,
 4

.7
5]

0

5

10

15

20

25

co
un

t

(b) Steady-state.

Fig. 1: Histogram of the logarithm of speedups for PyPy versus CPython for start-up and steady-state performance. Speedup
does not follow a log-normal distribution.

John [16] argued strongly against the geometric mean, which
was counterattacked by Mashey [18]. Eeckhout [6] describes
the underlying intuitions for the various means.

In this work, we argue against the geometric mean and
in favor of the harmonic mean for computing the average
speedup across a set of benchmarks. We do so based on two
key arguments, a statistical argument and physical meaning,
which we explain in the next two subsections.

A. Statistical Argument

Mashey [18] argues that speedup (the execution time on
the reference system divided by the execution time on the
enhanced system) is distributed following a log-normal dis-
tribution. A log-normal distribution means that the logarithm
of the elements of a population are normally or Gaussian
distributed. In contrast to a normal distribution, a log-normal
distribution is skewed, i.e., its distribution is asymmetric and
has a long tail to the right, whereas a normal distribution is
symmetric and has zero skew. Normal distributions arise from
aggregations of many additive effects (cf. central limit theory),
whereas log-normal distributions arise from combinations of
multiplicative effects. The assumption that speedup follows
a log-normal distribution has some intuitive appeal: it is our
common experience that some programs experience (much)
larger speedups than others — in other words, there are
outliers, hence the long tail to the right.

Assuming that speedup follows a log-normal distribution,
the geometric mean is the appropriate mean for speedups:

GM = exp
(1

n

n∑
i=1

ln(xi)
)

= n

√√√√ n∏
i=1

xi,

with xi the speedup for benchmark i. In this formula, it
is assumed that x is log-normally distributed, or in other
words, ln(x) is normally distributed. The average of a normal
distribution is the arithmetic mean, hence, the exponential of
the arithmetic mean over ln(xi) computes the average for x.
This equals the definition of the geometric mean, as shown on
the right-hand side of the equation.

The geometric mean of speedup thus builds on the assump-
tion that speedup is log-normally distributed. For the speedup
values obtained in this work we verified whether speedup in-
deed follows a log-normal distribution. To do so, we performed
three normality tests on the logarithm of the obtained speedup
values: Shapiro-Wilk, D’Agostino and Anderson-Darling. The
Shapiro-Wilk test tests the null hypothesis that a sample
x1, . . . , xn comes from a normally distributed population. The
test returns a p value, and if the p value is less than a
chosen alpha level, say 0.05, the null hypothesis is rejected.
D’Agostino’s K2 test is a normality test based on the sample’s
skewness and kurtosis. The Anderson-Darling normality test
rejects the null hypothesis of normality if the test’s statistic
is larger than the normal distribution’s critical value, and is
generally considered a powerful test.

All three tests reject the null hypothesis of normality for all
the speedups reported in this work. The tests also reject the
null hypothesis when focusing on just the start-up and steady-
state speedup numbers. This is further illustrated in Figure 1
in which we report the logarithm of the speedup values for
PyPy versus CPython under start-up and steady-state. The
histograms confirm that the logarithm of the speedups does not
follow a normal distribution. We hence conclude that speedup
does not follow a log-normal distribution. This statistical
reasoning puts to question whether the geometric mean of
speedups is appropriate.

B. Physical Meaning

In addition to the statistical argument, there is another
compelling argument against the geometric mean of speedups
and in favor of the harmonic mean, based on physical mean-
ing. Table I provides an illustrative example. Consider two
benchmarks A and B that run equally long on the original
system, i.e., their normalized execution time equals one. (An
alternative interpretation is to say that both benchmarks are
equally important to the experimenter, i.e., this is a sys-
tem’s perspective on computer performance.) Assume now
that the optimization of interest does not affect performance
for benchmark A, i.e., execution time with the optimization

TABLE I: Example to illustrate the lack of physical meaning
for the geometric mean of speedups.

Benchmark Execution time Speedup
original optimized

A 1 1 1
B 1 0.01 100

Geometric mean speedup 10
Harmonic mean speedup 1.98

equals the execution time of the original system. In contrast,
the optimization improves performance by a factor 100× for
benchmark B, i.e., the execution time is reduced from one
unit of time to 0.01 units of time. In other words, executing
benchmarks A and B on the original system takes 2 time units
while taking 1.01 time units on the optimized system.

The geometric mean speedup across the two benchmarks
equals 10×. The intuitive understanding based on the geomet-
ric mean is thus that the optimization improves performance
by 10×, which does not have any physical meaning, unfortu-
nately. In contrast, the harmonic mean speedup does have a
physical meaning, namely the execution time of benchmarks
A and B is reduced by a factor 1.98×. This is exactly what
is expected. Executing A and B takes 2 time units on the
original system and 1.01 time units on the optimized system,
which results in a speedup of 2/1.01 = 1.98×. This equals
the harmonic mean speedup as computed over the individual
benchmarks’ speedup values. In other words, the physical
meaning of the harmonic mean speedup S is that the execution
time of a set of benchmarks is reduced by a factor S×.

C. Does it Matter in Practice?

One may wonder whether computing the harmonic versus
geometric mean speedup makes a difference in practice? Or,
is this just a matter of academic interest?

We ran all the PyPerformance benchmarks out-of-the-box
on the PyPy JIT compiler version 7.3.1 and the CPython
interpreter version 3.6.9 on an Intel Core i7 system (experi-
mental details follow in Section V). Computing the geometric
mean speedup leads us to conclude that PyPy is 4.4× faster
than CPython. (This speedup number is exactly the same as
the speedup number reported on the PyPy website.) However,
computing the harmonic mean speedup leads us to conclude
that PyPy yields a speedup of 0.97× compared to CPython;
or, in other words, PyPy is 3% slower than CPython! So the
question now is: which mean speedup is correct? Is PyPy
indeed much faster than CPython according to the geometric
mean speedup? Or, is PyPy on par with CPython (and slightly
slower) according to the harmonic mean speedup?

This result clearly illustrates that using the appropriate mean
really makes a difference in practice, and using an inappro-
priate mean may lead to incorrect or misleading conclusions.
Based on the statistical argument and the physical meaning
as discussed above, we argue that the harmonic mean speedup
leads to the correct answer. To further and more deeply analyze
Python performance, we now describe how to evaluate startup
and steady-state performance in a statistically rigorous manner.

IV. MEASURING START-UP AND STEADY-STATE
PERFORMANCE

The methodology we propose and use to evaluate Python
workloads in this work is based on the statistically rigor-
ous Java performance evaluation methodology by Georges
et al. [10]. This methodology makes a distinction between
start-up and steady-state performance. Before describing the
methodology in detail, we first introduce some terminology
and notation.

A. Terminology and Notation

We refer to a VM invocation as the initiation of the Python
virtual machine (VM). The VM can be an interpreter (e.g.,
CPython) or a JIT compiler (e.g., PyPy). Within a single
VM invocation, we can execute the Pyton benchmark multiple
times. Each execution within a single VM invocation is called
a benchmark iteration. If a benchmark is iterated multiple
times within a single VM invocation, the first iteration of the
benchmark will perform most of the library loading and JIT
(re)compilation, and subsequent iterations will experience less
(re)compilations. In other words, the first (few) iteration(s)
will incur library loading and JIT compilation overheads
whereas subsequent iterations will be running compiled and
optimized code. Researchers and developers mostly interested
in steady-state performance should therefore focus on the
subsequent iterations of the benchmark, and not the first
iteration. This might be of interest for example to evaluate
a VM’s intrinsic compilation and optimization performance.
Researchers interested in start-up performance will typically
run a benchmark only once to capture the first iteration. This
might be of interest to evaluate a system’s responsiveness and
interactive performance for short-running Python workloads.
In the following discussion, we will refer to xij as the
measurement of the j-th benchmark iteration of the i-th VM
invocation.

B. Start-Up Performance

Start-up performance quantifies how quickly a Python vir-
tual machine can execute a relatively short-running Python
program. As mentioned above, start-up performance is affected
by library loading and JIT compilation, substantially more so
than steady-state performance.

For measuring start-up performance, we follow a two-step
methodology:

1) We measure the execution time of multiple VM invo-
cations, each VM invocation running a single bench-
mark iteration. This results in p measurements xij with
1 ≤ i ≤ p and j = 1.

2) We dynamically compute the confidence interval at the
95% confidence level over the past i measurements. If
the confidence interval is within 5% of the computed
mean, or we have run more than p = 30 VM invocations,
we stop the measurements. We compute the confidence
interval using the Student t-statistic [17].

This procedure makes the implicit assumption that the
different measurements (VM invocations) are independent.

This may not be true in practice, because the first VM
invocation may change system state which persists past the
first VM invocation, e.g., dynamically loading libraries in
main memory. To reach independence across the different
VM invocations, we clear the pagecache using the Linux
operating system drop_caches utility. This is to unload the
libraries from the system. In other words, start-up performance
in this work includes the overhead of library loading. If a
performance analyst or engineer would like to exclude the
impact of library loading (because the system under test is
assumed to have the libraries already dynamically loaded),
one can decide to not clear the pagecache when measuring
start-up performance.

C. Steady-State Performance

Steady-state performance concerns long-running applica-
tions for which start-up is less relevant (or even irrelevant),
i.e., the application’s total running time (by far) exceeds
start-up time. Since most of the library loading and JIT
compilation/optimization is performed during start-up, steady-
state performance is largely determined by the application
code and the JIT compiler’s optimization abilities.

The approach we take for steady-state performance is to
execute or iterate a benchmark multiple times within a single
VM invocation. Executing a benchmark multiple times without
restarting the VM amortizes library loading time and enables
the JIT compiler to further optimize the code. The question
then is how many benchmark iterations to consider before we
reach steady-state performance within a single VM invocation?
The answer will likely be different for different benchmarks,
hence we need a mechanism to determine when steady-state
performance is reached within a single VM invocation.

We therefore use a three-step methodology for steady-state
performance:

1) We consider one VM invocation within which we run
the benchmark at most q = 30 times.

2) We determine the iteration s where steady-state perfor-
mance is reached, i.e., once the coefficient of variation
(CoV), or the standard deviation divided by the mean,
of the last k iterations (s− k + 1 to s) is less than 2%.
We run at most q = 30 iterations per VM invocation
and we set k = 4.

3) We compute the mean x̄i of the s benchmark iterations
under steady-state (i = 1):

x̄ =

s∑
j=1

xij .

By re-executing the same benchmark within the same VM
invocation, this steady-state procedure thus computes the
average performance observed over a long period of time,
providing a solid picture of steady-state performance. Note that
the methodology by Georges et al. [10] considers multiple VM
invocations across which average steady-state performance
is computed. We consider a single VM invocation in this
work for two reasons: (i) to limit experimentation time, and

TABLE II: Benchmarks and inputs considered in this work.

Benchmark Input Description
nqueens 10 N-queens solver
go 300 AI-driven board game

500
700

crypto pyaes default AES block-cipher
richards default OS kernel simulation
mdp default graph node sorting
nbody default n-body solver
fannkuch 10 permutation game

11
pidigits 5,000 calculating π digits

10,000
20,000
30,000

pyflate default bzip2 decompression
raytrace 300 raytracing square image

400
500
600
700

spectral norm 1,000 eigenvalue computation
1,500
2,000
5,000

regex v8 default regular expression on Web page

(ii) we find negligible variability across VM invocations for
steady-state performance. (This is further affirmed by the
limited variability observed for start-up performance across
VM invocations, as we will discuss in the next section.)

V. EXPERIMENTAL SETUP

We now use the above statistically rigorous data analysis
methodology to benchmark Python performance. The perfor-
mance numbers reported in this work are obtained on an HP
Envy notebook which features an Intel Core i7-6500U CPU
running at 2.5 GHz with 12 GB of DRAM running at 1.6 GHz.
The machine runs the Ubuntu 16.04.6 LTS (Xenial Xerus)
operating system. We use Linux’ perf utility to measure time
and hardware performance counters.

We consider two Python runtimes, namely the CPython
interpreter version 3.6.9 and the PyPy Just-in-Time (JIT) com-
piler version 7.3.1. We ran all the PyPerformance benchmarks4

out-of-the-box in Section III. Many of these benchmarks are
(very) short-running though: 48% and 81% of the benchmarks
run for less than 0.1 seconds for CPython and PyPy, respec-
tively, and all but two run for less than one second for both
CPython and PyPy. Because evaluating start-up and steady-
state performance for a JIT compiler requires sufficiently long
execution times, we consider a subset of the PyPerformance
benchmarks in the remainder of this paper. We select bench-
marks based on the following two criteria: (i) conversion from
Python 2 to Python 3 — converting benchmarks from Python
2 to Python 3 was straightforward for many benchmarks but
not all, hence we excluded the benchmarks that were non-
trivial to port for further consideration; and (ii) execution
time — we withheld the benchmarks that run for at least

4https://pyperformance.readthedocs.io/

0.5 seconds and/or for which we could prolong the execution
time to be more than 0.5 seconds by changing the input.
Table II lists the benchmarks considered in the remainder of
this paper. We consider multiple inputs for several benchmarks
to evaluate input sensitivity. All benchmark-input pairs run for
at least 0.5 seconds using CPython under start-up, and half the
benchmarks run for more than ten seconds, and up to almost
6 minutes.

Recall that our statistical data analysis methodology uses
specific parameters. In particular, for start-up performance,
we take as many measurements as needed (with a cap of 30
measurements) so that the confidence interval is within 5% of
the computed mean. For steady-state performance, we consider
the last k = 4 measurements out of 30 so that the coefficient
of variation is less than 2%. These specific methodological
parameters were selected based on prior work by Georges et
al. [10]. We verify that for our measurements, the confidence
interval is within 2.6% on average (and at most 4.8%) of the
mean for start-up, and the average coefficient of variation is
around 0.4% on average (and at most 1.9%) for steady-state.
We do not report the confidence intervals in the result graphs
because they are hardly visible, while complicating the reading
of the graphs.

Although the proposed analysis methodology requires mul-
tiple runs of the same benchmark to obtain stable performance
results, this does not lead to an impractical experimental
methodology. Recall that we run up to 30 VM invocations
for start-up, and up to 30 benchmark iterations within a
single VM invocation for steady-state. Of course, the fact
that multiple runs are required prolongs experimentation time.
Fortunately, we find that the number of required measurements
is limited in practice. For start-up, we find that we need
at most four VM invocations for most benchmarks for both
CPython and PyPy. We note only two outliers requiring 6
VM invocations (go for PyPy) and 12 invocations (crypto
for CPython). For steady-state, we note that there is limited
performance variability for CPython and we hence need only
the minimum number of four benchmark iterations. There is
more performance variability across benchmark iterations for
PyPy — not unexpectedly because of the JIT compiler —
however, the number of iterations is still limited to 5.4 on
average and at most 8 for richards. In other words, the overall
conclusion is that this performance analysis methodology does
not increase experimentation time dramatically. On average,
the methodology increases experimentation time by around 5×
compared to running a single instance per benchmark. While
this is a non-negligible increase, it is manageable (especially
on real hardware) while guaranteeing a solid performance
analysis.

VI. PERFORMANCE ANALYSIS

We now perform a number of performance analyses, includ-
ing evaluating PyPy versus CPython, input sensitivity, start-
up versus steady-state performance, and microarchitectural
analysis.

Fig. 2: Speedup PyPy versus CPython. PyPy leads to a
speedup of 1.76× and 0.98× compared to CPython for steady-
state and start-up performance, respectively.

A. PyPy versus CPython

We first compare the PyPy JIT compiler against the CPython
interpreter, while making a distinction between start-up and
steady-state performance, see Figure 2. PyPy leads to a
harmonic mean speedup of 1.76× compared to CPython for
steady-state performance, and a harmonic mean speedup of
0.98× for start-up performance. In other words, PyPy beats
CPython for steady-state performance while being 2% slower
(almost on par) for start-up performance. More specifically,
PyPy leads to significant speedups for start-up for many
benchmarks (up to 25.3× for spectral-5000) while severely
degrading performance for others: 0.25× speedup (or, 4×
slowdown) for nbody and around 0.3× speedup (or, 3.3×
slowdown) for crypto, richards and regex. PyPy leads to
significant speedups for steady-state and up to 36.8× for
raytrace-700; performance degrades compared to CPython
for nbody (3.1× slowdown) and crypto (1.8× slowdown).

Finding #1: PyPerformance primarily measures start-
up performance. It is interesting to compare the above per-
formance numbers against the performance numbers reported
on the PyPerformance website, as described in Section III-C.
Running the PyPerformance benchmarks out-of-the-box leads
to a harmonic mean speedup for PyPy against CPython of
0.97×. This number is obtained by running each benchmark
for a single iteration within a single VM invocation. And
while we are considering a subset of the benchmarks here
(with different inputs in some cases), the harmonic mean
speedup of 0.97× is remarkably close to the harmonic mean
speedup of 0.98× under start-up conditions. This suggests
that PyPerformance primarily measures start-up performance
and not steady-state performance. The fact that most PyPer-
formance benchmarks are (very) short-running, as discussed
before, provides further evidence for this finding.

Finding #2: PyPy outperforms CPython for steady-
state performance. The above performance analysis further
reveals that the PyPy JIT compiler significantly outperforms
the CPython interpreter for steady-state performance (i.e.,
harmonic mean speedup of 1.76×). This is not unexpected
since the PyPy JIT compiler needs time to identify frequently
executed code for compilation and optimization.

Finding #3: PyPy is on par with CPython for start-
up performance. We find that PyPy yields similar start-

Fig. 3: Dynamic instruction count under steady-state. The
dynamic instruction count is on average 3.2× smaller for PyPy
than for CPython.

Fig. 4: IPC under steady-state. The IPC is on average 2.5×
lower for PyPy than for CPython.

up performance to CPython on average, and in fact leads to
slightly inferior performance (2% slower). The reason is that
the JIT compiler is unable to speed up the frequently executed
code and/or the compilation/optimization overhead does not
get amortized by the improved code quality.

Finding #4: Different benchmarks favor different VMs.
It is interesting to note that different applications favor
different VMs. In particular, raytrace, spectral, fannkuch,
nqueens and go favor PyPy for both start-up and steady-state.
In contrast, crypto, richards, mdp and nbody favor CPython
for both start-up and steady-state. For pidigits and regex,
we note that CPython yields highest performance for start-
up while PyPy yields highest performance for steady-state.
This suggests that the JIT compilation cost gets amortized
as the benchmark executes long enough. This observation
also implies that system performance can be improved by
selecting the best performing VM on a per-application basis,
e.g., use PyPy for raytrace and spectral, versus use CPython
for crypto and nbody. Further, selecting a particular VM for
different scenarios may also improve performance, e.g., for
pyflate and regex, using CPython for start-up and PyPy for
steady-state yields the highest performance.

B. Analyzing JIT versus Interpreter Performance

We now dive deeper to understand where the performance
difference between PyPy and CPython is coming from. To
do so, we analyze dynamic instruction count and IPC (use-
ful instructions executed per cycle). Recall that dynamic
instruction count N and IPC determine overall performance,
assuming that clock frequency f is constant, cf. Iron Law of
Performance: execution time T = N×1/IPC×1/f . Figures 3

and 4 report dynamic instruction count and IPC, respectively,
under steady-state.

Finding #5: The reduction in dynamic instruction count
compensates for the decrease in IPC for PyPy versus
CPython under steady-state. The dynamic instruction count
is on average 3.2× smaller for PyPy compared to CPython, see
Figure 3. We note a dramatic reduction in dynamic instruction
count for most benchmarks using PyPy, and up to 75.2×
(raytrace). This is due to the JIT compiler which optimizes the
application code and eliminates the interpreter loop from the
dynamic instruction stream. For only two benchmarks (mdp
and nbody) do we note an increase in dynamic instruction
count. This is likely due to the overhead introduced by the
JIT compiler.

In contrast, we note that PyPy leads to lower IPC compared
to CPython, by 2.5× on average, see Figure 4. We note a
reduction in IPC for all but one benchmark. The reduction
is as high as 14.4× for crypto from 1.54 for CPython to
0.11 for PyPy. The overall conclusion is that the reduction in
dynamic instruction count (by 3.2×) amortizes the decrease
in IPC (2.5×) which leads to a net performance improvement
for PyPy compared to CPython for steady-state (by 1.76×).

C. Input Sensitivity

It is interesting to analyze PyPy versus CPython perfor-
mance as a function of input size. The longer the execution
takes, the higher the opportunity for the JIT compiler to
optimize the code.

Finding #6: PyPy speedup over CPython increases with
increasing input size. Figure 2 allows us to analyze PyPy
versus CPython performance as a function of input size. (We
consider different inputs for five benchmarks: go, fannkuch,
pidigits, raytrace and spectral.) We find that PyPy indeed
leads to higher speedups compared to CPython for increasingly
large inputs, for both start-up and steady-state. For example,
the speedup increases from 16.4× (smallest input) to 36.8×
(largest input) for raytrace under steady-state. Note that for
pidigits under start-up, PyPy leads to a 1.61× performance
slowdown compared to CPython for the smallest input, while
yielding a 1.09× speedup for the largest input.

D. Start-Up versus Steady-State Performance

We now compare steady-state performance against start-up
performance for both PyPy and CPython, see Figure 5 which
shows normalized execution time in the top row, normalized
dynamic instruction count in the middle row and IPC in the
bottom row; CPython results are reported in the left column
and PyPy results are shown in the right column.

Finding #7: Steady-state performance is substantially
higher than start-up performance for PyPy compared to
CPython. The key observation from this analysis is that
the gap between start-up and steady-state performance is
substantially higher for PyPy compared to CPython. We report
a harmonic mean speedup of 1.95× when comparing steady-
state performance against start-up performance for PyPy, ver-
sus a harmonic mean speedup of 1.12× for CPython. The PyPy

(a) Normalized execution time: CPython. (b) Normalized execution time: PyPy.

(c) Dynamic instruction count: CPython. (d) Dynamic instruction count: PyPy.

(e) IPC: CPython. (f) IPC: PyPy.

Fig. 5: Start-up versus steady-state performance for CPython and PyPy: execution time (top row), dynamic instruction count
(middle row) and IPC (bottom row) for one iteration under start-up and steady-state. Execution time and dynamic instruction
count results are normalized to start-up. Steady-state performance is substantially higher than start-up performance for PyPy
(1.95× harmonic mean speedup) compared to CPython (1.12× harmonic mean speedup).

JIT compiler dynamically optimizes hot code for long-running
applications which leads to a performance boost compared to
start-up performance. This is not the case for the CPython
interpreter, or at least, to a lesser extent. Note that CPython
also yields higher performance for steady-state compared to
start-up for some benchmarks. This seems to suggest that
CPython also performs some form of dynamic code optimiza-
tion in the interpreter loop. Clearly, the performance boost is
not comparable to PyPy’s JIT compiler.

Finding #8: Performance improvement during steady-
state is a result of decreasing dynamic instruction count
and increasing IPC. There is a multiplicative effect on
overall steady-state performance: dynamic instruction count
decreases and IPC increases. This is especially the case for
PyPy: dynamic instruction count decreases by on average
1.36× and IPC increases by on average 1.46×. This leads
to a cumulative performance improvement of 1.95×.

E. Microarchitectural Analysis

We now explore the reason for the substantial increase
in IPC for PyPy under steady-state compared to start-up.

We therefore analyze branch MPKI (misses per thousand
instructions) and LLC MPKI, see Figure 6.

Finding #9: PyPy’s JIT compiler decreases branch
MPKI as well as LLC MPKI. We observe that branch MPKI
is substantially lower for steady-state compared to start-up for
all benchmarks. In other words, PyPy’s JIT compiler is able to
significantly improve the branch behavior of the hot code. On
average, the JIT compiler reduces the branch MPKI by a factor
1.33× and up to 3× for spectral and 2.6× for raytrace. We
observe a somewhat similar trend for LLC MPKI: we observe
a reduction in LLC MPKI for all but one benchmark, namely
go for which LLC MPKI increases 1.45×.

Finding #10: Python performance strongly correlates
with branch prediction behavior. It is interesting to correlate
branch MPKI against IPC, see Figure 7(a). We note an inverse
correlation between branch MPKI and IPC. There is a clear
trend: all benchmarks with a MPKI above 2 have an IPC below
1, and all benchmarks with an IPC above 1 have a branch
MPKI below 2. In particular, we note the highest branch
MPKI (5.4) and lowest IPC (0.04) for nbody. Likewise, the

(a) Branch MPKI. (b) LLC MPKI.

Fig. 6: Branch and LLC MPKI for PyPy start-up and steady-state performance. PyPy’s JIT compiler decreases branch MPKI
for all benchmarks while reducing LLC MPKI for all but one benchmark.

(a) Branch MPKI versus IPC. (b) LLC MPKI versus IPC.

Fig. 7: Correlating branch and LLC MPKI against IPC. IPC inversely correlates with branch MPKI; the correlation is less
pronounced between LLC MPKI and IPC.

branch MPKI is high (3.2) and IPC is low (0.11 and 0.15)
for crypto and richards, respectively. This suggests that the
branch predictor has a substantial impact on performance. This
is further affirmed by noting that the branch MPKI for these
Python benchmarks is fairly high in absolute numbers.

The (inverse) correlation between LLC MPKI and IPC
is less pronounced, see Figure 7(b), but still we note that
benchmarks with a high LLC MPKI, such as go and nbody
have a fairly low IPC (well) below 1. However, there are many
benchmarks with an IPC below one with an LLC MPKI below
one, which suggests that other processor components, such as
the branch predictor, are responsible for the low IPC.

VII. RELATED WORK

Python performance analysis. Ismail and Suh [15] perform
a detailed simulation-based overhead analysis of the Python
programming language compared to a native language such
as C. They categorize the overhead contributors in terms of
language features (e.g., name resolution, function setup and
cleanup, error checking, garbage collection, boxing/unboxing)
versus interpreter operations (e.g., C function calls, dispatch-
ing bytecode instructions, object allocation, stack operations).
They conclude that name resolution and function setup and
cleanup are the language features which incur the highest over-
head; C function calls and dispatching byte code instructions
are the interpreter features incurring the highest overhead. In
addition, they explore the interaction with microarchitecture

and heap size by providing various sensitivity analyses. In their
experimental methodology, they ‘warm up each benchmark
by running it twice followed by running it three times for
evaluation’. This seems to suggest that what they characterize
is steady-state performance, more so than start-up perfor-
mance. However, this ad-hoc methodology does not provide a
statistically rigorous assessment whether it characterizes start-
up or steady-state performance. The Python benchmarking
methodology proposed in this paper is complementary to this
prior work, providing a comprehensive and statistically rigor-
ous approach for benchmarking both start-up versus steady-
state performance. It would be interesting to see how the
language feature and interpreter operation overheads differ
between start-up versus steady-state.

Ilbeyi et al. [14] propose a cross-layer performance eval-
uation methodology to analyze meta-tracing JIT performance
at the application, framework, interpreter, JIT compiler and
microarchitecture levels. Meta-tracing JIT frameworks decou-
ple the language definition from the VM internals to reduce
the effort for developing custom JIT compilers. This prior
work considers the RPython meta-tracing JIT, and compares
CPython versus PyPy while not explicitly stating whether it fo-
cuses on start-up or steady-state performance. In fact, it seems
that the standard PyPerformance benchmarking approach is
adopted, which according to our findings focuses on start-
up performance. Our work is complementary to this work
and it would be interesting to analyze how the cross-layer

characteristics differ between start-up and steady-state.
JavaScript benchmarking. JavaScript is another popu-

lar scripting language, specifically targeting interactive web
pages. Several studies have analyzed JavaScript performance.
Tiwari and Solihin [22] analyze the performance overheads of
JavaScript compared to C/C++. Southern and Renau [21] char-
acterize the overheads of deoptimization in the V8 JavaScript
engine. They run each ‘benchmark configuration’ multiple
times which suggests they evaluate start-up performance (i.e.,
multiple VM invocations and one benchmark execution per
invocation, per our terminology); they report geomean mean
performance numbers across a set of benchmarks. Zhu et
al. [23] propose and characterize server-side JavaScript bench-
marks using the Node.js framework. They focus on steady-
state performance, which is arguably the typical state of
operation for server-side applications. We believe that the con-
tributions made in this paper can help solidify benchmarking
methodologies for scripting languages other than Python, such
as JavaScript and beyond.

Java performance evaluation. There exists an extensive
body of work on Java performance evaluation, upon which
this paper builds. Eeckhout et al. [7] point out that Java per-
formance characteristics can be vastly different depending on
the application’s input size due to the JIT compiler’s ability to
optimize long-running workloads. The DaCapo project offered
a benchmark suite and proposed a solid experimental design
methodology for benchmarking Java workloads [4]. Georges et
al. [10] provided a statistically rigorous data analysis method-
ology making a distinction between start-up and steady-state
performance. Replay compilation was introduced to evaluate
a JIT compiler’s inherent performance characteristics under
steady-state [11], [13]. This paper borrows several concepts
in experimental design and data analysis from this body of
prior work, including the focus on start-up versus steady-
state performance and the use of statistical data analysis. The
conclusion that the harmonic mean speedup is a meaningful
way to summarize average performance is a novel contribution
of this paper, as well as the characterization and analysis of
Python workloads.

VIII. CONCLUSION

Benchmarking methodology plays a critical role in com-
puter architecture and computer systems research and devel-
opment by creating a common ground for evaluating ideas and
products. Sound methodology relies on sound experimental
design and rigorous data analysis. Unsound methodology may
retard or misdirect innovation; a sound methodology acceler-
ates and steers research and innovation in the right direction.

While rigorous methodologies are now widely understood
and widely used for native and managed programming lan-
guage workloads, we find that sound methodologies for work-
loads written in scripting languages are lacking. In particular,
we find that for Python, the most popular scripting language,
current methodologies are ad-hoc, which leads to incomplete,
misleading or outright incorrect conclusions. The use of
geometric mean speedup provides an incorrect performance

assessment of existing Python implementations (PyPy versus
CPython). Not making a distinction between start-up and
steady-state performance draws an incomplete or misleading
performance picture.

This paper proposed a statistically rigorous benchmarking
and performance analysis methodology for Python workloads,
which makes a distinction between start-up and steady-state
performance and which uses the harmonic mean speedup to
summarize average performance across a set of workloads.
Using this methodology we comprehensively evaluate PyPy
versus CPython performance, start-up versus steady-state per-
formance, the impact of a workload’s input size, and Python
workload execution characteristics at the microarchitecture
level.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-
ments. This work was supported in part by European Research
Council (ERC) Advanced Grant agreement no. 741097, and
FWO projects G.0434.16N and G.0144.17N.

REFERENCES

[1] A. Alameldeen and D. Wood, “Variability in architectural simulations
of multi-threaded workloads,” in Proceedings of the Ninth International
Symposium on High-Performance Computer Architecture (HPCA), Feb.
2003, pp. 7–18.

[2] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, “A survey
of adaptive optimization in virtual machines,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 449–466, Feb. 2005.

[3] S. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanovik, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “Wake
up and smell the coffee: Evaluation methodology for the 21st century,”
Communications of the ACM, vol. 51, no. 8, pp. 83–89, Aug. 2008.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. Moss, A. Phansalkar, D. Ste-
fanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo Benchmarks: Java Benchmarking Development and Analysis,”
in Proceedings of the Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOP-
SLA), Oct. 2006, pp. 169–190.

[5] H. G. Cragon, Computer Architecture and Implementation. Cambridge
University Press, 2000.

[6] L. Eeckhout, Computer Architecture Performance Evaluation Methods,
ser. Synthesis Lectures on Computer Architecture. Morgan and
Claypool Publishers, 2010.

[7] L. Eeckhout, A. Georges, and K. De Bosschere, “How Java pro-
grams interact with virtual machines at the microarchitectural level,”
in Proceedings of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Languages, Applications and Systems
(OOPSLA), Oct. 2003, pp. 169–186.

[8] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload
design: Selecting representative program-input pairs,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2002, pp. 83–94.

[9] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: The
correct way to summarize benchmark results,” Communications of the
ACM, vol. 29, no. 3, pp. 218–221, Mar. 1986.

[10] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” in Proceedings of the Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Languages, Applications
and Systems (OOPSLA), Oct. 2007, pp. 57–76.

[11] A. Georges, L. Eeckhout, and D. Buytaert, “Java performance evaluation
through rigorous replay compilation,” in Proceedings of the Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Languages,
Applications and Systems (OOPSLA), Oct. 2008, pp. 376–384.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 3rd ed. Morgan Kaufmann Publishers, 2003.

[13] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng, “The garbage collection advantage: Improving program
locality,” in Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA, 2004, pp. 69–80.

[14] B. Ilbeyi, C. F. Bolz-Tereick, and C. Batten, “Cross-layer workload
characterization of meta-tracing JIT VMs,” in Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC), Oct.
2017, pp. 97–107.

[15] M. Ismail and G. E. Suh, “Quantitative overhead analysis for Python,”
in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), Sep. 2018, pp. 36–47.

[16] L. K. John, “More on Finding a Single Number to Indicate Overall
Performance of a Benchmark Suite,” ACM SIGARCH Computer Archi-
tecture News, vol. 32, no. 4, pp. 1–14, Sep. 2004.

[17] D. J. Lilja, Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press, 2000.

[18] J. R. Mashey, “War of the benchmark means: Time for a truce,” ACM

SIGARCH Computer Architecture News, vol. 32, no. 4, pp. 1–14, Sep.
2004.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct. 2002, pp. 45–57.

[20] J. E. Smith, “Characterizing computer performance with a single num-
ber,” Communications of the ACM, vol. 31, no. 10, pp. 1202–1206, Oct.
1988.

[21] G. Southern and J. Renau, “Overhead of deoptimization checks in the V8
JavaScript engine,” in Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC), Sep. 2016, pp. 75–84.

[22] D. Tiwari and Y. Solihin, “Architectural characterization and similarity
analysis of Sunspider and Google’s V8 Javascript benchmarks,” in
Proceedings of the IEEE International Symposium on Performance
Analysis (ISPASS), Apr. 2012, pp. 221–232.

[23] Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi, “Microarchitectural
implications of event-driven server-side Web applications,” in Proceed-
ings of the IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec. 2015, pp. 762–774.

