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ABSTRACT
Bandwidth non-uniformity in multi-chip GPUs poses a major de-
sign challenge for its last-level cache (LLC) architecture. Whereas
a memory-side LLC caches data from the local memory partition
while being accessible by all chips, an SM-side LLC is private to a
chip while caching data from all memory partitions. We find that
some workloads prefer a memory-side LLC while others prefer an
SM-side LLC, and this preference solely depends on which organi-
zation maximizes the effective LLC bandwidth. In contrast to prior
work which optimizes bandwidth beyond the LLC, we make the
observation that the effective bandwidth ahead of the LLC is critical
to end-to-end application performance. We propose Sharing-Aware
Caching (SAC) to adopt either a memory-side or SM-side LLC or-
ganization by dynamically reconfiguring the routing policies in the
intra-chip interconnection network and LLC controllers. SAC is
driven by a simple and lightweight analytical model that predicts
the impact of data sharing across chips on the effective LLC band-
width. SAC improves average performance by 76% and 12% (and up
to 157% and 49%) compared to a memory-side and SM-side LLC, re-
spectively. We demonstrate significant performance improvements
across the design space and across workloads.

CCS CONCEPTS
• Computer systems organization → Single instruction, mul-
tiple data; • Networks → Network on chip.

KEYWORDS
Multi-socket GPU, Multi-Chip-Module (MCM) GPU, Network-on-
Chip (NoC), data sharing, cache organization.
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1 INTRODUCTION
Graphics Processing Units (GPUs) have become the defacto stan-
dard accelerator for compute and memory-intensive applications
due to their massively parallel architecture and programming mo-
del [8, 32, 41]. Scaling GPU performance is traditionally achieved
by increasing the number of Streaming Multiprocessors (SMs)1 as
well as memory bandwidth. GPU manufacturers have increased die
size which comes at the cost of lowering manufacturing yield while
approaching the reticle limit. Continuing to scale GPU performance
hence requires moving beyond a single chip [1, 7, 39].

Multi-chip GPU architectures can be broadly classified as (i)
multi-socket GPUs [28, 30], where the system contains multiple
GPU and memory chips that are connected with each other through
the Printed Circuit Board (PCB), and (ii) Multi-Chip-Module (MCM)
GPUs [2, 9], where multiple GPU and memory dies are intercon-
nected using silicon interposers or organic substrates within a
single package [39]. In both architectures, multiple GPU chips are
connected to each other via inter-chip links, and each GPU chip
is connected to a local memory partition. The key difference is
the bandwidth available between GPU chips. MCM-GPUs offer the
highest inter-chip bandwidth, but also incur the highest cost while
providing limited memory capacity. In contrast, multi-socket GPUs
incur lower cost and provide higher memory capacity, but offer
lower inter-chip bandwidth. A key challenge in multi-chip GPUs,
both multi-socket GPUs and MCM-GPUs, is how to best overcome
the bandwidth non-uniformity in inter-chip versus intra-chip band-
width.

As reported by prior work [2, 25, 36], the last-level cache (LLC)
in multi-chip GPUs needs to be carefully designed to maximize per-
formance. Broadly speaking, the LLC can be memory-side, caching
data in the local memory partition on behalf of the SMs in any chip,
or SM-side, caching data from any memory partition on behalf of
the SMs within the chip. A memory-side LLC maximizes the effec-
tive cache capacity since each cache line is cached in at most one
LLC. On the flip side, accesses to a remote memory partition need
to traverse across lower-bandwidth inter-chip links. An SM-side or-
ganization on the other hand caches remote data locally, making it
accessible at higher bandwidth. However, SM-side caches replicate
shared cache lines across chips, thereby reducing the effective cache
capacity. In addition, SM-side caches need to be kept coherent.

1Industrial terminology is Streaming Multiprocessor (SM) for Nvidia products and
Compute Engine (CU) for AMD devices. In this paper, we adopt Nvidia’s terminology.
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(a) Performance (b) LLC miss rate (c) LLC bandwidth

Figure 1: Performance, LLC miss rate and effective LLC band-
width for different LLC organizations in a 4-chip GPU for SM-
side preferred (SP) and memory-side preferred (MP) bench-
marks. Sharing-Aware Caching (SAC) yields the highest performance
(and effective LLC bandwidth) across all workload categories.

Our key observation is that some workloads prefer a memory-
side LLC while other workloads prefer an SM-side LLC, as shown in
Figure 1a. SM-side preferred (SP) benchmarks notice 91% higher av-
erage performance under an SM-side cache compared to a memory-
side cache. In contrast, memory-side (MP) preferred benchmarks
witness 32% higher average performance under a memory-side
cache compared to an SM-side cache. (Details about our experimen-
tal setup follow in Section 4.) The SM-side organization uniformly
leads to a higher miss rate as the LLC caches both local and re-
mote data, which in case of true data sharing (i.e., multiple chips
accessing the same cache lines) leads to data replication and thus
increased cache pressure, see Figure 1b.

Counter-intuitively perhaps, the higher LLC miss rate under an
SM-side LLC may lead to higher performance. This occurs when
the higher LLC miss rate is outweighted by an increase in effective
LLC bandwidth due to higher intra-chip bandwidth for accessing
remote data in local caches instead of traversing lower-bandwidth
inter-chip links to access remote caches — this is what happens for
the SM-side preferred benchmarks, see Figure 1c. For the memory-
side preferred benchmarks however, the increase in LLCmiss rate is
not outweighted by an increase in effective LLC bandwidth, which,
in fact, decreases. While it is well-known that GPU performance
critically depends on raw memory bandwidth, this analysis points
out the importance of maximizing the effective LLC bandwidth.
Indeed, whether a workload prefers a memory-side versus SM-side
organization solely depends on which LLC organization maximizes
the effective LLC bandwidth, which ultimately depends on the de-
gree and nature of inter-chip data sharing in the workload. Clearly,
the optimum LLC organization varies across workloads and their
inputs. In particular, an application or kernel may prefer an SM-
side organization for a small input set — because there is sufficient
LLC capacity to replicate the shared data set — while preferring a
memory-side LLC for a large input set — as the shared working set
exceeds the LLC capacity.

Previously proposed solutions are suboptimal as they (explicitly
or implicitly) optimize the effective bandwidth beyond the LLC
rather than the bandwidth ahead of the LLC. In particular, recent
work by Milic et al. [25] proposed a Dynamic LLC organization
in which cache ways are dynamically (at run time) partitioned to
cache local versus remote data to optimize and balance the outgoing
local memory bandwidth versus the incoming inter-chip bandwidth.

Prior to this work, Arunkumar et al. [2] proposed the L1.5 cache
(for caching remote data locally) as a complement to a memory-side
LLC (for caching local data) — this Static LLC organization, as we
call it in this work, in effect statically (at design time) partitions the
available LLC capacity for local versus remote data. Unfortunately,
both the Static and Dynamic LLCs do not maximize the effective
LLC bandwidth, see also Figure 1.

We propose Sharing-Aware Caching (SAC) which maximizes the
effective bandwidth ahead of the LLC. SAC is enabled by our in-
sight that the LLC can be configured to adopt memory-side or
SM-side organizations by changing the NoC routing policy and
adding simple bypass and control logic to the LLC slices — thereby
retaining practically the same NoC area and power overhead as the
memory-side architecture and reducing NoC power and area by
21% and 18%, respectively, compared to the SM-side architecture. To
select the most favorable LLC organization, SAC employs a simple
and lightweight analytical model that predicts the impact of data
sharing across chips on the effective LLC bandwidth. We find that
a short profiling window at the beginning of each kernel, which
collects inputs for the model using hardware performance coun-
ters (620 bytes per chip), is sufficient for SAC to decide to adopt
a memory-side or SM-side organization for the remainder of the
kernel’s execution. Our evaluation shows that SAC effectively se-
lects the best-performing LLC organization across a broad range of
GPU-compute benchmarks and input sets. More specifically, and as
shown in Figure 1a, SAC improves performance by 76% and 12% on
average (and up to 157% and 49%) compared to a memory-side and
SM-side configuration, respectively. SAC improves performance by
31% and 18% on average (and up to 92% and 27%) compared to the
L1.5 static LLC [2] and dynamic LLC partitioning [25], respectively.

In summary, we make the following contributions:

• We observe that the best performing LLC organization (mem-
ory-side versus SM-side) in a multi-chip GPU system is the
one that maximizes the effective LLC bandwidth. In spite
of the fact that an SM-side organization increases the LLC
miss rate, caching remote data locally and replicating shared
data across chips leads to a net performance improvement if
this significantly increases the effective LLC bandwidth and
outweighs the coherence overhead. If not, a memory-side
LLC organization is preferred.

• We demonstrate that previously proposed solutions are sub-
optimal by (explicitly or implicitly) optimizing the effective
bandwidth beyond the LLC. Instead, performance on multi-
chip GPU systems is optimized by maximizing the effective
bandwidth ahead of the LLC.

• We propose Sharing-Aware Caching (SAC) which dynami-
cally chooses a memory-side or SM-side LLC organization.
We observe that minorly adjusting the NoC of a memory-side
LLC organization enables supporting both a memory-side
and SM-side organization by changing the routing policy
and by adding LLC bypass paths.

• SAC leverages a novel analytical model to steer LLC recon-
figuration by predicting which LLC organization is likely to
maximize the effective LLC bandwidth.

• We evaluate SAC across the design space while considering
a broad range of workloads, inputs, system configurations
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with varying inter-chip bandwidth, memory bandwidth, etc.
SAC provides a significant performance benefit across the
design space, especially for system configurations where
the difference in intra-chip versus inter-chip bandwidth is
relatively large.

2 MOTIVATION
Figure 2 shows our baseline multi-chip GPU which consists of
four GPU chips, similar to prior work [2, 25]. Each chip contains
64 SMs with 128 KB private L1 caches, 4 MB of Last-Level Cache
(LLC) capacity, and 8 memory controllers. We model conventional
caches in our baseline to be consistent with prior work [2, 25],
but SAC also supports sectored caches [18]. The Network-on-Chip
(NoC) connects 32 SM clusters (two SMs share one network port)
to 16 LLC slices with a total bisection bandwidth of 4 TB/s. The
inter-chip links are connected to a chip’s NoC and modeled after
Nvidia’s NVLink [34] in which each bidirectional link provides
64 GB/s bandwidth; we further assume an inter-chip ring network
with 6 links per chip and hence 3 links between each pair of chips.
The NoC is hence a 38× 22 crossbar, i.e., 32 SM clusters plus 6 inter-
chip links on the input side of the crossbar versus 16 LLC slices
plus 6 inter-chip links on the output side; commercial GPUs often
use (concentrated) crossbar NoCs [29]. We model a concentrated
hierarchical crossbar in our baseline because it provides similar
performance to a concentrated crossbar while being substantially
more power and area efficient [48]. We refer to the SMs and caches
within a chip as local and the SMs and caches in other chips as
remote. Similarly, the memory partition attached to a GPU chip is
local whereas the memory partitions of other GPU chips are remote.
Our baseline employs software coherence which is common in
GPUs [2, 25].

2.1 Memory-Side versus SM-Side LLC
Figure 3 illustrates the memory-side, SM-side and SAC LLC or-
ganizations in a multi-chip GPU for a simplified (for illustration
purposes) GPU chip with four SMs (with private L1 caches), two
LLC cache slices, two memory channels, and two inter-chip links.
Figure 3a illustrates the memory-side LLC organization in which
the LLC slices cache data from the local memory partition for both
local and remote SMs [2]. Each LLC slice is responsible for a subset
of the address space as determined by the memory page allocation
policy. The memory-side LLC organization requires a NoC between
the SMs (and their private L1s) and the LLC slices [20]. There are
direct connections between the LLC slices and their corresponding
memory controllers. The NoC between the SMs and LLC slices
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Figure 2: Schematic of our baseline multi-chip GPU.
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Figure 3: The memory-side, SM-side and SAC LLC organi-
zations in multi-chip GPUs. The key observation underpinning
SAC is that minorly modifying the memory-side architecture enables
supporting both memory-side and SM-side LLC configurations.

provides links to the other chips, i.e., local requests are sent to the
LLC slices and remote requests are sent across the inter-chip links.

The LLCs in the SM-side organization cache data from the entire
address space, which includes both the local memory partition and
the remote memory partitions [25, 36], as illustrated in Figure 3b.
The LLC slices in the SM-side organization are on the SM-side of
the NoC and hence require an additional NoC to connect the LLC
slices to the memory controllers and inter-chip links. This provides
an inherent latency and bandwidth advantage over the memory-
side LLC because the inter-chip traffic does not compete with the
intra-chip traffic between the SMs and LLC slices. On the flip side,
the two NoCs for the SM-side LLC lead to 21% and 18% higher
NoC power and area, respectively, compared to the memory-side
LLC NoC according to DSENT [43] (assuming a 22 nm technology
node). SM-side LLCs also require support for coherence. Under
software-based coherence [2], flushing and invalidation of the L1
cache upon a cache control operation inserted by software or at
kernel boundaries needs to be extended to the LLC, i.e., both the L1
and LLC need to be flushed and invalidated. Under hardware-based
coherence [36], a directory needs to keep track of sharers across
all SM-side LLCs; all sharers need to be invalidated upon a write.

2.2 SAC: Supporting Both Memory-Side and
SM-Side LLC

The key observation that underpins SAC is that minor modifications
to the memory-side LLC baseline architecture enables supporting
both memory-side and SM-side LLC policies (see Figure 3c). More
specifically, we need to (1) enable LLC bypassing (i.e., add bypass
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Figure 4: Data sharing in a memory-side LLC. The memory-side LLC configuration is beneficial for workloads with limited data sharing
because first-touch page placement then mostly maps data to the chip’s local memory.
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Figure 5: Data sharing in an SM-side LLC. SM-side LLC is beneficial for applications with falsely-shared data and/or a small truly shared
data set: local accesses within a chip provide high effective bandwidth.

paths, selection logic and multiplexers/demultiplexers), (2) modify
the NoC routing algorithm to route remote requests to remote LLC
slices under a memory-side LLC organization and local LLC slices
under an SM-side organization, (3) change the LLC controller to
send remote LLC misses to remote memories under an SM-side
organization (all misses access the local memory in a memory-side
organization), and (4) support the coherence operations required for
SM-side operation (i.e., flushing the LLC on kernel boundaries under
software coherence and invalidating sharers upon a write under
hardware coherence). Adopting a configurable LLC architecture
on top of a memory-side organization does not incur significant
overhead (see Section 3.1 for a detailed discussion).

A configurable LLC organization is preferable because whether
a workload prefers a memory-side or SM-side LLC organization
depends on its shared data set and access pattern. Akin to the well-
known true sharing versus false sharing phenomenon observed at
the cache line granularity in CPU cache coherence protocols [13],
true inter-chip sharing occurs when SMs in different GPU chips
access the same cache line. In contrast, false inter-chip sharing
occurs when SMs in different chips access different cache lines
from the same memory page. In other words, a cache line is truly
shared if it is accessed by multiple chips, and a cache line is falsely
shared if it is accessed by a single chip only, but at least one cache
line within the same memory page is accessed by another chip. A
cache line is not shared if it is accessed by a single chip only, and
no other cache lines from the same memory page are accessed by
another chip.

2.3 Which LLC Organization is Preferred?
In the examples that follow, we denote memory accesses in the
form Xi where X identifies the memory page and i the cache line
within the page, e.g., A1 refers to cache line 1 within page A. To
simplify the example, we focus on a dual-chip GPU system with
software coherence in which each chip has a single LLC slice and
is connected to a single memory partition. We further assume a
first-touch page allocation policy [2] which installs a memory page
in the memory partition of the chip that first accesses it, i.e., Chip
0 (C0) is assumed to access page A first whereas Chip 1 (C1) is
assumed to access page B first; as a result, A is mapped to C0’s
memory partition whereas B is mapped to C1’s memory partition.
Non-shared cache lines. Data that is not shared across chips
leads to the exact same placement of cache lines under either LLC
organization. Assume that C0 accesses A1 and A2 while C1 accesses
B1 and B2, i.e., there is no sharing across chips. The memory-side
LLC in Figure 4a caches A1 and A2 in C0 because they are stored
in the local memory partition. The SM-side LLC in Figure 5a also
caches A1 and A2 in C0, but for a different reason, namely because
they are accessed by the local SMs. Similarly, the SMs in C1 access
page B which leads to B1 and B2 being cached in C1’s LLC under
both LLC organizations. As a result, because there is no difference
between either LLC organizations, they are equally preferred (apart
from the overhead introduced by the coherence protocol).
Falsely shared cache lines. For falsely shared cache lines, see
Figures 4b and 5b, there is an important difference between both
LLC organizations. Assume that C0 accesses cache blocks A1 and
B1, whereas C1 accesses A2 and B2, i.e., these are all falsely shared
cache lines. The memory-side LLC organization stores the cache
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lines of page A in C0 and the cache lines of page B in C1, resulting
in A2 and B1 traversing the inter-chip links on repeated accesses.
In contrast, the SM-side LLC stores A1 and B1 in C0 and A2 and
B2 in C1 and hence avoids consuming inter-chip bandwidth on
repeated accesses. (The cold-start traversal of the inter-chip links
for A2 and B1 is not shown in Figure 5b.) For falsely shared cache
lines, the SM-side LLC is hence the preferred LLC organization
because it exposes higher effective memory bandwidth by caching
the frequently accessed data in the on-chip LLC slices of the chip
that accesses it.
Truly shared cache lines. The situation is more involved for truly
shared cache lines, and which LLC organization is preferred de-
pends on the workload. Assume that both C0 and C1 access A1
and B1, i.e., both cache lines are truly shared. In the memory-side
LLC (Figure 4c), C0’s requests to B1 need to go to C1’s memory
partition and C1’s requests to A1 need to access C0’s memory parti-
tion, hence increasing the traffic on the inter-chip links. In contrast,
the SM-side LLC will replicate A1 and B1 across the LLCs in both
chips (see Figure 5c), thereby increasing the effective bandwidth to
these shared cache lines. However, cache line replication across the
LLCs in different chips reduces the effective LLC cache capacity
and incurs coherence overhead. In other words, the SM-side LLC
is beneficial when (i) the bandwidth benefit of replicating truly
shared cache lines outweighs the bandwidth cost of increased LLC
miss rates, and (ii) there is sufficient true data sharing to outweigh
the cost of maintaining coherence among the LLCs of the different
chips. A memory-side LLC avoids this coherence issue and yields
higher LLC utilization because it does not replicate data, but, on the
flip side, it does not expose as high effective bandwidth to shared
cache lines.
Interaction with L1 caches. The SMs cache the same cache lines
in their respective L1 caches under the memory-side and SM-side
organizations, as illustrated in Figures 4 and 5. The LLC organiza-
tion indirectly impacts the L1 caches: data replication under the
SM-side organization may lead to thrashing the L1 caches under an
inclusive cache hierarchy in case the truly shared data set exceeds
the LLC capacity.

3 SHARING-AWARE CACHING
The key take-away from the above analysis is that there is a case
to be made for an LLC organization that, depending on the work-
load’s inter-chip data sharing characteristics, reconfigures itself to
being either memory-side or SM-side. Sharing-Aware Caching (SAC)
achieves exactly this.

3.1 The SAC Reconfigurable LLC Architecture
The SAC reconfigurable LLC architecture, shown in Figure 3c, re-
quires selection logic to decide whether or not to bypass the cache
slice, a physical bypass path (wires) to connect to the memory con-
troller, and a multiplexer/demultiplexer on both the SM side and
the memory side of the LLC slice. On the SM side, requests need
to be demultiplexed to either the LLC slice or bypass path, while
responses are multiplexed into the NoC port. Similarly, requests are
multiplexed and responses demultiplexed on the memory side. Lo-
cal misses (from the local LLC slice) and remote misses (bypassing
the local LLC slice) share the request queue in front of the memory
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Figure 6: Miss routing in the SM-side and memory-side LLC.

controller in our setup. If there is no available queue space, our
selection logic forces the request to wait in the queue ahead of
the local LLC slice. We account for these queueing delays in our
simulation experiments.

Figure 6 illustrates how LLC misses traverse the NoC in this
architecture. For LLC misses that access the local memory partition,
i.e, SM-side Local (SL) and Memory-side Local (ML) misses, there
is no difference between the two configurations (see 1 ). SM-side
Remote (SR) misses first access the local LLC slice at 2 before being
routed to the appropriate inter-chip link at 3 . They later appear
in the remote chip where they must bypass the LLC slice (see 4 )
because it caches data for the remote chip’s SMs. The response
then follows the same path to insert the cache block into the local
chip’s LLC slice before delivering the requested data to the SM. (We
model separate request and response networks in our evaluation.)
Memory-side Remote (MR) misses are in contrast routed directly to
the local chip’s inter-chip links (see 5 ) before accessing the remote
LLC slice at 6 .

Enabling SAC’s configurable LLC on top of a memory-side archi-
tecture does not incur significant overhead because we do not need
to modify the crossbar NoC, i.e., we need a 38×22 crossbar for both
organizations to connect 32 SM clusters and 6 inter-chip links to 16
LLC slices and 6 inter-chip links. Enabling a configurable LLC does
however require changing the NoC routing policy which slightly
increases design complexity but does not affect bandwidth. When
configured as an SM-side LLC, the selection logic (1) forwards SR-
misses from local SMs to the NoC, and (2) bypasses the LLC slice
for SR-misses from remote SMs. The selection logic however only
marginally increases complexity, area and power compared to the
memory-side architecture (see Section 3.6.)

3.2 Runtime Support
SAC reconfigures the LLC on a per-kernel basis. During a short
profiling window at the beginning of each kernel, a memory-side
configuration is assumed and profiling information is collected
using custom hardware performance counters. The profiling data
then serves as input to the EAB analytical model to predict whether
a memory-side or SM-side LLC is likely to yield the highest perfor-
mance. If the model predicts the SM-side configuration to yield the
highest performance, the LLC is reconfigured as an SM-side cache
for the remainder of the kernel. If not, the LLC remains configured
as a memory-side cache. In our setup, we assume a profiling win-
dow of 2K clock cycles. We explored the impact of the profiling
window and concluded that 2K cycles at the beginning of each
kernel invocation is adequate for our workloads. We also explored
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Symbol Memory-side configuration SM-side configuration
Local Requests Remote Requests Local Requests Remote Requests

𝐵𝑆𝑀_𝐿𝐿𝐶 , 𝑙𝑜𝑐𝑎𝑙 | 𝑟𝑒𝑚𝑜𝑡𝑒 𝐵𝑖𝑛𝑡𝑟𝑎 𝐵𝑖𝑛𝑡𝑒𝑟 𝐵𝑖𝑛𝑡𝑟𝑎 × 𝑅𝑙𝑜𝑐𝑎𝑙 𝐵𝑖𝑛𝑡𝑟𝑎 × 𝑅𝑟𝑒𝑚𝑜𝑡𝑒

𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 , 𝑙𝑜𝑐𝑎𝑙 | 𝑟𝑒𝑚𝑜𝑡𝑒 𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 × 𝑅𝑙𝑜𝑐𝑎𝑙 𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 × 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 × 𝑅𝑙𝑜𝑐𝑎𝑙 𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 × 𝑅𝑟𝑒𝑚𝑜𝑡𝑒

𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 , 𝑙𝑜𝑐𝑎𝑙 | 𝑟𝑒𝑚𝑜𝑡𝑒 𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 × 𝑅𝑙𝑜𝑐𝑎𝑙 𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 × 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 × 𝑅𝑙𝑜𝑐𝑎𝑙 𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 × 𝑅𝑟𝑒𝑚𝑜𝑡𝑒

𝐵𝐿𝐿𝐶_𝑚𝑒𝑚 ,𝑙𝑜𝑐𝑎𝑙 | 𝑟𝑒𝑚𝑜𝑡𝑒 — — — 𝐵𝑖𝑛𝑡𝑒𝑟

𝐵𝑚𝑒𝑚 ,𝑙𝑜𝑐𝑎𝑙 | 𝑟𝑒𝑚𝑜𝑡𝑒 𝐵𝑚𝑒𝑚 × 𝑅𝑙𝑜𝑐𝑎𝑙 𝐵𝑚𝑒𝑚 × 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 𝐵𝑚𝑒𝑚 × 𝑅𝑙𝑜𝑐𝑎𝑙 𝐵𝑚𝑒𝑚 × 𝑅𝑟𝑒𝑚𝑜𝑡𝑒

Table 1: Computing the EAB bandwidth numbers for the different LLC configurations and local vs. remote requests.

Symbol Definition
𝐸𝐴𝐵𝑙𝑜𝑐𝑎𝑙 The EAB provided for local requests
𝐸𝐴𝐵𝑟𝑒𝑚𝑜𝑡𝑒 The EAB provided for remote requests
𝑅𝑙𝑜𝑐𝑎𝑙 Fraction local requests
𝑅𝑟𝑒𝑚𝑜𝑡𝑒 Fraction remote requests
𝐵𝑆𝑀_𝐿𝐿𝐶 Bandwidth between SMs and LLC slices
𝐵𝐿𝐿𝐶_𝑚𝑒𝑚 Bandwidth between the LLC and memory
𝐵𝑖𝑛𝑡𝑟𝑎 Bandwidth of intra-module links
𝐵𝑖𝑛𝑡𝑒𝑟 Bandwidth of inter-module links
𝐵𝐿𝐿𝐶 Raw LLC bandwidth
𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 Bandwidth for LLC hits
𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 Bandwidth for LLC misses
𝐿𝐿𝐶ℎ𝑖𝑡 LLC hit rate
𝐿𝑆𝑈 LLC slice uniformity
𝑁 Number of LLC slices
𝑅𝑖 Number of requests to LLC slice 𝑖
𝐵𝑚𝑒𝑚 Raw memory bandwidth

Table 2: The EAB model inputs.

periodically re-profiling the workload during kernel execution (e.g.,
every 100K or 1M cycles) and found this to be unnecessary for our
workloads. In any case, profiling overhead is less than 1% (analysis
omitted due to space constraints).

3.3 The EAB Model
We now describe the Effective Available Bandwidth (EAB) model,
which computes the EAB under the memory-side and SM-side
LLC organizations. By comparing both EABs, the runtime system
decides which organization to adopt.

The effective available bandwidth is defined as the bandwidth
that the system can provide given the workload’s access pattern.
We compute the overall EAB as follows:

𝐸𝐴𝐵total = 𝐸𝐴𝐵local + 𝐸𝐴𝐵remote,

where 𝐸𝐴𝐵local and 𝐸𝐴𝐵remote are the effective available bandwidth
provided by the system for local and remote requests, respectively.
The local and remote requests are bottlenecked by different band-
width limitations depending on the specific LLC configuration. We
compute the local/remote EAB as follows:

𝐸𝐴𝐵local | remote = min(𝐵𝑆𝑀_𝐿𝐿𝐶 , 𝐵𝐿𝐿𝐶_ℎ𝑖𝑡+
min(𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 , 𝐵𝐿𝐿𝐶_𝑚𝑒𝑚, 𝐵𝑚𝑒𝑚)) .

EAB is computed as the minimum of the bandwidth between the
SMs and the LLC slices (𝐵𝑆𝑀_𝐿𝐿𝐶 ) and the bandwidth for LLC
hits (𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 ) plus the available bandwidth for LLC misses. The
latter is computed as the minimum of the bandwidth provided by
LLC misses (𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 ), the bandwidth between the LLC and main
memory (𝐵𝐿𝐿𝐶_𝑚𝑒𝑚), and the raw bandwidth provided by memory
(𝐵𝑚𝑒𝑚). How to compute these bandwidth numbers depends on (1)

whether they concern local or remote requests, and (2) the specific
LLC organization. We now describe how we compute them, see
also Tables 1 and 2.
𝑩𝑺𝑴_𝑳𝑳𝑪 : For the memory-side configuration, the available band-
width between the SMs and the LLC is bounded by the intra and
inter-chip network bandwidth for local and remote requests, re-
spectively. Under an SM-side organization, the intra-GPU network
bandwidth is shared by local and remote requests, we hence com-
pute the effective available bandwidth for local and remote requests
as the intra-GPU network bandwidth times the respective fraction
of requests.
𝑩𝑳𝑳𝑪_𝒉𝒊𝒕 : The LLC hit bandwidth is computed as the raw LLC
bandwidth (𝐵𝐿𝐿𝐶 ) times the available LLC Slice Uniformity (LSU)
and the effective LLC hit rate (𝐿𝐿𝐶ℎ𝑖𝑡 ):

𝐵𝐿𝐿𝐶_ℎ𝑖𝑡 = 𝐵𝐿𝐿𝐶 × 𝐿𝑆𝑈 × 𝐿𝐿𝐶ℎ𝑖𝑡

LSU quantifies the degree of distribution across the 𝑁 LLC slices,
and is computed as follows:

𝐿𝑆𝑈 =
1
𝑁

𝑁∑︁
𝑖=1

𝑅𝑖

max(𝑅1, ..., 𝑅𝑁 )

In this equation, 𝑅𝑖 equals the number of requests to LLC slice 𝑖 .
LSU thus equals one if the requests are uniformly distributed across
all slices, and equals 1/𝑁 if all requests go to a single slice. LSU and
LLC hit rate are a function of the specific LLC organization and they
are both affected by the degree of data replication under a specific
LLC organization. A cache line that is shared by multiple SMs in
a memory-side LLC leads to a non-uniform access distribution,
and thus low LSU, as accesses are concentrated to a single slice.
In contrast, in an SM-side LLC, a shared cache line is replicated
across multiple slices in different chips, thereby raising LSU but
also decreasing the LLC hit rate due to increased pressure on cache
capacity.
𝑩𝑳𝑳𝑪_𝒎𝒊𝒔𝒔 : A miss in the LLC leads to a memory access, in either
a local or remote memory partition depending on the LLC orga-
nization. In any case, the sum of the LLC hit and miss bandwidth
cannot exceed the raw LLC bandwidth. The LLC miss bandwidth is
computed as follows:

𝐵𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 = 𝐵𝐿𝐿𝐶 × 𝐿𝑆𝑈 × 𝐿𝐿𝐶𝑚𝑖𝑠𝑠 .

The LLC miss rate reflects the pressure data replication imposes on
cache capacity under an SM-side configuration.
𝑩𝑳𝑳𝑪_𝒎𝒆𝒎 : We assume that the LLC misses that access a local
memory partition are not bandwidth-limited. This is a reasonable
assumption assuming point-to-point links between an LLC slice and
its corresponding memory controller. In an SM-side configuration,
LLC misses to remote data need to go to a remote memory partition
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Figure 7: The Chip Request Directory (CRD) and counters to
collect the EAB model inputs.

over the inter-chip network. Those requests are hence limited by
the inter-chip link bandwidth.
𝑩𝒎𝒆𝒎 : The available memory bandwidth is assumed to be equal to
the designed memory bandwidth. This is reasonable since we con-
sider the PAE address mapping policy [22] which evenly distributes
memory accesses across memory channels. We verified that this is
indeed the case for our setup.

3.4 Collecting the Model Inputs
Some EAB model parameters are a function of the architecture only
(i.e., intra and inter-GPU interconnect bandwidth 𝐵𝑖𝑛𝑡𝑟𝑎 and 𝐵𝑖𝑛𝑡𝑒𝑟
as well as raw LLC and memory bandwidth 𝐵𝐿𝐿𝐶 and 𝐵𝑚𝑒𝑚). Other
parameters are a function of the workload only, namely the fraction
of local and remote memory accesses (i.e., 𝑅𝑙𝑜𝑐𝑎𝑙 and 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 ). The
final set of parameters is a function of the interaction between
the workload and the specific LLC configuration, namely the LLC
hit/miss rate (𝐿𝐿𝐶ℎ𝑖𝑡 and 𝐿𝐿𝐶𝑚𝑖𝑠𝑠 ), and the LLC slice uniformity
(𝐿𝑆𝑈 ).

We rely on hardware performance counters for computing the
application-dependent parameters 𝑅𝑙𝑜𝑐𝑎𝑙 , 𝐿𝑆𝑈 and 𝐿𝐿𝐶ℎ𝑖𝑡 . (Note
that 𝐿𝐿𝐶𝑚𝑖𝑠𝑠 is computed as 1 − 𝐿𝐿𝐶ℎ𝑖𝑡 ; similarly, 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 = 1 −
𝑅𝑙𝑜𝑐𝑎𝑙 .) 𝑅𝑙𝑜𝑐𝑎𝑙 depends on the application alone, whereas 𝐿𝑆𝑈 and
𝐿𝐿𝐶ℎ𝑖𝑡 depend on the LLC configuration as well. We thus need to
compute the latter two for both LLC configurations. We rely on ex-
isting hardware performance counters to compute 𝐿𝐿𝐶ℎ𝑖𝑡 under the
memory-side configuration. For computing the other model inputs,
we propose a custom hardware performance counter architecture,
as illustrated in Figure 7. To compute 𝐿𝑆𝑈 , we count the number
of ‘slice requests’ 𝑅𝑖 to each slice for both LLC configurations. We
have 𝑁 /4 slices per chip, hence we effectively have an array of 𝑁 /4
‘slice requests’ counters, one for the memory-side configuration
and one for the SM-side configuration. For computing 𝑅𝑙𝑜𝑐𝑎𝑙 , we
keep track of the number of ‘total requests’ (i.e., all L1 misses) and
‘local requests’ (i.e., all L1 misses going to the local LLC).

Computing 𝐿𝐿𝐶ℎ𝑖𝑡 for the SM-side LLC is somewhat more in-
volved, for which we develop a lightweight structure called the
Chip Request Directory (CRD), inspired by the Auxiliary Tag Direc-
tory (ATD)[35] and the Replication Degree Directory (RDD) [49].
We modified the mechanism so that CRD can predict the LLC hit
rate of the SM-side configuration when running the memory-side
configuration. As illustrated in Figure 7, CRD samples 𝑛 sets of the
local cache for which it provides an entry (i.e., CRD block) to record
whether this block has been accessed and replicated in any of the
chips under the SM-side configuration. Each CRD block contains

a tag and four bits called ‘Chip i’ to record whether this block has
been accessed by chip 𝑖 or not. These bits are initially set to 0. Upon
the first access with the matching tag to chip 𝑖 , the corresponding
bit is set. Then, when chip 𝑖 accesses the cache line again (i.e., ‘Chip
i’ equals one), we know that it will be a cache hit in the SM-side
configuration. If the architecture uses sectored caches [18, 21, 38],
we need to increase the size of the ‘Chip i’ fields to include one
bit for each sector. The number of LLC hits is kept track of in the
‘CRD hits’ counter; we also keep track of the total number of ‘CRD
requests’; dividing these two counters provides an estimate for the
hit rate under the SM-side LLC. Recall that profiling is done while
the LLC is configured as a memory-side cache. Doing so guarantees
that the CRD sees all requests whose data addresses are mapped to
this memory partition.

3.5 Putting It Together
At the end of the profiling phase, the EAB model is provided with
the inputs collected with the hardware performance counter archi-
tecture. The EAB model then computes and compares the EABs for
the memory-side and SM-side configurations. Because the SM-side
configuration incurs additional LLC coherence overhead compared
to the memory-side configuration — which the EAB model does
not account for (to not overly complicate the model) — we consider
a threshold 𝜃 when comparing the EABs. If the EAB of the SM-side
configuration exceeds the EAB of the memory-side configuration
by more than 𝜃 , the runtime system will reconfigure the LLC to
an SM-side organization. If not, the LLC remains configured as
a memory-side cache. We consider a balanced threshold 𝜃 = 5%
(sensitivity analysis omitted due to space constraints).

3.6 Overhead
The hardware overhead of SAC is small. In our setup, the CRD
consists of 8 sets with 16 ways per set. Each CRD block contains a
30-bit tag and 4 bits to record the requesting chip for conventional
caches. Supporting sectored caches requires 4 bits per chip as we
model 4 sectors per cache line. The total hardware overhead for
the CRD amounts to 544 and 736 bytes per chip for conventional
and sectored caches, respectively. To compute LSU, we assume
one 16-bit counter per LLC slice for both the memory-side and
SM-side configurations. The LSU counters amount to 64 bytes per
chip. Finally, we need four more counters, which we assume to be
24-bit each, for a total of 12 bytes. Put together, the total hardware
overhead with conventional and sectored caches amounts to 620
and 812 bytes per chip, respectively. We combined Synopsys De-
signWare Library [44], DSENT [43] and CACTI [26] to estimate the
overhead of the LLC bypassing logic including all components (i.e.,
selection logic, multiplexers, demultiplexers and wires); the LLC
slice width is estimated to be 0.69mm for a 256 KB LLC slice accord-
ing to CACTI (assuming a 22 nm technology node). We conclude
that the total area and power overhead of enabling LLC bypassing
equals 1.9% and 1.6% of the total NoC area and power, respectively,
over a memory-side LLC.

The runtime overhead of the EAB model is negligible (less than
1%). The model inputs are collected while the application is running
during the profiling phase. Computing the model formulas involves
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Parameter Value
Number of chips 4
Number of SMs 64 per chip, 256 in total
GPU frequency 1 GHz
SM compute capability CUDA 8.0; 64 warps per SM
Warp scheduler Greedy-Then-Oldest (GTO) [37]
Inter-chip bandwidth 768 GB/s ring, 12 bidirectional links in total

6 links per chip, 64 GB/s bidirectional per link
LLC bandwidth 64 slices, 16 TB/s in total
DRAM bandwidth 32 channels, 1.75 TB/s in total
L1 data cache size 128 KB per SM
LLC capacity 128 B per cacheline, 4 MB per chip, 16 MB in total
Page size and allocation 4 KB, first-touch [2]
CTA allocation Distributed CTA scheduling [2]
Coherency protocol Software-managed

Table 3: Simulated baseline configuration.

a couple dozen computations and a final comparison. Reconfigur-
ing the LLC to an SM-side organization at the end of the profiling
window (if needed) requires that we (1) wait for the completion of
in-flight requests, (2) write-back and invalidate the dirty cache lines
in the LLC, and (3) switch the routing algorithm in the NoCs to SM-
side. When a kernel terminates, we revert back to a memory-side
configuration (if needed). This involves (1) waiting for the comple-
tion of in-flight requests and (2) switching the routing algorithm to
memory-side. We model these runtime overheads carefully.

4 EXPERIMENTAL SETUP
Simulated System. We faithfully extended GPGPU-Sim [3] to
model a multi-chip GPU system with four chips. As shown in Ta-
ble 3, our baseline configuration consists of 64 SMs and a 4 MB LLC
per chip, or 256 SMs and 16 MB of LLC in total, which is in line with
prior work and commercial GPUs [2, 25, 29]. As aforementioned,
all NoCs in this work are concentrated hierarchical crossbars. We
consider a ring topology to connect the four chips with a total inter-
chip bandwidth of 768 GB/s. We assume four memory partitions
with eight memory channels each, for a total of 32 memory chan-
nels and 1.75 TB/s memory bandwidth. Our simulated baseline is
configured similarly as the second-generation NVLink [34] in terms
of link bandwidth, and after GDDR6 [24] in terms of memory band-
width. We perform various sensitivity analyses considering higher
and lower inter-chip and memory bandwidth configurations. We
model a multi-level cache hierarchy with a private write-through
L1 cache per SM and a write-back last-level (L2) cache. We further
assume software-controlled cache coherence for the L1s, which we
extend to L2 when configured as SM-side.

We adopt a first-touch page allocation policy [2] which maps a
page to the memory partition of the GPU chip that first accesses
a cache block within the page. We use the state-of-the-art PAE
randomized address mapping scheme [22] to uniformly distribute
memory accesses across LLC slices, memory channels and banks.
We further consider distributed CTA scheduling [2] which divides
the set of CTAs across the four chips by assigning a contiguous
set of CTAs per chip to maximize inter-CTA data locality within a
chip.
Workloads. We consider a diverse set of 16 benchmarks from five
benchmark suites, including Rodinia [6], Polybench [12], Tango [16],

Benchmark
Number of
CTAs

Footprint
(MB)

True-Shared
Data (MB)

False-Shared
Data (MB)

RN [16] 512 21 11 4
AN [16] 1,024 20 9 3
SN [16] 512 18 2 13
CFD [6] 4,031 97 9 33
BFS [6] 1,954 37 10 14
3DC [12] 2,048 98 17 38
BS [33] 480 76 0 56
BT [6] 48,096 31 4 19
SRAD [6] 65,536 753 30 3
GEMM [12] 2,048 174 14 21
LUD [6] 131,068 317 38 51
STEN [42] 1,024 205 18 17
3MM [12] 4,096 109 12 7
BP [6] 65,536 76 4 0
DWT [6] 91,373 207 3 10
NN [16] 60,000 1,388 154 0

Table 4: Simulated workloads: SM-side (top half) versus
memory-side (bottom half) LLC preferred benchmarks.

Nvidia SDK [33], and Parboil [42], see Table 4. We use large default
input sets for each of the benchmarks.

5 EVALUATION
We compare the following configurations:

• Memory-side LLC: Our baseline, a commonly used LLC
organization in commercial GPUs [29, 31].

• SM-side LLC: This is the two-NoC implementation of the
SM-side LLC configuration (see Section 3.1).

• Static LLC: This is the L1.5 cache [2] which provides half the
LLC capacity to cache remote data and half the LLC capacity
to cache local data.

• Dynamic LLC: Starting from a half-local, half-remote LLC
configuration, this LLC organization dynamically reserves
capacity for local versus remote data, following the design
proposed in [25].

• Sharing-Aware Caching (SAC): Our scheme as described
in Section 3 which dynamically chooses between a memory-
side and an SM-side configuration.

5.1 Performance
Figure 8 reports the speedup for different LLC organizations relative
to the baseline memory-side LLC. The benchmarks are grouped
by their LLC organization preference. The benchmarks on the left-
hand side of the figure prefer the SM-side LLC organization while
the benchmarks on the right-hand side prefer the memory-side
LLC organization; we report the average (harmonic mean) speedup
for the two benchmark categories and the overall average on the
far right. SAC achieves the best of both worlds. SAC performs (al-
most) equally well as the SM-side LLC for the SM-side preferred
benchmarks, while performing equally well as the memory-side
LLC for the memory-side preferred benchmarks. Overall, on av-
erage across all benchmarks, SAC outperforms the memory-side
LLC and SM-side LLC organizations by 76% and 12%, respectively.
SAC outperforms the previously proposed static and dynamic LLC
organizations by 31% and 18% on average, respectively. The small
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Figure 8: Speedup for the different LLC organizations relative to the memory-side LLC. The sharing-aware LLC outperforms the
alternative LLC organizations across a broad set of benchmarks.

Figure 9: Quantifying how the different LLC organizations cache local versus remote data. SAC allocates a large fraction of remote
data for the SM-side preferred benchmarks, while only allocating local data for the memory-side preferred benchmarks.

performance gap between SAC and the SM-side LLC for the SM-
side preferred benchmarks is primarily a result of the SAC profiling
and reconfiguration overhead, and not the inherent bandwidth and
latency benefit of the two-NoC SM-side LLC because of the order-
of-magnitude difference in intra-chip LLC bandwidth compared to
the inter-chip bandwidth.

To understand why SAC outperforms the alternative LLC or-
ganizations, Figure 9 reports the fraction of the LLC that caches
local data (from the local chip’s memory partition) versus remote
data (from a remote chip’s memory partition). A memory-side LLC,
by definition, only caches local data. The Static LLC caches 50%
local data and 50% remote data. The other three LLC organizations
exhibit different behaviors for the SM-side versus memory-side
preferred benchmarks. For the former (except BFS, see later), the
Dynamic LLC caches more remote data than the Static LLC, and the
SM-side LLC and SAC allocate even more remote data. This leads to
an increase in effective memory bandwidth. For the memory-side
preferred benchmarks, the Dynamic and SM-side LLC cache more
local data than the Static LLC. SAC only caches local data, and no
remote data is cached.

The key conclusion is that a workload fundamentally prefers
either a memory-side organization or an SM-side organization. Al-
ternative LLC organizations that cache partly local and partly re-
mote data are hence suboptimal. The memory-side LLC is unable
to cache remote data locally, while the SM-side LLC caches some
remote data, which is detrimental for the SM-side and memory-side
preferred benchmarks, respectively. The Static LLC is too rigid: it
is either unable to allocate enough remote data (for the SM-side
preferred benchmarks) or it allocates too much remote data (for the
memory-side preferred benchmarks). The Dynamic LLC performs
slightly better than the Static LLC, however, its heuristic leads to a
local optimum in which the LLC does not allocate enough local data.

SAC fundamentally solves this problem by choosing one of the two
extremes, a memory-side versus an SM-side LLC configuration.

5.2 Effective LLC Bandwidth
The performance speedup obtained through SAC correlates strongly
with the effective LLC bandwidth, as reported in Figure 10.2 Im-
proving the effective LLC bandwidth leads to a corresponding im-
provement in overall performance. Figure 10 further breaks down
the improvement in effective LLC bandwidth by classifying the
LLC responses from where they originate, namely the local LLC,
a remote LLC, the local memory partition, versus a remote mem-
ory partition. For the SM-side preferred benchmarks, SAC trades
remote LLC accesses for local LLC accesses. This leads to a sig-
nificant improvement in effective LLC bandwidth because of the
higher intra-chip versus inter-chip network bandwidth. For the
memory-side preferred benchmarks, SAC maintains high effective
bandwidth to the local LLC or memory partition as opposed to the
alternative LLC organizations.

5.3 Sharing Behavior
We now dive deeper to understand the root cause of the improve-
ment in effective memory bandwidth. Figure 11 reports the working
set size (in MB and capped at 32 MB) under the SM-side LLC organi-
zation for different time windows of 1,000 to 100,000 cycles. The red
line denotes the system’s total LLC capacity (16 MB). The working
set is categorized in three groups: (1) true-sharing, (2) false-sharing,
and (3) non-sharing, as previously described in Section 2.1.

2The effective memory access latency also improves substantially under SAC, and
while there is a strong correlation with the overall performance improvement, the
correlation is not as strong as for the effective LLC bandwidth, which is why we focus
on the latter. The correlation is weaker because latency gets exposed only when there
is insufficient bandwidth.
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Figure 10: Normalized effective LLC bandwidth breakdown showing the number of LLC responses per cycle including their
origin. SAC improves the effective LLC bandwidth which explains the performance speedup reported in Figure 8.

Figure 11: Working set size (in MB, capped at 32 MB) for different time windows under the SM-side LLC organization. The
red line denotes the system total LLC capacity of 16 MB. Replicating the shared data set does not exceed LLC capacity for the SM-side
preferred benchmarks in contrast to the memory-side preferred benchmarks.

There are several interesting observations to make here. First,
the truly shared working set is relatively small for the SM-side pre-
ferred benchmarks while it is large for the memory-side preferred
benchmarks. Note that the truly shared working set gets replicated
under an SM-side LLC organization as different chips are accessing
the same cache lines. Replicating a relatively small truly shared
working set across chips does not pressure cache capacity while
significantly improving the effective bandwidth to these cache lines.
This explains the performance improvement under SAC for several
of the SM-side preferred benchmarks, e.g., RN, AN, CFD and BFS.
In contrast, the memory-side preferred benchmarks have a fairly
large truly shared working set. Replicating this truly shared work-
ing set across chips exceeds the total LLC capacity over large time
windows, which leads to cache trashing and explains why these
benchmarks prefer a memory-side LLC organization.

Second, most of the SM-side preferred benchmarks have a fairly
large false-sharing working set. A chip caches the false-sharing
working set locally under an SM-side organization which leads to
higher effective bandwidth compared to a memory-side organiza-
tion which needs to access the false-sharing working set across the
inter-chip network.

Third, some benchmarks are atypical in the sense that the per-
formance difference between a memory-side and SM-side LLC is
minor, see in particular 3DC, BS, BP and DWT. Recall that the EAB
model opts for the SM-side LLC organization in case the predicted
bandwidth improvement is larger than for the memory-side LLC
(by more than 𝜃 = 5%).

Figure 12: Time-varying execution behavior for BFS: perfor-
mance for SM-side and SAC relative to the memory-side LLC.
SAC selects the optimum LLC organization on a per-kernel basis, i.e.,
memory-side LLC for K1 and SM-side LLC for K2.

5.4 Time-Varying Behavior
As noted in Figure 8, SAC slightly under-performs compared to
the SM-side LLC for the SM-side preferred benchmarks, the reason
being the profiling and runtime overhead (less than 1%) to dy-
namically reconfigure the LLC from a memory-side to an SM-side
organization. The one exception is BFS, for which SAC outperforms
the SM-side LLC. Figure 12 illustrates that BFS’ execution alter-
nates between a memory-side preferred kernel K1 and an SM-side
preferred kernel K2. SAC chooses the optimum organization on a
per-kernel basis which leads to the overall improvement over the
SM-side configuration.

5.5 Input Set
Given that the primary reasonwhy SAC outperforms the alternative
LLC organizations originates from a workload’s shared working set
relative to its total working set, it is important to evaluate SAC’s
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(a) SM-side LLC for the SM-side preferred benchmarks (b) SAC for the SM-side preferred benchmarks

(c) SM-side LLC for the memory-side preferred benchmarks (d) SAC for the memory-side preferred benchmarks

Figure 13: Analyzing input set sensitivity for the SM-side preferred benchmarks: (a) SM-side LLC vs. (b) SAC; and for the
memory-side preferred benchmarks: (c) SM-side LLC vs. (d) SAC. SAC selects the optimum LLC organization across inputs.

Figure 14: SAC sensitivity relative to the memory-side LLC.
The configurations with an asterisk denote our baseline. SAC
performs well across the broad design space.

sensitivity to input size. Figure 13 reports speedup relative to the
memory-side LLC for the SM-side and SAC LLC configurations
across a wide range of input set sizes. For the SM-side preferred
benchmarks, we change the input set size from ×8 to ÷4 the de-
fault input. For the memory-side preferred benchmarks, we change
the input from ×4 to ÷32 the default input. For the benchmarks
for which it is impossible to alter the input (i.e., RN, AN, SN and
BT), we take an alternative approach and scale the LLC capacity.
The key take-away from Figure 13 is that SAC chooses the opti-
mum LLC organization across inputs. For the SM-side preferred
benchmarks (Figure 13a and 13b), SAC selects the SM-side LLC
organization when beneficial while reverting to a memory-side
LLC for the largest input sizes, i.e., replicating the increasingly
large shared working set leads to cache thrashing effects under an
SM-side configuration. For the memory-side preferred benchmarks
(Figure 13c and 13d), SAC selects the SM-side LLC organization for
the smallest inputs when it is beneficial to do so, i.e., the shared
working set is small enough so that replication does not thrash the
cache.

5.6 Sensitivity Analyses
We now explore SAC across the design space, see Figure 14.
Inter-chip bandwidth. SAC outperforms the memory-side and
SM-side LLC across a broad range of inter-module link bandwidth
configurations. The smaller 48 GB/s unidirectional link bandwidth
configuration corresponds to PCIe [40]. The second and third gen-
eration of NVLink [34] offer 150 GB/s and 300 GB/s bidirectional
link bandwidth, respectively, in a 4-GPU setup organized in a ring

topology. Our default configuration (96 GB/s unidirectional link
bandwidth) is situated in-between these two NVLink systems. The
higher 384 GB/s and 768 GB/s unidirectional link configurations
are in the range of interposer-based multi-chip-module (MCM)
GPUs [2]. Overall, the performance improvement by SAC relative
to the memory-side LLC decreases with increasing inter-chip band-
width: the higher the inter-chip bandwidth, the less critical it is to
cache remote data locally and to replicate shared data.
LLC capacity. Larger LLC capacity increases the performance im-
provement by SAC (and the SM-side LLC) compared to the memory-
side LLC. The reason is that a larger LLC enables caching more data
locally and replicating a larger shared working set across chips.
Memory interface. SAC’s performance improvement over the
memory-side LLC increases with increasing memory bandwidth.
Increased memory bandwidth fromGDDR5 [23] to GDDR6 [24] and
HBM2 [15] shifts the system bottleneck to the inter-chip network.
Replicating the shared data set is hence more critical for higher
memory bandwidth systems, which leads to higher performance
benefits through SAC.
Coherence protocol. Hardware coherence keeps cache lines con-
sistent across the system by tracking sharers and invalidating re-
mote copies upon a write, whereas software coherence relies on
flush operations to write back dirty cache lines upon software-
inserted synchronization primitives. Software coherence is cur-
rently the prevalent approach in commercial products, while hard-
ware coherence has been evaluated in research on multi-GPU sys-
tems [36]. We evaluate SAC under hardware coherence which up-
dates the local copy while invalidating all other copies in the system
upon a write; this requires a dirty bit to be added in the directory3.
SAC provides a slightly higher performance benefit under hardware
coherence compared to software coherence, the reason being lower
overhead for reconfiguring the LLC.
GPU count. To evaluate SAC’s sensitivity to GPU count, we set up
an experiment in which we reduce the number of GPUs from four

3This is different from HMG [36] which assumes that the local copy as well as the
copy in the home GPU are updated and all other copies are invalidated. The reason
for choosing a different implementation is to avoid the unnecessary write traffic and
wastage of LLC capacity caused by false sharing — a problem also recognized in [36].
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to two, while keeping the total inter-chip bandwidth unchanged.
This implies that the per-link bandwidth in the two-GPU setup
is effectively twice the per-link bandwidth in the four-GPU setup
— this is similar to how inter-GPU bandwidth scales for Nvidia’s
NVLink [34]. We find that SAC’s effectiveness increases with GPU
count. The reason is that as the number of GPUs increases, the
amount of per-GPU bandwidth decreases which increases the op-
portunity for SAC to increase the effective bandwidth.
Sectored cache. Sectored caches [18, 21, 38] reduce tag overhead
by having cache lines share tag information per sector. Because
the effective cache line size is smaller in a sectored cache, there is
less opportunity for true sharing. Nevertheless, SAC still provides
a significant performance benefit.
Page size. SAC is largely insensitive to page size as it only affects
false sharing, not true sharing which is key for SAC.

6 RELATEDWORK
SAC focuses on maximizing the effective LLC bandwidth in multi-
chip GPU systems. The most closely related works to SAC are hence
Dynamic LLC partitioning [25] and the L1.5 cache [2] (i.e., Static
LLC), which we have shown are outperformed by SAC. Page migra-
tion [4, 10] improves beyond-LLC bandwidth by migrating pages
to the memory module of the local chip. Memory management
techniques such as CARVE [47] and GPS [27] store fine-grained
remote data in local memory and hence replicate shared data across
memory modules. All these techniques aim at improving memory
bandwidth (i.e., beyond-LLC) whereas SAC increases the effective
bandwidth ahead of the LLC.

A number of works have focused on improving how GPUs han-
dle shared data (which is common in GPUs [45]). In particular, the
Adaptive LLC [48] and SelRep LLC [49] replicate shared read-only
cache blocks across LLC slices within a single GPU to avoid con-
gestion when many SMs access the same cache block around the
same time. Note that the Adaptive and SelRep LLC proposals only
replicate cache lines in the LLC of the home GPU, because these
schemes assume a memory-side LLC. By consequence, other GPUs
still need to access those shared cache lines over the inter-chip
links, which leads to bandwidth congestion issues. SAC overcomes
exactly this inter-chip bandwidth bottleneck by dynamically recon-
figuring the LLC between memory-side versus SM-side with the
latter configuration enabling replication and caching of truly and
falsely shared cache lines across GPUs.

Locality-Aware Data Management (LADM) [17] coordinates the
placement of data and CTAs to reduce data sharing between GPU
chips. LADM builds upon the Dynamic LLC [25] and proposes a
compiler-assisted ‘cache-remote-once’ cache insertion policy to
avoid wasting cache capacity for falsely shared cache blocks in the
Dynamic LLC’s remote partition. By doing so, LADM is in effect
similar to SM-side caching. SACmakes the observation that an addi-
tional performance improvement is to be obtained by dynamically
reconfiguring the LLC to be a memory-side or SM-side cache.

Ibrahim et al. [14] propose an L1 cache organization that is shared
by all SMs. A shared L1 is orthogonal to SAC by maximizing the
effective L1 bandwidth within a GPU chip, whereas SAC aims at
maximizing the effective LLC bandwidth across GPU chips in a
multi-GPU system. While a workload with data sharing should

prefer a shared L1 organization (to eliminate data replication) [14],
the conclusion is different at the multi-GPU level: if the shared
data set is small enough relative to the LLC size, it is beneficial
to replicate across chips under an SM-side configuration — higher
LLC miss rate but higher effective bandwidth — however, if the
shared data is too big to fit in the cache, it is better not to replicate
under a memory-side configuration.

A large body of prior work has investigated various LLC orga-
nizations in the context of multi-core CPUs [5, 11, 19, 46]. These
approaches are fundamentally different from GPU-focused LLC
organizations as they focus on placing data close to the requesting
core(s) to minimize latency whereas maximizing bandwidth is the
critical concern in GPUs.

7 CONCLUSION
We presented Sharing-Aware Caching (SAC) which adopts either a
memory-side or an SM-side LLC organization depending on which
of the two configurations it predicts will provide higher bandwidth.
The key components of SAC are (1) the simple EAB analytical model
that takes into account the degree and nature of data sharing in
the workload, and (2) a low-overhead routing-based LLC reconfig-
uration mechanism. SAC improves performance by 76%, 12%, 31%,
and 18% on average compared to a memory-side LLC baseline, an
SM-side LLC configuration, the L1.5 static LLC organization [2],
and dynamic LLC partitioning [25], respectively.
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