
Cactus: Top-Down GPU-Compute Benchmarking
using Real-Life Applications

Mahmood Naderan-Tahan
Ghent University

mahmood.naderan@ugent.be

Lieven Eeckhout
Ghent University

lieven.eeckhout@ugent.be

Abstract—Benchmarking is the de facto standard for evalu-
ating hardware architectures in academia and industry. While
several benchmark suites targeting different application domains
have been developed for CPU processors over many decades,
benchmarking GPU architectures is not as mature. Since the
introduction of GPUs for general-purpose computing, the pur-
pose has been to accelerate (a) specific part(s) of the code,
called (a) kernel(s). The initial GPU-compute benchmark suites,
which are still widely used today, hence consist of relatively
simple workloads that are composed of one or few kernels
with specific unambiguous execution characteristics. In contrast,
we find that modern-day real-life GPU-compute applications
are much more complex consisting of many more kernels with
differing characteristics. A fundamental question can hence be
raised: are current benchmark suites still representative for
modern real-life applications?

In this paper, we introduce Cactus, a collection of widely
used real-life open-source GPU-compute applications. The aim
of this work is to offer a new perspective on GPU-compute
benchmarking: while existing benchmark suites are designed
in a bottom-up fashion (i.e., starting from kernels that are
likely to perform well on GPUs), we perform GPU-compute
benchmarking in a top-down fashion, starting from complex
real-life applications that are composed of multiple kernels.
We characterize the Cactus benchmarks by quantifying their
kernel execution time distribution, by analyzing the workloads
using the roofline model, by performing a performance metrics
correlation analysis, and by classifying their constituent kernels
through multi-dimensional data analysis. The overall conclusion
is that the Cactus workloads execute many more kernels, include
more diverse and more complex execution behavior, and cover a
broader range of the workload space compared to the prevalently
used benchmark suites. We hence believe that Cactus is a useful
complement to the existing GPU-compute benchmarking toolbox.

I. INTRODUCTION

GPU devices have become critical components not only

in desktop computers but also in server and throughput-class

computers thanks to the introduction of general-purpose GPU

programming models such as CUDA for Nvidia platforms [42]

and OpenCL [41] for vendor-independent platforms. So-called

GPU-compute systems provide convenient programming in-

terfaces, so that it is no longer needed to translate general

computation models to the graphics programming model to

leverage the massive computational power of the GPU. Since

the beginning of GPU-compute systems, the focus has been

on high-performance and data-parallel applications with a

broad range of application domains. Examples include high-

performance computing (HPC), graph analytics, as well as

machine learning, which all employ GPUs as their accelerator

of choice [11], [33], [36], [37], [51], [60], [66]. While dif-

ferent applications have different needs, evaluating different

architectures for performance efficiency is a major challenge.

Computer architects rely on benchmark suites for this purpose

and selecting a set of representative applications is of critical

importance when composing a benchmark suite.

The concept of hardware acceleration where a specific part

of a problem, called a kernel, is offloaded onto a specific

device has triggered a bottom-up approach for designing

GPU benchmark suites. In particular, the Berkeley 13 dwarfs

model [4] highlights important problems that need paralleliza-

tion: this includes dwarfs that exemplify traditional numerical

methods (e.g., linear algebra, n-body methods) as well as

dwarfs for emerging applications such as machine learning

and graph traversals. The most widely used GPU-compute

benchmark suites, Rodinia [8] and Parboil [58], are designed

using the 13 dwarfs as a guideline. More specifically, the Ro-

dinia paper states that ‘each application or kernel is carefully

chosen to represent different types of behavior according to

the Berkeley dwarfs’ [8]. Parboil claims to be ‘very similar

in philosophy and development’ [58]. In other words, today’s

prevalent benchmark suites have been developed in a bottom-

up fashion starting from a set of key prototypical kernels.

Over the past decade though, GPU programming interfaces

have changed substantially and several highly optimized li-

braries (e.g., CUDA-X [10] and ArrayFire [67]) have been

developed. In addition, new application domains have emerged

and a more diverse set of advanced algorithms have been

ported to GPU devices. In particular, graph analytics and

machine learning have emerged as key drivers for continuing

to push GPU-compute performance and system scaling [3],

[18]. With such a widespread usage, considerable efforts

have been made to create new standard benchmark suites.

MLPerf [19], [20] is recognized as the most advanced bench-

mark suite for machine learning (ML) as it focuses on end-to-

end performance benchmarking using state-of-the-art software

stacks. While MLPerf is a valuable asset for benchmarking

large-scale ML systems, using MLPerf for GPU-compute

system evaluation and research is tedious because of lack over

control of scale and the limited visibility that it provides into

system- and architecture-level performance phenomena. Al-

ternative benchmark suites, e.g., Tango [30] and Darknet [52],

use custom implementations that do not rely on state-of-the-

art libraries such as CuDNN for their ML models. Other

benchmark suites, such as DeepBench [44] and Altis [28], do

176

2021 IEEE International Symposium on Workload Characterization (IISWC)

978-1-6654-4173-5/21/$31.00 ©2021 IEEE
DOI 10.1109/IISWC53511.2021.00026

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
W

or
kl

oa
d

Ch
ar

ac
te

riz
at

io
n

(II
SW

C)
 |

 9
78

-1
-6

65
4-

41
73

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IIS

W
C5

35
11

.2
02

1.
00

02
6

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

use CuDNN to implement some of the basic machine learning

operations but they are compatible with specific versions and

they do so in a bottom-up fashion — basic machine learning

operations are considered as computational kernels, much like

Rodinia and Parboil for scientific computing.

We thus conclude that across various GPU-compute work-

load domains, from scientific computing to machine learning,

there is a major gap in the benchmarking space for GPU-

compute systems. Existing benchmark suites have been de-

veloped in a bottom-up and kernel-centric manner, they do

not rely on state-of-the-art libraries, or they are too large a

scale, failing computer architects to provide the visibility they

need. There is hence a need for GPU-compute benchmarks

with the following key properties: (1) they are derived from

real-life applications in a top-down fashion, (2) they measure

end-to-end application performance, (3) they rely on state-of-

the-art libraries, and (4) they provide visibility into system-

and architecture-level performance phenomena.

To fill this gap in the benchmarking space, we use a top-

down approach by creating a benchmark suite that reflects

modern-day GPU-compute applications. We introduce Cactus,

a collection of real-life GPU-compute applications that are

widely used and cover domains as broad as molecular sim-

ulation, graph traversal and machine learning. In contrast to

existing bottom-up benchmarking methodologies that focus on

essential computational kernels, we select and analyze bench-

marks in a top-down fashion by considering real-life state-

of-the-art applications that rely on state-of-the-art libraries

and are of appropriate scale for GPU-compute architecture

research. We analyze and characterize the Cactus workloads

on a modern GPU platform and we quantify the kernel

execution time distribution, we analyze their compute versus

memory-bound characteristics using the roofline model, and

we perform a performance metrics correlation analysis as well

as multi-dimensional data analysis. These analyses lead to the

following key observations:

• The real-life applications in Cactus execute multiple tens

of kernels, in contrast to benchmarks from traditional

benchmark suites (Parboil, Rodinia and Tango) which

execute one or just a few kernels.

• Which kernels get invoked in the real-life applications

depends on the application’s input.

• The execution behavior in real-life applications is more

complex and ambiguous compared to the traditional

benchmark suites.

• Kernels from the same real-life application may exhibit

widely different execution characteristics, some being

compute-intensive while others being memory-intensive.

This suggests that optimizing real-life application perfor-

mance is more challenging than what existing benchmark

suites may indicate.

• Compared to the molecular and graph analytics appli-

cations in Cactus, the ML applications execute many

more kernels with a much wider diversity in compute-

versus memory-intensive behavior and performance. The

ML applications also feature dominant kernels that are

Fig. 1: Popularity of GPU-compute benchmark suites over

the past decade in top-four computer architecture conferences

(ISCA, MICRO, ASPLOS and HPCA). Rodinia and Parboil
are the most popular GPU-compute benchmark suites.

bound by memory bandwidth.

• Overall, Cactus covers a larger part of the workload space

than traditional benchmark suites.

The Cactus benchmark suite can be accessed and downloaded

following the instructions reported in the artifact appendix.

II. MOTIVATION

It is of critical importance that benchmarks are representa-

tive for their target workloads and systems. We briefly revisit

the most popular GPU-compute benchmark suites and discuss

their limitations, which further motivates the work presented

in this paper.

A. Popular GPU-Compute Benchmark Suites

Since the introduction of GPUs for general-purpose com-

puting, there have been several efforts to create benchmarks

for architectural evaluation. Our survey shows that researchers

use a wide variety of GPU-compute benchmarks, with some

being more popular than others. Figure 1 reports the num-

ber of GPU-related papers in the top four computer archi-

tecture conferences (ISCA, MICRO, ASPLOS and HPCA)

from 2010 until 2020, and the benchmarks they use in their

experimental evaluations. Arguably, Rodinia [8] is the most

popular benchmark suite, followed by Parboil [58]. These

benchmark suites are more widely used compared to other

suites due to their application diversity, deployment easiness

and simulator-friendly structure. Although CUDA-SDK [55]

has also received attention for architectural evaluations, it just

includes a set of CUDA examples from various applications

which has been unofficially recognized as a benchmark suite.

Other popular suites are LoneStar [31], PolyBench [25] and

SHOC [12]. However, they mostly contain computational ker-

nels such as FFT, LUD and matrix multiplication with specific

properties, e.g., irregularity — some of these benchmarks also

appear in Rodinia and Parboil. As argued previously, given

their focus on the implementations of specific essential kernels

(i.e., dwarfs), we categorize these benchmark suites as bottom-

up benchmarking initiatives.

Apart from their kernel-centric focus and bottom-up design

principle, and while they have been and remain to be important

benchmarks, Rodinia and Parboil suffer from two additional

limitations: (1) The benchmarks are based on decade-old al-

gorithms and implementations, and more advanced algorithms

177

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: GPU time distribution for a set of Parboil, Rodinia

and Tango benchmarks. Existing benchmark suites spend the
majority of their execution time in one or just a few kernels.

have been developed over the years — examples are breadth-

first-search (BFS) for which better scalable implementations

have been proposed for large graphs [39], or GEMM which

has more advanced implementations in cuBLAS [9] and

CUTLASS [21]; and (2) Rodinia and Parboil focus on the

traditional GPU-compute workloads in scientific computing,

while GPUs have been recently deployed for new emerging

workload domains including graph analytics and machine

learning, which to date have no representation in these bench-

mark suites.

Tango [30] is a recently proposed benchmark suite for

machine learning, which is quickly gaining traction for driving

architecture research — however, given its very recent release

in 2019, only few papers have been using Tango so far

(which is why we did not include Tango in Figure 1). The

Tango benchmarks, as mentioned before, do not use advanced

libraries, such as CuDNN, but instead implement some of the

machine learning models to be compatible with architectural

simulators. We consider the Tango benchmarks in this paper

as a representative for benchmarking studies in the machine

learning domain.

B. Kernel-Centric Benchmarks

The key conclusion from the previous section is that existing

benchmark suites are kernel-centric, i.e., they are designed

in a bottom-up fashion starting from kernels that are easily

accelerated on GPUs. Figure 2 shows stacked GPU execution

time bars for a set of benchmarks from Parboil, Rodinia

and Tango. (More details about the experimental setup are

provided in Section IV.) The figure highlights the fact that for

approximately 70% of the workloads (23 out of 31), at least

70% of the total execution time is spent in a single kernel;

and for approximately 25% of the workloads (7 out of 31), at

least 70% of the GPU time is spent in at most two kernels;

finally, only two workloads have three kernels that take up

at least 70% of the GPU time. The overall conclusion is that

the benchmarks from prevalent benchmark suites spend most

of their execution time in one or just a few kernels. This is a

direct consequence of the bottom-up design philosophy behind

these benchmarking methodologies, as argued before.

C. Towards Application-Centric Benchmarks

In contrast to what we observe in prevalent benchmark

suites, we find that modern-day GPU-compute applications

consist of multiple (a dozen and up to multiple tens of)

kernels, as we will quantify later in this paper. This ob-

servation has important implications for optimization, es-

pecially if those kernels exhibit widely different execution

characteristics, e.g., some kernels are predominantly compute-

intensive while others are primarily memory-intensive. We use

a couple of examples to illustrate this further. Consider first

a GPU-compute application that consists of a single kernel.

Improving the performance of the kernel by, say, 20% will

lead to a 20% performance improvement for the application.

However, in case a GPU-compute application consists of

multiple kernels, one has to either optimize all kernels by

20% to achieve an average overall application performance

improvement of 20%, or one has to optimize the dominant

kernel(s) by a margin that is substantially larger than the 20%

average improvement. Consider for example a workload that

consists of five kernels with the following time distribution:

{0.25, 0.2, 0.2, 0.2, 0.15} and IPC distribution (at SM sub-

partition level): {1.2, 1.6, 2, 1.5, 1.2}. To realize a 20% average

performance improvement at the application level, one has to

double the performance of the most dominant kernel (i.e.,

the first kernel in this example which accounts for 25% of

the application execution time), or one has to optimize all

kernels by 20% on average. Neither of these two options is

easy achievable in practice.

In summary, if GPU time is distributed across multiple

kernels, improving overall application performance is not as

straightforward as for a single-kernel program. To speed up

program execution by a factor X , we have to improve the

performance of the dominant kernel(s) by a factor that is

much larger than X , or, alternatively, we have to improve the

performance of all kernels by a factor X . Furthermore, to make

matters even more complicated, optimizing the performance

of one (or a few) kernels may create (possibly negative) side

effects on other kernels.

III. CACTUS BENCHMARK SUITE

In this section, we describe the GPU-compute applications

included in the Cactus benchmark suite. These applications

have the following properties in common: (1) They are popular

and widely used; (2) They are open-source and hence we can

share the benchmarks with the community; and (3) They have

a large user base with active support and regular updates.

In the end, we have selected a total of ten workloads from

three key application domains including molecular simulation,

graph traversal and machine learning. We now describe the

benchmarks in more detail.

A. Molecular Simulation

Molecular dynamics is a problem domain that is inherently

data-parallel, and hence is an area with suitable candidates

for GPU acceleration — in fact, several open-source software

178

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The Cactus benchmark suite: benchmarks, inputs, and basic execution characteristics.

Domain Workload Abbr. Description Data set Total no. warp
instructions

Weighted
average no.
warp instructions
per kernel

No. kernels

100%
execution

time

70%
execution

time

Molecular
Gromacs GMS NPT Equilibration T4 lysozyme 306 B 43 M 9 3

LAMMPS1 LMR Protein simulation Rhodopsin
(32K atoms)

265 B 46 M 15 2

LAMMPS2 LMC Pairwise interactions
between particles

Colloid (60K
atoms)

53 B 3 M 9 3

Graph
BFS GST BFS traversal on

Social network
SOC-Twitter10 1.7 B 187 M 12 1

BFS GRU BFS traversal on Road
network

Road USA 1.6 B 40 K 8 3

Machine
Learning

DCGAN DCG Train a GAN network Celeba 621 B 43 M 50 9

Neural Style NST Train a CNN to
generate artistic image

Original and
artistic images

153 B 93 M 44 11

Reinforcement
Learning

RFL Train a CNN with
Deep-Q network

Flappy bird
game

46 B 2.1 M 50 13

Spatial Trans-
formation

SPT Train a spatial
transformer network

MNIST 11 B 2.4 M 37 10

Language
Translation

LGT Train seq2seq model to
translate sentences

Spacy German
news

125 B 3.2 M 66 14

packages target this domain [57]. We have selected two well-

known applications from the domain of molecular simulation:

• Gromacs is a versatile package for biochemical molecular

simulation with hundreds to millions of particles that

have complicated bonded interactions, e.g., lipids and

proteins [1], [14], [32], [45]. We use the 2021 single-

precision version with CUDA and threaded-MPI enabled

features. We consider a simulation system containing a

T4 lysozyme protein in a complex with a ligand. The

equilibration was conducted under the NPT ensemble

(constant number of particles, pressure and temperature)

for 5,000 steps.

• LAMMPS is molecular dynamics simulation software

focusing on material modeling including solid-state, soft-

matter, coarse-grained and mesoscopic systems [7], [16],

[56], [63]. We use the 2020 version of the code with

single-precision and CUDA-enabled features. Two inputs

were considered: (1) Rhodopsin, a solvated protein model

with 32 K atoms for 3,000 steps, and (2) a Colloid model

with 60 K atoms for 2,000 steps.

B. Graph Analytics

Graph analytics workloads have become a critical workload

with the recent emergence of big data and social networks. Al-

though prior benchmark suites have included graph processing

workloads, such as breadth-first-search (BFS), the initial im-

plementations are suboptimal. More recently, highly optimized

libraries have been developed and increasingly widely used.

One such example is Gunrock, which is a CUDA library for

graph-processing designed specifically for the GPU. It uses a

high-level, bulk-synchronous, data-centric abstraction focused

on operations on a vertex or edge frontier [15], [62]. Analyses

show that Gunrock is fast compared to other graph libraries for

large graphs [46], [61], [65]. In this work, we use BFS graph

traversal using the Gunrock library for two large graphs: (1) a

social network graph with 21 M vertices and 265 M edges [53],

and (2) a road network with 23 M vertices and 28 M edges [5].

As we will quantify in the evaluation section of this paper, the

version of BFS included in Cactus invokes multiple kernels as

opposed to the version included in Rodinia and Parboil.

C. Machine Learning

Machine learning, and deep learning in particular, is one of

the important killer applications for GPU-compute systems.

PyTorch is a Python library for deep learning on irregular

input data, including Tensor computation with GPU support

and deep neural networks built on a tape-based autograd sys-

tem [43], [47]. With its simple and easy to learn programming

interface, there are numerous projects that use the PyTorch

framework for machine learning operations [22], [35], [48].

For our purpose, we have selected the training phase of a

number of state-of-the-art learning models [59]. Because the

training phase is a time-consuming repetitive task that lends

itself well to GPU acceleration, we analyze the applications

for one epoch and an arbitrary number of iterations. Based

on our observations, achieved results are consistent across

different number of epochs and iterations. We have selected

the following applications:

• DCGAN or Deep Convolutional Generative Adversarial

Network is a framework for teaching a deep learning

model where it can generate new data after extracting

information features using convolutional networks and

leaning an input data set [50]. We select the training phase

179

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

of the model to generate new pictures from the Celeb-A

data set [38].

• Neural Style is a deep neural network that takes an input

image along with a style image and produces an artistic

image with high perceptual quality [23]. The algorithm is

based on Convolutional Neural Networks (CNNs) which

are powerful for image processing. In our analysis we

train the model to use one content image and one style

image to produce the artistic image.

• Reinforcement Learning is a machine learning area that

tries to instruct an artificial agent to take actions in

an environment to maximize its reward. Proposed by

DeepMind, Deep Q-Network (DQN) is a method for

reinforcement learning [40]. In this work, we choose the

training phase of the flappy bird game [26].

• Spatial Transformer aims to enhance geometric invariants

of a model by allowing a neural network to learn how

to perform spatial transformations on an input image.

Such enhancements include correcting the orientation of

an image or cropping part of an image [29]. For our work,

we use an SGD algorithm for the training phase on the

MNIST data set [27].

• Language Translation uses machine learning models to

translate sentences from one language to another. For

this purpose, a sequence-to-sequence model is trained to

translate German sentences into English from the Spacy

dataset [6].

D. Discussion

Table I briefly summarizes the selected benchmarks, their

inputs, and the abbreviations that we will use throughout the

paper. Additionally, some other basic execution statistics are

shown in the table, including the total number of dynamically

executed instructions per warp, which ranges from 1.6 B up to

621 B instructions. (Note that a warp instruction consists of 32

thread instructions.) The average number of warp instructions

executed per kernel ranges between 40 K and 187 M. All

applications consist of multiple (tens of) kernels ranging

between 8 and up to 66. Some applications require up to 14

kernels to account for 70% of the total execution time.

We do not claim that the Cactus benchmark suite is repre-

sentative of the entire domain of molecular simulation, graph

analytics and/or machine learning, let alone the entire HPC

space. Instead, we believe though that the Cactus benchmarks

reflect modern-day GPU-compute applications. In particular,

the Cactus benchmarks are more complex than current existing

benchmarks, as we will quantify in the results section of this

paper. We hence believe that Cactus is a useful complement

to existing benchmark suites for driving GPU-compute archi-

tecture explorations.

IV. EXPERIMENTAL SETUP

We analyze and contrast the Cactus benchmark suite against

previously proposed benchmark suites using the following

experimental setup.

TABLE II: System setup.

GPU Nvidia RTX 3080, 68 multiprocessors and 128 CUDA cores
per multiprocessor at 1.9 GHz, Ampere SM architecture,
10 GB DRAM with 320-bit memory bus, 760 GB/s DRAM
bandwidth, 5 MB L2 cache, released in 2020

Libraries CUDA Toolkit 11.2, CuDNN 8.1, Nsight Compute 2020.3

Software Gromacs-2021, LAMMPS-2020, Gunrock-1.1, PyTorch-
1.7.1, TorchText-0.8.1 and TorchVision-0.8.2

TABLE III: Benchmarks from Parboil, Rodinia and Tango.

Suite Workload

Parboil bfs (1M), cutcp, histo, lbm, mri-gridding, mri-q, sad, sgemm,
spmv, stencil, tpacf

Rodinia b+tree, backprop, bfs, cfd, dwt2d, gaussian (4K), heartwall,
hotspot3d, huffman, kmeans, lavamd, leukocyte, lud, nn, nw,
pathfinder, srad v1, streamcluster

Tango alexnet (AN), resnet (RN), sqeezenet (SN)

System Specification. We use a state-of-the-art high-end

Nvidia RTX 3080 GPU with the latest Ampere architecture.

We further use the Nvidia Nsight Compute 2020 software pro-

filer and various up-to-date software libraries as summarized in

Table II. Due to the large number of kernels and the repetitive

behavior of molecular and machine learning applications, we

limit the program execution time that we profile to reduce the

amount of data generated by the profiler. Before gathering our

final performance metrics, we have run the programs multiple

times in a fast tracing mode to identify a steady-state region

of execution. For the graph analytics workloads, we profile the

entire execution time.

Workloads. We contrast the Cactus benchmarks described

in Section III against several other workloads from Rodinia,

Parboil and Tango, as listed in Table III. We use the large

or reference inputs where possible or create sufficiently large

inputs with the provided input generator scripts (e.g., 4K input

for Gaussian from Rodinia). We did not include all bench-

marks from these benchmark suites for a variety of reasons

including too small or hard-coded inputs, or incompatibility

with the profiler. We do not use recently released machine

learning benchmarks, such as DeepBench [44] and Altis [28],

because their code bases are incompatible with CUDA 11.2

supported by the Nvidia Ampere architecture.

Performance Model. We analyze Cactus using the roofline

model [13]. This performance model plots performance or

the number of Giga (warp) Instructions Per Second (GIPS)

versus instruction intensity or the number of warp instructions

per DRAM transaction. The theoretical maximum GIPS for

the RTX 3080 is calculated as follows: 68 (no. SMs) ×4 (no.

warp schedulers) ×1 (warp instructions per cycle) ×1.9 (clock

frequency in GHz), which amounts to a total of 516.8 GIPS.

In this model, a kernel’s performance is a function of the

peak machine bandwidth, calculated by the number of Giga

transactions per second, instruction intensity and the device’s

peak GIPS. With a GDDR6X bandwidth of 760.3 GB/s and

transaction size of 32 bytes, the peak memory bandwidth

180

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Performance characteristics.

Metric Description

Warp occupancy Average no. of active warps across all SMs

SM efficiency Fraction of time w/ at least one active warp per SM

L1/L2 hit rate Fraction of accesses that hit in L1 or L2

DRAM read throughput Total DRAM read bytes per second

LD/ST utilization Average load/store functional unit utilization

SP utilization Average FP32 pipeline utilization

Fraction branches Fraction branch instructions

Fraction LD/ST insts Fraction memory operations

Execution stall Stall ratio due to execution dependencies

Pipe stall Stall ratio due to busy pipeline

Sync stall Stall ratio due to synchronization

Memory stall Stall ratio due to memory accesses

equals 23.75 GTXN/s (Giga Transactions per Second). There-

fore, the elbow point where the memory roof reaches the

compute roof is when instruction intensity equals 21.76 warp

instructions per DRAM transaction.

To analyze a workload using the roofline model, we have

to calculate two metrics: (1) instruction intensity (II) which is

computed as the total number of warp instructions divided by

the total number of memory transactions; and (2) performance
(GIPS) which is computed as the total number of warp

instructions divided by the kernel’s runtime (in seconds). In

addition to these key performance metrics, we also collect

several other metrics for deeper analysis as provided by the

profiler, see Table IV.

Dominant Kernels. Assume a program consists of N kernels

with N � 1. Each kernel i is invoked ri times and each

invocation takes ti time unit. This implies that the total exe-

cution time of the kernel equals Ti =
∑N

i=1 ri × ti. The total

GPU application execution time hence equals T =
∑N

i=1 Ti.

The kernel that has the highest ri × ti rank is called the

dominant kernel. This implies that we do not solely rely on

the execution time per kernel invocation to determine the most

dominant kernel. A kernel that has a relatively short per-

invocation execution time may be invoked more frequently,

and may hence become a more dominant kernel. As we will

argue in the results section, we will primarily focus on the

dominant kernels that collectively amount for at least 70% of

the total GPU execution time.

V. METHODOLOGY

We now analyze and compare the Cactus workloads against

the Parboil, Rodinia and Tango benchmarks. We first quantify

the number of kernels executed, and then characterize the

applications and their constituent kernels using the roofline

model. We finally analyze the (dis)similarity among the bench-

marks using data analysis techniques such as hierarchical

clustering and factor analysis using mixed data.

A. GPU Time Distribution

Figure 3 reports the cumulative distribution of time spent

in the different kernels for the Cactus workloads. The vertical

Fig. 3: Cumulative distribution of execution time spent in

the most dominant kernels for the Cactus workloads. Real-
life applications tend to spend their execution time in many
more kernels than traditional benchmarks. Different (number
of) kernels are executed depending on the benchmark input.

axis shows the cumulative GPU time while the horizontal axis

shows the number of kernels. (We limit the number of kernels

to 14 to account for at least 70% of the total execution time,

see also the data presented in Table I.) This result leads to the

following key observations:

Observation #1: Real-life applications tend to execute many
more kernels than traditional benchmarks. Whereas Rodinia,

Parboil and Tango spend most of their time in one or just a few

kernels, as previously reported, the Cactus applications spend

their execution time in many more kernels. This is particularly

the case for the ML applications for which a dozen of kernels

account for approximately 70% of the execution time. For all

molecular dynamics and graph analytics benchmarks (except

GST), we note that at least three kernels are responsible for at

least 90% of the total execution time.

Observation #2: The total number of kernels executed rises
up to multiple tens in real-life applications. The total number

of kernels executed rises up to multiple tens of kernels, as

is the case for the ML workloads, e.g., 66 kernels account

for 100% of the execution time for LGT, see Table I. Also,

for the other workload categories we note that up to a couple

dozen kernels are executed at least once: up to 15 kernels for

the molecular dynamics LMR benchmark, and up to a dozen

kernels for the graph analytics workload GST.

Observation #3: Real-life applications tend to execute differ-
ent kernels depending on the input. It is worth noting that some

workloads are input-sensitive in the sense that they execute

different (number of) kernels depending on the input provided

to the application. In particular, we note different execution

profiles for the Lammps workload (see LMR versus LMC) as

well as for the Graph workload (see GST versus GRU). These

workloads execute the same code base, but different inputs

trigger the execution of different kernels.

B. Roofline Analyses

1) Parboil, Rodinia and Tango: Figure 4 shows the roofline

model for the Parboil, Rodinia and Tango workloads. As afore-

mentioned, the roofline model reports performance (GIPS)

against instruction intensity. The elbow point in the roofline is

where the memory roof reaches the compute roof, and hence

181

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

(a) Parboil (b) Rodinia (c) Tango

Fig. 4: Roofline model for (a) Parboil, (b) Rodinia, and (c) Tango. Most of the workloads exhibit unambiguous behavior: their
constituent kernels are either compute-intensive or memory-intensive. There are few exceptions as indicated, including LUD
(from Rodinia) and AN (from Tango).

workloads situated on the left-hand side of the elbow point are

memory-intensive whereas workloads on the right-hand side

are compute-intensive. In these roofline plots, the colorization

indicates the GPU time spent in each kernel. As noted before,

most Parboil, Rodinia and Tango benchmarks consist of a

single or just a few kernels that take up most (>70%) of the

execution time.

Observation #4: The Parboil, Rodinia and Tango benchmarks
exhibit mostly unambiguous execution behavior, i.e., they are
either memory-intensive or compute-intensive, but not mixed.
The Parboil, Rodinia and Tango benchmarks are located on

the left-hand side or the right-hand side of the elbow point

— this is unsurprising given that most benchmarks consist

of a single dominant kernel. However, even the benchmarks

that spend a significant amount of time in more than one

kernel, have all of their kernels on one side of the elbow

point, i.e., all kernels are either memory-intensive or they

are all compute-intensive. Examples include BFS and Histo
from Parboil for which all kernels are memory-intensive. For

Rodinia, all kernels in Kmeans and Srad v1 are memory-

intensive and all kernels in B+tree are compute-intensive; the

only exception is LUD which consists of a memory-intensive

kernel and a compute-intensive kernel. For Tango, we also note

that all kernels in SN and RN are compute-intensive, whereas

AN has three kernels out of which two are compute-intensive

and one is memory-intensive. In short, out of the 31 work-

loads, only two workloads have kernels with mixed memory-

and compute-intensive execution characteristics. This makes

the performance optimization of these workloads relatively

simple: by knowing the position of the dominant kernel in the

roofline chart, architects are able to focus on the parameters

that are likely to affect performance the most, i.e., improving

performance of a memory-intensive workload is likely to be

achieved by increasing effective memory bandwidth, whereas

improving the performance of a compute-intensive workload

is likely to be achieved by increasing the effective compute

bandwidth.

2) Cactus: Aggregate Behavior: We now analyze the Cac-
tus workloads using the roofline model, see also Figure 5

which reports the overall application execution characteristics

Fig. 5: Roofline model for the Cactus workloads: this includes

all kernels and hence represents overall per-application perfor-

mance. Most of the Cactus workloads are primarily memory-
intensive.

in the roofline chart. Note that we include all kernels in this

analysis, and we therefore characterize a workload’s overall

aggregate execution behavior across all kernels.

Observation #5: The Cactus applications are primarily
memory-intensive. The roofline plot in Figure 5 clearly in-

dicates that most of the Cactus applications are located on

the left-hand side of the elbow point. The graph analytics

workloads, GST and GRU, are clearly memory-intensive and

achieve the lowest performance. The machine learning applica-

tions (DCG, NST, RFL and LGT) achieve higher performance

and are memory-intensive, with SPT as the only exception

although it is located close the memory/compute boundary.

The molecular dynamics workloads are close to the boundary

(LMR and LMC) while GMS is the only Cactus workload that

is clearly on the compute-intensive side. Overall, we conclude

that the Cactus applications are mostly memory-intensive.

3) Cactus: Per-Kernel Behavior: We now dive deeper and

analyze per-kernel execution behavior. Figures 6a and 6b plot

the roofline chart for all individual kernels for the Cactus
molecular simulation and graph analytics applications, respec-

182

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

(a) Molecular simulation (b) Graph analytics (c) Most dominant kernels

Fig. 6: Roofline charts for the Cactus molecular simulation and graph analytics workloads: (a) all kernels from the molecular

simulation applications, (b) all kernels from the graph analytics applications, and (c) the most dominant kernels from the

molecular simulation and graph analytics workloads. The Cactus applications feature both memory-intensive kernels as well
as compute-intensive kernels.

(a) All kernels color-coded by benchmark (b) All kernels color-coded by contribution (c) Dominant kernels per benchmark

Fig. 7: Roofline charts for the Cactus machine learning applications: (a) all kernels color-coded by benchmark; (b) all kernels

color-coded by contribution to overall execution time; and (c) the dominant kernels color-coded by benchmark. The Cactus
machine learning applications feature many kernels with diverse execution characteristics, many of which are dominant and
memory-bandwidth bound, i.e., they are close to the memory roof.

tively; Figure 6c plots the kernels among these applications

that contribute to at least 70% of the total execution time.

Observation #6: The Cactus workloads include both memory-
intensive kernels as well as compute-intensive kernels. In con-

trast to the Parboil, Rodinia and Tango benchmarks, the Cactus
applications feature a mix of memory-intensive and compute-

intensive kernels. (We observe similar trends for the machine

learning workloads in Cactus but we discuss those separately.)

For the molecular simulation applications (Figure 6a), most of

GMS’ kernels are compute-intensive while some are memory-

intensive; LMR and LMC mostly feature memory-intensive

kernels although some are compute-intensive. For the graph

workloads (Figure 6b), we also see that most of the kernels

are memory-intensive, although there are compute-intensive

kernels as well.

We note that the diversity in kernel characteristics is the

case for even the dominant kernels, not just the non-dominant

kernels, see Figure 6c. GMS features three dominant kernels of

which two are compute-intensive and one is memory-intensive.

One of LMR’s two dominant kernels is compute-intensive

while the other one is memory-intensive. LMC features three

dominant kernels out of which two are memory-intensive and

one is compute-intensive. The graph analytics are an exception

with all dominant kernels being memory-intensive.

The same analysis can be done for the Cactus machine

learning applications, see Figure 7 in which we report all

kernels (a) color-coded by benchmark, and (b) color-coded

by contribution, as well as (c) the dominant kernels (>70%

of total execution time) per benchmark.

Observation #7: The Cactus machine learning applications
feature many kernels with a wide diversity in compute-
and memory-intensive behavior and performance. We note

from Figure 7a that all machine learning applications feature

compute- and memory-intensive kernels with a wide diversity

in performance. This is remarkably different from the Parboil,

Rodinia and Tango benchmarks, as well as the Cactus molec-

ular and graph workloads. We further observe from Figure 7b

that a large fraction of the kernels contribute by less than 10%

to the total execution time, however, this does not mean that

they are not important, on the contrary. The four top-ranked

kernels in DCG, NST, RFL and SPT are compute-intensive;

only for LGT is the most dominant kernel memory-intensive.

However, as we have observed before, the overall behavior

of the machine learning applications is primarily memory-

intensive, hence the lower-ranked kernels must be memory-

intensive transferring the overall application behavior to the

183

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Absolute values of the Pearson Correlation Coefficient

between the primary performance metrics (rows) versus other

performance metrics (columns) for (a) Cactus and (b) Parboil,

Rodinia and Tango (PRT). The execution behavior in Cactus
is more complex.

memory-intensive region.

Observation #8: The Cactus machine learning applications
feature dominant kernels that are memory-bandwidth-bound.
Figure 7c analyzes the dominant kernels that collectively

contribute for more than 70% of the total application run-

time. Generally speaking, all applications feature dominant

kernels with low to high instruction intensity and low to high

performance, spreading out across the memory-intensive and

compute-intensive regions. It is specifically worth noting that a

large number of the dominant kernels in the machine learning

applications are limited by DRAM bandwidth as they are

close to the memory roof. This suggests that machine learning

performance can possibly be improved by providing higher

memory bandwidth.

C. Correlation Analysis

We perform correlation analysis to better understand the be-

havioral characteristics of the Cactus workloads. We consider

four primary performance metrics, namely GIPS, instruction

intensity, SM efficiency and warp occupancy, and we correlate

those to the performance characteristics listed in Table IV. The

goal is to understand how the primary metrics are affected

by various underlying performance phenomena. We use the

Pearson Correlation Coefficient (PCC) to compute correlation.

PCC varies between −1 and +1. A value close to zero

means no correlation whereas a value close to −1 and +1
means strong negative and positive correlation, respectively.

Figure 8 visualizes the absolute values of the correlation

coefficient for Cactus versus Parboil, Rodinia and Tango. We

use the following color code: black denotes strong corre-

lation (0.5 ≤ |PCC| ≤ 1), gray means weak correlation

(0.2 ≤ |PCC| < 0.5), and white means no correlation

(0 ≤ |PCC| < 0.2)

Observation #9: The execution behavior is more complex in
Cactus compared to Rodinia, Parboil and Tango. Figure 8

clearly illustrates that the correlation values are higher for

Cactus than for Parboil, Rodinia and Tango. In particular,

GIPS is correlated (strongly or weakly) with 7 performance

metrics for Cactus versus only 4 for Parboil, Rodinia and

Tango. The same applies to instruction intensity, SM efficiency

and warp occupancy. More detailed analysis is warranted to

truly understand the more complex behavior of the Cactus
workloads. A couple of interesting observations can be made

though. For example, we observe weak correlation for Cactus
for all four primary metrics with the ratio of control instruc-

tions, in contrast to Parboil, Rodinia and Tango for which

there is no correlation. A similar observation can be made for

LD/ST utilization.

D. Hierarchical Clustering

Clustering is a data analysis technique that groups similar

objects in a multi-dimensional space. In the context of this

paper, the objects are kernels and the dimensions in the space

are execution characteristics. The goal is to categorize kernels

based on their (dis)similarity. More specifically, we use a

combination of data analysis techniques: we first apply factor

analysis to identify the most dominant dimensions in the data

set, which then serves as input to hierarchical clustering. In

contrast to prior work in workload characterization [2], [17],

[24], [28], [49], [54] which uses principal component analysis

(PCA) on quantitative data only, we use both quantitative and

qualitative variables. We therefore rely on Factor Analysis of

Mixed Data (FAMD) [34], [64] to act as a denoising method

where the first few, most significant dimensions extract the

essential information, and the last few, least significant dimen-

sions are subject to noise. Applying hierarchical clustering on

the most important dimensions provides a clustering outcome

that is more stable than if we were to apply cluster analysis

on the original execution characteristics.

The quantitative execution characteristics are the numerical

variables from Table IV. The qualitative variables are derived

from the roofline model. We consider two qualitative metrics:

memory-intensive versus compute-intensive, and bandwidth-

bound versus latency-bound. Whether a workload is classified

as memory- versus compute-intensive is done based on its

instruction intensity, i.e., applications on the left-hand side of

the elbow point in the roofline model are memory-bound while

the ones on the right-hand side are compute-bound. Classifying

a workload as bandwidth- versus latency-bound is done based

on its achieved performance. We choose a threshold of 1% of

peak performance (5.16 GIPS) to label kernels, i.e., a kernel

that achieves a performance number of less than 5.16 GIPS

is labeled latency-bound whereas a kernel with performance

above 5.16 GIPS is labeled bandwidth-bound.

Figure 9 shows the dendrogram as the final outcome of

the hierarchical clustering considering the dominant kernels

184

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Dendrogram visualizing the (dis)similarity among kernels from Cactus versus Rodinia, Parboil and Tango. Kernels from
the same Cactus application exhibit widely different execution behavior.

from all benchmark suites. Benchmarks that are connected

through short links are similar, whereas benchmarks that are

far apart are dissimilar. We use a non-traditional visualization

to optimize for space, in which the links from the central point

to the six primary clusters are drawn to scale as a measure

for their relative (dis)similarity. There are several interesting

observations to be made here:

Observation #10: The Parboil, Rodinia and Tango bench-
marks exhibit unambiguous behavior. The benchmarks con-

sisting of a single kernel naturally belong to a single cluster.

We observe that benchmarks that consist of a couple kernels

belong to the same cluster as well, see for example RN,

Kmeans, B+tree, Bfs. A couple of benchmarks have kernels

that belong to at most two clusters. This is observed for

benchmarks with two or three kernels, see for example SN, AN,

Histo, Lud and Srad v1. Overall, we conclude that benchmarks

from existing suites exhibit limited execution diversity and

kernels in such programs are limited to one or two clusters.

Observation #11: Kernels from the same Cactus application
are dissimilar from each other. We note that different kernels

from the same Cactus application exhibit widely different

behavior, i.e., kernels are distributed across different clusters.

This is particularly the case for the molecular simulation and

machine learning workloads. More specifically, the GMS and

LMC molecular simulation benchmarks have three dominant

kernels with each kernel belonging to a different cluster. The

machine learning workloads LGT and NST have dominant ker-

nels in four different clusters; and RFL and SPT have kernels

in five clusters. In other words, we find that the execution

characteristics are very diverse across kernels from the same

Cactus application (especially in molecular simulation and

machine learning), in contrast to Rodinia, Parboil and Tango.

Observation #12: While Rodinia, Parboil and Tango cover
large parts of the workload space, Cactus covers an even
larger part. We observe Cactus, Rodinia, Parboil and Tango

kernels in all six major clusters. However, clusters #2 and #4

are primarily dominated by Cactus kernels. This observation

applies to some sub-clusters in cluster #3 as well. Note that

the bottom sub-clusters of cluster #4 consist of Cactus kernels

exclusively. This illustrates that Cactus covers a larger part of

the entire workload space than Rodinia, Parboil and Tango

collectively do. We hence conclude that Cactus exhibits more

diverse execution behavior.

VI. CONCLUSION

This paper proposed the Cactus benchmark suite which

is designed in a top-down fashion by selecting a number

of representative GPU-compute applications from the HPC

domain covering molecular dynamics simulation, graph an-

alytics and machine learning. In contrast to the bottom-up

benchmark suites prevalently used in the literature, we find

that Cactus workloads execute many more kernels and exhibit

execution behavior that is more diverse and more complex,

while covering a broader range of the workload space. We

hence believe that Cactus is a useful complement to the

GPU-compute benchmarking toolbox by providing a focus on

application-level GPU-compute performance representative of

modern-day workloads. As part of our future work, we plan to

extend Cactus by analyzing and including additional modern-

day applications and by evaluating Cactus across a broader

range of GPU platforms (both CUDA and OpenCL-based

systems). In addition, we plan to create Cactus instruction

traces that are compatible with state-of-the-art GPU simulators

so that researchers can simulate Cactus workloads without

requiring access to a real GPU device.

185

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-

back. This work is supported in part by the European Research

Council (ERC) Advanced Grant agreement no. 741097, and

the UGent-BOF GOA grant agreement BOF21-GOA-014.

APPENDIX

This artifact appendix summarizes how to conduct the ex-

periments described in the paper using the Cactus benchmarks

on an Nvidia RTX 3080 device. We have created a package

that contains all program sources with their input data sets,

installation scripts and run scripts. Additionally, the package

contains the data files that were used to produce the results

and figures reported in the paper.

• Run-time environment: Ubuntu 20.04.1, Kernel 5.4.0, CUDA
11.2 with driver 460.27, CuDNN 8.1.0, Nsight Compute 2020.3

• Hardware: Nvidia RTX 3080
• Metrics: Performance metrics available in Nvidia Nsight Com-

pute
• How much disk space required (approximately)? 50 GB
• How much time is needed to prepare workflow (approx-

imately)? 1 day (this includes downloading, setting up and
installing the programs, as well as running the programs as a
test and fixing any errors that may occur)

• How much time is needed to complete experiments (approx-
imately)? 10–12 days (profiling is a time consuming task given
the metrics that are being collected and the programs’ execution
times)

• Publicly available? Yes

A. How to access

Cactus package is publicly available at https://zenodo.org/

record/5517569. The package contains all prerequisite soft-

ware packages, including CUDA-11.2, CuDNN-8.1.0, pro-

gram sources used in the work including Gromacs, Lammps,

Gunrock and PyTorch as well as artifact-specific programs

including Nsight Compute 2020.3, and the Rodinia, Parboil

and Tango benchmark suites. The core package without pre-

requisite files is also available at Github and can be fetched

via the command git clone https://github.com/
gpubench/cactus.

B. Hardware dependencies

We have used Nvidia RTX 3080 as the physical device

for the profiling experiments, although the experiments could

be run on other Nvidia GPU devices as well. According to

the manuals, a minimum version of CUDA-9 is sufficient for

running the workloads. The benchmarks can also be configured

to use OpenCL instead of CUDA according to the program

manuals, but the workflow and current versions of the Cactus

scripts focus on Nvidia devices.

C. Software dependencies

Cactus primarily needs GPU-related toolkits for developers.

For Nvidia this is CUDA which contains both the driver and

compiler. We used Ubuntu 20.04.1 with kernel 5.4, CUDA-

11.2 with driver 460.72 and CuDNN-8.1.0. Other CUDA

versions are also functional based on the documents.

D. Data sets

All programs and input data sets are publicly available and

they are also available in the Cactus repository.

First, download the whole package from Zenodo or Github

as described in A. Open ./scripts/common with a

text editor where there are four variables (with explana-

tions) that you can change based on your needs. If you

have a fresh Ubuntu 20.04.1 installation, only specify the

architecture number of your Nvidia device and leave the

other three variables with their default values. Then, execute

./setup.sh. By default, the setup file will automatically

install CUDA-11.2. More information about the setup script is

available in README.md. The script will execute four scripts

in scripts/ to install Gromacs, Lammps, Gunrock and

PyTorch. The programs will be compiled in order which means

that if at any step a program fails to compile, the script exists

with an error code. Since the package contains all files, the

setup script skips download commands.

At this stage, we assume that all programs have been

successfully installed with ./setup.sh. The experiment

itself consists of two main parts:

• Running the applications with the inputs to verify they

are working properly on a GPU. To do that, navigate

to workloads/ where you can find the 10 workloads.

Execute ./runme.sh in each folder and verify they are

working correctly.

• Profiling the applications with Nvidia profiler. Note that

you can skip this part if you are not intended to profile the

applications. To do that, navigate to artifact/. The

./profiler.sh script contains profiling commands

with the list of metrics used in the experiments. Please

note that the script is ready to run, but it is recommended

to execute the commands individually or splitting the

metrics due to 1) the long runtime of profiling and 2)

possible crashes due to using too many metrics at once.

The script can be used as a template script if you want to

collect other metrics. The folder also contains Rodinia,

Parboil and Tango sources with installation and profiling

scripts. The folder also contains Python and R scripts that

use the data files for plotting and analyzing the results.

Depending on the specific hardware platform, profiling a

large number of metrics is time consuming. For convenience,

the final data files are present in artifact/data/. We also

provide the Python and R scripts to parse the data files used

to generate Figures 2 through 9 in the paper.

REFERENCES

[1] M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess,
and E. Lindahl. GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers. Soft-
wareX, 1-2:19–25, 2015.

[2] V. Adhinarayanan and W. c. Feng. An automated framework for
characterizing and subsetting GPGPU workloads. In Proceedings of
the International Symposium on Performance Analysis of Systems and
Software, pages 307–317, 2016.

[3] NVIDIA DGX A100 System Architecture. https://images.
nvidia.com/aem-dam/en-zz/Solutions/data-center/dgx-a100/
dgxa100-system-architecture-white-paper.pdf, 2020.

186

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

[4] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,
D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The
landscape of parallel computing research: A view from Berkeley. Tech-
nical Report UCB/EECS-2006-183, EECS Department, University of
California at Berkeley, 2006.

[5] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. Graph
partitioning and graph clustering. In Proceedings of the 10th DIMACS
Implementation Challenge Workshop, 2012.

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. In Proceedings of the International
Conference on Learning Representations, 2015.

[7] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington. Im-
plementing molecular dynamics on hybrid high performance computers
– particle–particle particle-mesh. Computer Physics Communications,
183(3):449–459, 2012.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the International Symposium on Workload
Characterization, pages 44–54, 2009.

[9] cuBLAS: the CUDA Basic Linear Algebra Subroutine library. https:
//docs.nvidia.com/cuda/cublas/index.html, 2021.

[10] NVIDIA CUDA-X. https://www.nvidia.com/en-us/technologies/cuda-x/,
2021.

[11] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS:
scalable deep learning on distributed GPUs with a GPU-specialized
parameter server. In Proceedings of the European Conference on
Computer Systems, pages 1–16, 2016.

[12] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter. The scalable heterogeneous com-
puting (SHOC) benchmark suite. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, pages
63–74, 2010.

[13] N. Ding and S. Williams. An instruction roofline model for GPUs. In
Proceedings of the International Conference on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems,
pages 7–18, 2019.

[14] Gromacs download page. https://www.gromacs.org/Downloads, 2020.
[15] Gunrock download page. https://github.com/gunrock/gunrock, 2020.
[16] LAMMPS download page. https://www.lammps.org/download.html,

2020.
[17] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload

design: selecting representative program-input pairs. In Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques, pages 83–94, 2002.

[18] N. P. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the International Symposium on
Computer Architecture, pages 1–12, 2017.

[19] P. Mattson et al. MLPerf training benchmark. In Proceedings of the
International Conference on Machine Learning and Systems, 2020.

[20] V. J. Reddi et al. MLPerf inference benchmark. In Proceedings of
the International Symposium on Computer Architecture, pages 446–459,
2020.

[21] CUDA Templates for Linear Algebra Subroutines. https://github.com/
NVIDIA/cutlass, 2021.

[22] Hydra: A framework for elegantly configuring complex applications.
https://github.com/facebookresearch/hydra, 2019.

[23] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the International Con-
ference on Computer Vision and Pattern Recognition, page 2414–2423,
2016.

[24] N. Goswami, R. Shankar, M. Joshi, and T. Li. Exploring GPGPU work-
loads: Characterization methodology, analysis and microarchitecture
evaluation implications. In Proceedings of the International Symposium
on Workload Characterization, pages 1–10, 2010.

[25] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos.
Auto-tuning a high-level language targeted to GPU codes. In Proceed-
ings of Innovative Parallel Computing, pages 1–10, 2012.

[26] Flappy Bird hack using Deep Reinforcement Learning (Deep
Q-learning). https://github.com/yenchenlin/DeepLearningFlappyBird,
2019.

[27] MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist,
2010.

[28] B. Hu and C. J. Rossbach. Altis: Modernizing GPGPU benchmarks. In
Proceedings of the International Symposium on Performance Analysis
of Systems and Software, pages 1–11, 2019.

[29] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial
transformer networks. In Proceedings of the International Conference
on Neural Information Processing Systems, page 2017–2025, 2015.

[30] A. Karki, C. Palangotu Keshava, S. Mysore Shivakumar, J. Skow,
G. Madhukeshwar Hegde, and H. Jeon. Tango: A deep neural network
benchmark suite for various accelerators. CoRR abs/1901.04987, 2013.

[31] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali. Lonestar: A
suite of parallel irregular programs. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software, pages
65–76, 2009.

[32] C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot,
and H. Grubmüller. Best bang for your buck: GPU nodes for GRO-
MACS biomolecular simulations. Journal of Computational Chemistry,
36(26):1990–2008, 2015.

[33] A. Lavin and S. Gray. Fast algorithms for convolutional neural networks.
In Proceedings of the International Conference on Computer Vision and
Pattern Recognition, pages 4013–4021, 2016.

[34] S. Le, J. Josse, and F. Husson. Factominer: An r package for multivariate
analysis. Journal of Statistical Software, 25(1):1–18, 2008.

[35] Ignite: High level library to help with training, evaluating neural net-
works in PyTorch flexibly, and transparently. https://github.com/pytorch/
ignite, 2019.

[36] P. Li, Y. Luo, N. Zhang, and Y. Cao. Heterospark: A heterogeneous
CPU/GPU spark platform for machine learning algorithms. In Proceed-
ings of the Conference on Networking, Architecture and Storage, pages
347–348, 2015.

[37] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A unified graphics and computing architecture. IEEE Micro, 28(2):39–
55, 2008.

[38] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in
the wild. In Proceedings of the International Conference on Computer
Vision, pages 3730–3738, 2015.

[39] D. Merrill, M. Garland, and A. Grimshaw. Lonestar: A suite of parallel
irregular programs. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, page 117–128, 2012.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
In Proceedings of the International Conference on Neural Information
Processing Systems, Workshop on Deep Learning, 2013.

[41] A. Munshi. The OpenCL specification. In Proceedings of the IEEE Hot
Chips 21 Symposium, 2009.

[42] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with cuda. ACM Queue, 6(2):40–53, 2008.

[43] PyTorch: An open source machine learning framework. https://pytorch.
org, 2020.

[44] Benchmarking Deep Learning operations on different hardware. https:
//github.com/baidu-research/DeepBench, 2018.

[45] S. Pall, M. Ja. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tackling
exascale software challenges in molecular dynamics simulations with
GROMACS. In Proceedings of the International Conference on Exas-
cale Applications and Software, pages 3–27, 2015.

[46] Y. Pan, R. Pearce, , and J. D. Owens. Scalable breadth-first search
on a GPU cluster. In Proceedings of the International Parallel and
Distributed Processing Symposium, pages 1090–1101, 2018.

[47] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-
performance deep learning library. In Proceedings of the International
Conference on Neural Information Processing Systems, pages 8024–
8035, 2019.

[49] A. Phansalkar, A. Joshi, and L. K John. Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite. In
Proceedings of the International Symposium on Computer Architecture,
pages 412–423, 2007.

[50] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In
Proceedings of the International Conference on Learning Representa-
tions, 2016.

187

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

[51] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar. Supporting GPU
sharing in cloud environments with a transparent runtime consolidation
framework. In Proceedings of the Symposium on High Performance
Distributed Computing, pages 217–228, 2011.

[52] J. Redmon. Darknet: Open source neural networks in C. http://pjreddie.
com/darknet/, 2013–2016.

[53] R. A. Rossi and N. K. Ahmed. The network data repository with
interactive graph analytics and visualization. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 4292–4293, 2015.

[54] J. H. Ryoo, S. J. Quirem, M. Lebeane, R. Panda, S. Song, and L. K. John.
GPGPU benchmark suites: How well do they sample the performance
spectrum? In Proceeding of the International Conference on Parallel
Processing, pages 320–329, 2015.

[55] NVIDIA CUDA SDK Code Samples. https://developer.nvidia.com/
cuda-code-samples, 2020.

[56] A. Shkurti, M. Orsi, E. Macii, E. Ficarra, and A. Acquaviva. Accelera-
tion of coarse grain molecular dynamics on GPU architectures. Journal
of Computational Chemistry, 34(10):803–818, 2013.

[57] A. Snell and L. Segervall. HPC applications support for GPU computing.
Technical report, Intersect365 Research, 2017.

[58] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,
G. D. Liu, and W. W Hwu. Parboil: A revised benchmark suite for
scientific and commercial throughput computing. Technical Report
IMPACT-12-01, Center for Reliable and High-Performance Computing,
University of Illinois at Urbana-Champaign, 2012.

[59] PyTorch Tutorials. https://pytorch.org/tutorials, 2019.
[60] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense

linear algebra. In Proceedings of the International Conference on
Supercomputing, pages 1–11, 2008.

[61] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
Gunrock: A high-performance graph processing library on the GPU.
In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 1–12, 2016.

[62] Y. Wang, P. Yangzihao, A. Davidson, Y. Wu, C. Yang, L. Wang,
M. Osama, C. Yuan, W. Liua, A. T. Riffel, and J. D. Owens. Gunrock:
GPU graph analytics. ACM Transactions on Parallel Computing, 4(2):1–
49, 2017.

[63] B. Welton and B. Miller. Exposing hidden performance opportunities in
high performance GPU applications. In Proceedings of the International
Symposium on Cluster, Cloud and Grid Computing, pages 301–310,
2018.

[64] FactoMineR: Exploratory Multivariate Data Analysis with R. http://
factominer.free.fr, 2021.

[65] Y. Wu, Y. Wang, Y. Pan, C. Yang, and J. D. Owens. Performance
characterization for high-level programming models for GPU graph
analytics. In Proceedings of the International Symposium on Workload
Characterization, pages 66–75, 2015.

[66] Y. Xu, R. Wang, T. Li, M. Song, L. Gao, Z. Luan, and D. Qian.
Scheduling tasks with mixed timing constraints in GPU-powered real-
time systems. In Proceedings of the International Conference on
Supercomputing, pages 1–13, 2016.

[67] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P. Entschev,
B. Kloppenborg, J. Malcolm, and J. Melonakos. ArrayFire: A high
performance software library for parallel computing with an easy-to-use
API. https://github.com/arrayfire/arrayfire, 2015.

188

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:38:36 UTC from IEEE Xplore. Restrictions apply.

		2022-01-08T23:00:45-0500
	Certified PDF 2 Signature

