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ABSTRACT
As computer architectures become increasingly complex and het-
erogeneous, it becomes progressively more difficult to write appli-
cations that make good use of hardware resources. Performance
analysis tools are hence critically important as they are the only
way through which developers can gain insight into the reasons
why their application performs as it does. State-of-the-art perfor-
mance analysis tools capture a plethora of performance events and
are practically non-intrusive, but performance optimization is still
extremely challenging. We believe that the fundamental reason is
that current state-of-the-art tools in general cannot explain why
executing the application’s performance-critical instructions take
time.

We hence propose Time-Proportional Event Analysis (TEA)
which explains why the architecture spends time executing the
application’s performance-critical instructions by creating time-
proportional Per-Instruction Cycle Stacks (PICS). PICS unify per-
formance profiling and performance event analysis, and thereby (i)
report the contribution of each static instruction to overall execu-
tion time, and (ii) break down per-instruction execution time across
the (combinations of) performance events that a static instruction
was subjected to across its dynamic executions. Creating time-
proportional PICS requires tracking performance events across all
in-flight instructions, but TEA only increases per-core power con-
sumption by ∼3.2 mW (∼0.1%) because we carefully select events to
balance insight and overhead. TEA leverages statistical sampling to
keep performance overhead at 1.1% on average while incurring an
average error of 2.1% compared to a non-sampling golden reference;
a significant improvement upon the 55.6%, 55.5%, and 56.0% aver-
age error for AMD IBS, Arm SPE, and IBM RIS. We demonstrate
that TEA’s accuracy matters by using TEA to identify performance
issues in the SPEC CPU2017 benchmarks lbm and nab that, once
addressed, yield speedups of 1.28× and 2.45×, respectively.
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1 INTRODUCTION
The end of Dennard scaling and the imminent end of Moore’s law
means that we can no longer expect general-purpose CPU architec-
tures to deliver performance scaling [16]. Industry has responded by
exploiting specialization and integrating heterogeneous compute
engines including GPU and domain-specific accelerators alongside
conventional CPU cores [28]. Counter-intuitively perhaps, sequen-
tial CPU code becomes relatively more performance-critical in het-
erogeneous systems due to Amdahl’s Law, i.e., acceleratable code
regions take much less time to execute while non-acceleratable
code still takes the same amount of time [6]. Performance tuning of
sequential CPU code to better exploit the underlying hardware is
hence becoming increasingly critical. Unfortunately, this is a time-
consuming and tedious endeavor because of how state-of-the-art
CPU architectures optimize performance through various forms
and degrees of instruction-level parallelism, speculation, caching,
prefetching, and latency hiding.

Performance tuning is practically impossible without advanced
performance analysis tools, such as Intel VTune [31] and AMD
µProf [2], whose purpose it is to help developers answer two fun-
damental questions:

Q1 Which instructions does the application spend most time
executing? Or in other words, which are the performance-
critical instructions?1

Q2 Why are instructions performance-critical? What are the mi-
croarchitectural events (cache misses, branch mispredictions,
etc.) that render these instructions performance-critical?

The first question (Q1) is typically addressed with a performance
profiler. The state-of-the-art performance profiler TIP [22] is time-
proportional, in contrast to other performance profilers [3, 4, 18, 19,
21, 30, 38], which means that the importance of an instruction in
its final performance profile is proportional to the instruction’s rel-
ative contribution to overall execution time. Time proportionality
is achieved by analyzing an instruction’s impact on performance
at commit time because that is where an instruction’s latency is
exposed. More specifically, an instruction’s key contribution to

1While attributing time to functions can be sufficient to address simple performance is-
sues, addressing challenging performance issues requires instruction-level analysis [22].
Note that instruction-level analysis can also always be aggregated for presentation at
coarser granularity whereas the opposite is not true.
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execution time is the fraction of time it prevents the core from com-
mitting instructions [22]. Time-proportional performance profiling
is practical because it relies on statistical sampling, i.e., the profiler
infrequently interrupts the CPU to retrieve the address(es) of the
instruction(s) that the CPU is exposing the latency of in the cycle
the sample is taken.

While performance profiling is a necessary first step, it is not
sufficient because it does not answer the second question (Q2).
More specifically, performance profilers such as TIP [22] do not
explain why the architecture spends time on performance-critical
instructions because they do not break down the time contribu-
tion of an instruction’s execution across microarchitectural perfor-
mance events. State-of-the-art approaches that attempt to address
Q2 fall short because they account for performance events in a
non-time-proportional manner, hence providing a skewed view on
performance. Existing performance analysis approaches can be clas-
sified as instruction-driven versus event-driven. Instruction-driven
approaches such as AMD IBS [19], Arm SPE [4], and IBM RIS [29]
tag instructions at either the fetch or dispatch stage in the pipeline
and then record the performance events that a tagged individual
instruction is subjected to. Tagging instructions at the fetch or dis-
patch stages biases the instruction profile towards instructions that
spend a lot of time in the fetch and dispatch stages, and not nec-
essarily at the commit stage — hence lacking time-proportionality.
Event-driven approaches [3, 20, 30, 54] on the other hand rely on
counting performance events (e.g., cache misses, branch mispre-
dicts, etc.). Event counts are then either attributed to instructions
or used to generate coarse-grained performance information, such
as application-level cycles per instruction stacks. Event-driven ap-
proaches also provide a skewed view on performance because the
performance event counts they provide do not necessarily corre-
late with the impact these events have on performance because of
latency hiding effects (as we will quantify in Section 5).

Our key insight is that both Q1 and Q2 can be answered by
creating time-proportional Per-Instruction Cycle Stacks (PICS) in
which the time the architecture spends executing each instruction
is broken down into the (combinations of) performance events it
encountered during program execution.2 Since our PICS are time-
proportional by design, they have the desirable properties that (i)
the height of the cycle stack is proportional to a static instruction’s
impact on overall execution time — addressing Q1 — and (ii) the
size of each component in the cycle stack is proportional to the
impact on overall performance that this (combination of) perfor-
mance event(s) incurs — addressing Q2. While time-proportional
TIP [22] captures each static instruction’s impact on overall execu-
tion time (thereby answering Q1), it cannot answer Q2 and create
PICS because this requires breaking down each static instruction’s
performance impact across the events the instruction was subjected
to during its dynamic executions.

A key challenge for creating PICS is that contemporary pro-
cessors record many performance events, e.g., the Performance
Monitoring Unit (PMU) of the recent Intel Alder Lake can report
297 distinct performance events [32]. Building time-proportional

2Performance-critical instructions are typically executed in (nested) loops and have
many dynamic executions; we collect performance events across multiple sampled
dynamic executions per static instruction in the binary.

PICS however requires tracking events across all in-flight instruc-
tions — and limiting the number of tracked events is hence key to
keeping overheads in check. We address this issue by returning
to first principles, i.e., PICS must break down the execution time
impact of an instruction according to the architectural behavior
that caused the instruction’s latency. We must hence focus on the
commit stage and exploit that it can be in three non-compute states:
(i) Commit stalled because an instruction reached the head of the
Re-Order Buffer (ROB) before it had fully executed; (ii) it drained
because of a front-end stall; or (iii) it flushed due to, for instance, a
mispredicted branch. The task at hand is hence to map these states
back to the performance events that caused them. Fortunately, per-
formance events form hierarchies, and we exploit these to select
events that make PICS easy to interpret while keeping overheads
low. Surprisingly perhaps, we find that capturing only nine events
is sufficient to ensure that 99% of the stall cycles incurred by in-
structions that are not subjected to any event is less than 5.8 clock
cycles.

We hence propose Time-proportional Event Analysis (TEA), which
enables creating PICS by adding hardware support for tracking the
performance events that each instruction encounters during its
execution. More specifically, TEA allocates a Performance Signa-
ture Vector (PSV) for each dynamically executed instruction which
includes one bit for each supported performance event. During
application execution, TEA uses a cycle counter to periodically
collect PSV(s) at a typical 4 KHz sampling frequency. The PMU
then retrieves the instruction pointer(s) and PSV(s) of the instruc-
tion(s) that the architecture is exposing the latency of at the time
of sampling following the time-proportional attribution policies
described in prior work [22]. When the sample is ready, the PMU
interrupts the core, and the interrupt handler reads the instruction
pointer(s) and PSV(s) and stores them in a memory buffer. When
the application completes, the PSVs are post-processed to create
PICS for each static instruction by aggregating the PSVs captured
for each of its dynamic execution samples.

We implement TEA within the Berkeley Out-of-Order Machine
(BOOM) core [58], and our implementation tracks nine performance
events across all in-flight instructions. TEA incurs only minor over-
head, i.e., requires 249 bytes of storage and increases per-core power
consumption by only ∼3.2 mW (∼0.1%). We demonstrate the accu-
racy of TEA by comparing its PICS to those generated by AMD
IBS [19], Arm SPE [4], and IBM RIS [29]3, which are the state-of-
the-art instruction-driven performance analysis approaches, and an
(unimplementable) golden reference that retrieves the PSVs for all
dynamic instructions in all clock cycles. TEA is very accurate with
an average error of 2.1% relative to the golden reference which is a
significant improvement over the 55.6%, 55.5%, and 56.0% average
error of IBS, SPE, and RIS, respectively. Since TEA relies on statisti-
cal sampling, the performance overhead of enabling it is only 1.1%
on average.

To demonstrate that TEA is useful in practice, we used it to an-
alyze the SPEC CPU2017 [46] benchmarks lbm and nab. For both
benchmarks, the PICS provided by TEA explains the performance

3The key benefit of the front-end-tagging strategy used by IBS, SPE, and RIS is that
it only requires tracking performance events for a single instruction which yields a
single byte of storage overhead (compared to 249 bytes for TEA). Unfortunately, this
lower overhead comes at the cost of poor accuracy.
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problems whereas state-of-the-art approaches do not. The perfor-
mance problem of lbm is due to a non-hidden load instruction, and
we address this issue by inserting software prefetch instructions.
TEA enabled us to choose a prefetch distance that is large enough
to hide most of the load latency while not being too large as this
creates contention for store resources in the core and L1 cache,
yielding an overall performance improvement of 1.28×. For nab,
the high accuracy of TEA enabled us to deduce that a floating-point
square root instruction was performance-critical because an earlier
instruction flushed the pipeline and hence caused it to be issued
too late for its execution latency to be hidden. We addressed this
issue by relaxing IEEE 754 compliance with the –finite-math and
–fast-math compiler options which yielded speedups of 1.96× and
2.45×, respectively.
In summary, we make the following major contributions:

• Weobserve that time-proportional Per-Instruction Cycle Stacks
(PICS) provide all the necessary information to explain both
which instructions are performance-critical (i.e., answering
Q1) and why these instructions are performance-critical (i.e.,
answering Q2) — thereby helping developers understand
tedious performance problems.

• We propose Time-proportional Event Analysis (TEA) which
captures the information necessary to create PICS by track-
ing key performance events for all in-flight instructions with
Performance Signature Vectors (PSVs).

• We implement TEA at the RTL-level within the out-of-order
BOOM core [58] and demonstrate that it achieves a 2.1%
average error relative to the golden reference; a significant
improvement upon the 55.6%, 55.5%, and 56.0% error of IBS,
SPE, and RIS, respectively. TEA has low overhead (i.e., stor-
age overhead of 249 bytes, power consumption overhead of
∼0.1%, and performance overhead of 1.1%).

• We used TEA to analyze the lbm and nab benchmarks from
SPEC CPU2017. TEA identifies two performance problems
that are difficult to identify with state-of-the-art approaches,
and addressing them yields speedups of 1.28× and 2.45×,
respectively.

2 BACKGROUND AND MOTIVATION
Time-proportional performance profiling [22] is based on the ob-
servation that determining the contribution of each instruction
to overall execution time requires determining the instruction(s)
that the core is currently exposing the latency of. (We assume a
baseline that already supports TIP [22], the state-of-the-art time-
proportional performance profiler.) Time-proportional profiling
needs to focus on the commit stage of the pipeline because this
is where the non-hidden instruction latency is exposed. Focusing
on commit is a necessary but not a sufficient condition for time-
proportionality because, depending on the state of the CPU, it will
expose the latency of different instruction(s). More specifically, the
processor will be in one of four commit states in any given cycle:

• Compute: The processor is committing one or more instruc-
tions. Time-proportionality hence evenly distributes time
across the committing instructions (i.e., 1/𝑛 cycles to each
instruction when 𝑛 instructions commit in parallel).

(a) TEA samples.

IX ...
I1 lw   a4,(a5)
I2 addw a0,a0,a4
I3 addi a5,a5,4
I4 bne  a5,a3,I1
IY ... 

(b) Example code. (c) Time-proportional PICS.

Figure 1: Example explaining how TEA creates PICS. TEA ex-
plains how performance events cause performance loss.

• Drained: The ROB is empty because of a front-end stall, for
instance due to an instruction cache miss. Time is hence
attributed to the next-committing instruction.

• Stalled: An instruction 𝐼 is stalled at the head of the ROB
because it has not yet been fully executed. Time is hence
attributed to 𝐼 which is the next-committing instruction.

• Flushed: An instruction 𝐼 caused the ROB to flush, for in-
stance due to a mispredicted branch, and the ROB is empty.
Time is hence attributed to 𝐼 but unlike in the stall and drain
states it has already committed, i.e., it is the last-committed
instruction.

Explaining why it takes time to execute a particular instruction
hence requires mapping the non-compute commit states Drained,
Stalled, and Flushed to the performance events that caused them to
occur. (Execution latency is fully hidden in the Compute state, and
there is hence no additional execution time to explain in this state.)
TEA example. Figure 1 illustrates how TEA works in practice
when an application executes the short loop in Figure 1b on an
out-of-order processor that supports three performance events (i.e.,
instruction cache miss, data cache miss, and branch mispredict).
TEA relies on statistical sampling and for the purpose of this exam-
ple we assume that it samples once every 1,000 cycles; the samples
that TEA collects are shown in Figure 1a. (In our evaluation, TEA
samples at 4 kHz, i.e., once every 800,000 cycles at 3.2 GHz, which is
the default for Linux perf [38].) In Sample 1, the ROB has drained
due to an instruction cache miss when fetching I1 and TIP [22]
hence samples I1. TEA additionally tracks the performance events
that each dynamic instruction was subjected to by attaching a Per-
formance Signature Vector (PSV) to each in-flight instruction. The
PSV consists of one bit for each supported performance event and
hence consists of three bits in this example. Since I1 was subjected
to an instruction cache miss, its instruction cache miss event bit
is set in its PSV, see 1 . A TEA sample hence consists of a PSV for
all sampled instructions in addition to the information returned by
TIP (i.e., instruction address(es) and timestamp).

In Sample 2, the ROB has again emptied, but now the reason is
that branch instruction I4 was mispredicted. I4 hence committed



ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gottschall, et al.

L1I miss ITLB missInst. ID Branch mispredict LLC miss L1D miss DTLB miss
Performance Signature Vector (PSV) format

3

DCache/TLB

Decode Rename Dispatch

Re-Order Buffer (ROB)ICache/TLB Perf. Monitoring Unit (PMU)

Branch pred.

Sampler

Fetch
Issue Buffers

Int.

Mem.

Commit

I1 I2

I3I4

I1 000011I1 000011 I2 000010 I3 000000 I4 000000 I5 100000

I6 00I7 00I8 00 I5 10

1 2

4

5

(a) TEA.

(b) Dispatch-tagging (e.g., IBS).

Figure 2: Example comparing TEA to dispatch-tagging. TEA
is time-proportional whereas dispatch-tagging is not.

while all younger instructions were squashed, resulting in the pro-
cessor being in the Flushed state. The sample is hence attributed to
I4, and TEA provides a PSV where the branch mispredict bit is set,
see 2 . In Sample 3, I1 is again the cause of performance loss, but
this time it is stalled on a cache miss. The processor is therefore
in the Stalled state, and TEA explains why because the data cache
miss event bit is set in the PSV. In Samples 4 and 5, the working set
of I1 has been loaded into the L1 cache and the branch predictor
has learned how to predict I4 correctly. The 4-wide core is thus
able to commit I1, I2, I3, and I4 in parallel and is in the Compute
state. All PSV entries are 0 because none of the instructions were
subjected to any performance event, see 3 .

The application terminates without additional samples being
collected, and TEA then uses the captured samples to create PICS
for I1, I2, I3, and I4 (see Figure 1c). Each sample is mapped to
static instructions using the address(es) of the instruction(s) and
then categorized according to the PSV value — which identifies the
(combination of) performance event(s) that caused the processor to
expose the latency of this instruction in this sample. From Samples
1 and 3, TEA attributes 1,000 cycles to I1 due to the instruction
cache miss event and data cache miss event, respectively, see 4 .
Similarly, TEA attributes 1,000 cycles to I4 for the mispredicted
branch in Sample 2. The remaining cycles are distributed evenly
across I1, I2, I3, and I4 since they commit in parallel in Samples 4
and 5. This category is labeled ’Base’ since none of the instructions
were subjected to performance events.

If an instruction is subjected to multiple events, multiple bits
are set in the PSV, and we refer to events that impact the same
instruction as combined events. Combined events are often ser-
viced sequentially, e.g., an instruction cache miss must resolve for
a load to be executed and subjected to a data cache miss. The stall
cycles caused by this load are hence caused by both events and it is
challenging to tease apart the stall impact of each event. TEA hence
reports combined events as separate categories. Out of all dynamic
instruction executions that encounter at least one event, 30.0% are
subjected to combined events (see Section 5). Combined events are
hence not too common, but can help to explain challenging issues.

Capturing PSVs. Creating PICS requires recording the perfor-
mance events each instruction is subjected to during its execution,
i.e., creating a PSV for each instruction packet. An instruction
packet is the instruction (or µop) itself and its associated meta-
data (e.g., the instruction address) which the processor updates and
forwards as the instruction flows through the pipeline. Figure 2a
illustrates how TEA captures PSVs by showing the execution state
of an out-of-order core and PSVs for each instruction; this archi-
tecture supports six performance events and hence has a six-bit
PSV format. (We will explain how we implement TEA in detail in
Section 3.) In the front-end, the PSVs need to capture and pass along
the events that can occur in this and previous pipeline stages which
are instruction cache and TLB misses in this example, see 1 . At
dispatch, TEA initializes the six-bit PSV associated with each ROB
entry by setting the front-end bits of the PSV to their respective
values and all remaining PSV-bits to zero. At 2 , instruction I5,
which was subjected to an instruction cache miss, hence has its two
most significant bits set to 10 as these are the front-end PSV-bits
(see 3 ). In the cycle we focus on, I1 is the oldest instruction and
stalled due to an L1 cache miss and a TLB miss and its two least
significant PSV-bits are hence both 1, see 4 . Similarly, I2 is also a
data cache miss while the PSVs for I3 and I4 are all zeros because
they so far have not been subjected to any performance events.
Since TEA is time-proportional, its hardware sampler selects I1 and
its PSV before interrupting the processor such that the software
sampling function can retrieve the sample and store it in a memory
buffer.
Instruction-driven performance analysis. AMD IBS [19], Arm
SPE [4], and IBM RIS [29] fall short because they tag instructions
at dispatch or fetch and are hence not time-proportional. Figure 2b
illustrates the operation of dispatch-tagging with the same core
state as we used to explain TEA in Figure 2a. Dispatch-tagging
marks the instruction that is dispatched in the cycle the sample is
taken, i.e., I5 (see 6 ). Fetch-tagging works in the same way except
that it tags at fetch rather than at dispatch and would hence tag
I8 in this example. The key benefit of tagging instructions in the
front-end is that the scheme only needs to track events for the
tagged instruction, i.e., it needs one PSV to record the events that
the tagged instruction is subjected to, see 7 .

Tagging at dispatch or fetch does however incur significant error
because it is not time-proportional. More specifically, sampling
I5 or I8 is not time-proportional because I1 is stalled at the head
of the ROB at the time the sample is taken, i.e., the processor is
exposing the latency of I1 in this cycle. (Recall that TEA sampled
I1 in Figure 2a.) This situation is common because performance-
critical instructions tend to stall at commit which in turn stalls
the front-end — resulting in the PSVs of the instructions that are
dispatched or fetched during stalls being overrepresented in the
PICS. Tagging at dispatch or fetch also captures events that may
not impact performance. For example, I1 is stalled on a combined
data cache and TLB miss event, but dispatch-tagging captures I5’s
instruction cache miss (which is hidden under I1’s events).

3 TIME-PROPORTIONAL EVENT ANALYSIS
We now explain the details of our TEA implementation. While
we focus on the open-source BOOM core [58] in this section, the
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Figure 3: Performance event hierarchy for the Stalled (ST)
commit state.

approach will be similar for other microarchitectures, i.e., some
implementation details will be different but the flow of information
will remain the same.
Performance event hierarchies. PICS help developers under-
stand why instructions are performance-critical, and TEA provides
this information by mapping the non-compute commit states to
the most important performance events that cause them. However,
TEA has to track performance events for all in-flight instructions,
and we hence need to carefully select a small set of performance
events that collectively capture key architectural bottlenecks to
keep overheads in check. Fortunately, performance events can be
grouped according to the non-compute commit state they can cause.
Performance events hence form hierarchies that we can exploit to
trade off overhead against interpretability, i.e., the ability of the
selected set of performance counters to explain commit stalls.

Figure 3 explains how event hierarchies enable reasoning about
event selection by focusing on the Stalled (ST) commit state. Per-
formance events can be dependent or independent. Dependent
performance events can only occur if a prior performance event
has occurred, e.g., a load can only miss in the LLC if it has already
missed in the L1 cache 1 . Independent performance events in con-
trast occur independently of each other, e.g., a load can hit in the
L1 cache independently of it hitting or missing in the L1 TLB 2 .
We can hence exploit the event hierarchy to balance how easy it is
for a developer to interpret PICS — which favors capturing more
events and thereby explaining increasingly complex architectural
behaviors — against overheads — which increases with event count
because TEA must track events for all in-flight instructions.

We refer to the events captured by a PSV as an event set. For the
events in Figure 3, we can create one single-bit PSV which only
captures that a load stall occurred and hence has low overhead but
offers limited insight. We can improve interpretability by moving
to a 2-bit PSV. In this case, the most favorable option is to include
the L1 data cache and TLB miss events as they cover all possible
Level 2 events in the event hierarchy, see 3 . We can improve
interpretability by adding the dependent events of the L1 data and
TLB misses as exemplified by the 3-bit and 4-bit PSVs 4 . In this
case, we still need to report the root event of each dependency
chain to avoid losing interpretability. For example, if we capture
LLC misses and not L1 misses, we can no longer identify LLC hits.
TEA’s performance events. Table 1 lists the nine performance
events that TEA captures in our BOOM implementation. We name
the performance events on the form X-Y where 𝑋 is the commit
state and 𝑌 is the event, e.g., an L1 data cache miss is labeled ST-L1
since it explains the Stalled commit state. To explain the Drained
state, TEA captures that an instruction missed in the L1 instruction

Table 1: The performance events of TEA, IBS, SPE, and RIS.
Event Description TEA IBS SPE RIS

DR-L1 L1 instruction cache miss ✓ ✓ ✗ ✓
DR-TLB L1 instruction TLB miss ✓ ✓ ✗ ✓
DR-SQ Store instruction stalled at dispatch ✓ ✗ ✗ ✓

FL-MB Mispredicted branch ✓ ✓ ✓ ✓
FL-EX Instruction caused exception ✓ ✗ ✓ ✗
FL-MO Memory ordering violation ✓ ✗ ✗ ✗

ST-L1 L1 data cache miss ✓ ✓ ✓ ✓
ST-TLB L1 data TLB miss ✓ ✓ ✓ ✓
ST-LLC LLC miss caused by a load instruction ✓ ✓ ✓ ✓

cache (DR-L1), missed in the L1 instruction TLB (DR-TLB), and that
the ROB drains due to a full store queue (DR-SQ). The DR-SQ event
captures the case where the ROB drains because a store cannot
dispatch because the Load/Store Queue (LSQ) is full of completed
but not yet retired stores; this improves interpretability when the
application is sensitive to store bandwidth. For the Flushed state,
TEA captures that an instruction is a mispredicted branch (FL-MB),
caused an exception (FL-EX), and caused a memory ordering vio-
lation (FL-MO). A memory ordering violation occurs when a load
executes before an older store to the same address and hence has
read stale data. It is addressed by re-executing the load and squash-
ing all younger in-flight instructions (which is time-consuming).
To explain the Stalled state, TEA captures L1 data cache misses
(ST-L1), L1 data TLB misses (ST-TLB), and LLC misses caused by
load instructions (ST-LLC). Capturing LLC misses improves inter-
pretability for memory-sensitive applications.

TEA exploits event hierarchies to balance interpretability and
overhead. Retaining interpretability means that TEA should assign
events to instructions that caused long stalls, i.e., stalls that cannot
be explained by instruction execution latencies and dependencies,
because these determine the expected stall time in the absence of
miss events. We evaluate TEA from this perspective by capturing
the stalls caused by any dynamic instruction. Our golden reference
provides this data because it captures all dynamic instructions and
all clock cycles (see Section 4 for details regarding our experimental
setup). We further extract the instructions that stall commit and
TEA does not assign an event to. Overall, 99% of these instructions
cause stalls that are shorter than 5.8 clock cycles, and TEA hence
captures the events that can majorly impact performance.

Table 1 also shows that the instruction-driven approaches AMD
IBS [1, 19], Arm SPE [4, 5], and IBM RIS [29] capture many of the
same events as TEA which indicates that some events are important
regardless of the specific architecture.
TEA microarchitecture. Figure 4 illustrates how we implement
TEA in the BOOM core. The DR-L1 and DR-TLB events occur in
Fetch which requires allocating a 2-bit PSV in the fetch packet, see
1 . Because the first instruction of the fetch packet always incurs
the DR-L1 and DR-TLB events, TEA only requires a single PSV
2 . When the fetch packet is expanded into individual instructions
and added to the Fetch Buffer, the PSV of the first instruction is
copied and the PSVs of all other instructions are initialized to zero.
In Decode, the instructions from the fetch buffer are decoded into
µops and the PSV of each µop is passed along 3 . Dispatch inserts
µops into the ROB and the issue queues of the functional units.
Dispatch detects DR-SQ when a store is the oldest µop and cannot
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Figure 4: TEA microarchitecture.

dispatch due to a full LSQ 4 . To avoid complicating the LSU-to-
ROB interface, we allocate storage for an ST-TLB event in each LSU
entry because it is detected before the cache responds 5 . ST-L1 and
ST-LLC events in contrast become available upon a cache response
and can hence be communicated immediately (through Writeback).
The complete 9-bit PSV of each µop is stored in the µop’s ROB-entry
6 . The FL-MB, FL-EX, and FL-MO events are already detected by
the ROB because they require flushing the pipeline, and the ROB
can hence record them in the PSV.

TEA is connected to the head of the ROB with the time-propor-
tional sample selection logic inherited fromTIP [22] 7 . Once a cycle
counter event is emitted by the PMU (see 8 ), the Sample Selection
unit identifies the commit state (i.e., Computing, Stalled, Flushed, or
Drained) and selects the appropriate instruction(s) given the state.
TEA delays returning the sample in the Stalled and Drained state
until the next µop commits to ensure that the µop’s PSV is updated.
A sample contains a timestamp, flags (i.e., commit state and valid
bits) as well as the instruction address(es) and PSV(s) 9 . TEA is
hence indifferent to tracking µops or dynamic instructions since
it in both cases maps them to static instructions when sampling.
Finally, the sample is written to TEA’s Control and Status Registers
(CSRs) and an interrupt is issued.
Sample collection and PICS generation. The interrupt causes
the sampling software to retrieve TEA’s sample as well as inspect
other CSRs to determine the logical core identifier and process and
thread identifiers before writing all of this information to a buffer
in memory (which is flushed to a file when necessary); this is the
typical operation of Linux perf [38]. The logical core identifier
maps to a hardware thread under Simultaneous Multi-Threading
(SMT) and a physical core otherwise; we require one TEA unit
per physical core. While we focus on single-threaded applications
in this work, TEA is hence equally applicable to multi-threaded
applications since we capture sufficient information to create PICS
for each thread. The ability of profiling tools to map samples to
processes also enables creating PICS for any piece of software (e.g.,
operating system code and just-in-time compilers).

All collected samples are hence available in a file when the appli-
cation terminates. We have created a tool that takes this sample file
as input and then aggregates cycles across the PSV signatures of
each static instruction, thereby creating PICS for each static instruc-
tion in which each category corresponds to a specific (combination
of) performance event(s). A developer can then use this tool to

analyze application performance by visualizing PICS at various
granularities (e.g., static instructions and functions).
Overheads.We assume a baseline that implements TIP [22], and
TIP incurs a storage overhead of 57 B compared to an unmodified
BOOM core. TEA additionally needs to track PSVs across all in-
flight instructions and hence requires adding two bits per entry in
the 48-entry fetch buffer to store the DR-L1 and DR-TLB events
(12 B) and a 9-bit PSV field to each ROB entry (216 B for our 192-
entry ROB). TEA also needs three 2-bit registers in fetch to track
DR-L1 and DR-TLB for all fetch packets and 2 bits for each entry
in decode and dispatch to track these events through the rest of
the front-end. TEA needs a one-bit register in dispatch to track the
DR-SQ event and one bit in each LSU entry to track ST-TLB until
the load completes. TEA also needs a register for the PSV of the
last-committed instruction to correctly handle the Flushed state
(2 B). The overall storage overhead of TEA is hence 249 B per core
(and 306 B per core for TEA and TIP).

Since IBS, SPE, and RIS tag instructions in the front-end, they
know which instruction to capture PSVs from and hence only re-
quire storing 6, 5, and 7 bits, respectively, i.e., one byte. They do
however capture other information such as branch targets, memory
addresses, and various latencies when implemented in commercial
cores. The minimum storage requirements of IBS, SPE, and RIS are
hence negligible, but this benefit is due to tagging instructions in
the front-end which is also the root cause of their large errors.

To better understand the power overhead of TEA (and TIP), we
synthesized the ROB and fetch buffer modules of the BOOM core in
a commercially available 28 nm technology with and without TEA
using Cadence Genus [10] and estimated its power consumption
with Cadence Joules [11]. We focus on the ROB and fetch buffer
because they account for 91.7% of TEA’s storage overhead. (Recall
that the events TEA captures are already identified in the microar-
chitecture.) Overall, TEA increases the power consumption of these
units by 4.6%. In absolute terms, supporting TEA in these units
increases power consumption by 3.2 mW which is negligible. For
example, RAPL [17] reports a core power consumption of 32.7 W on
a recent laptop with an Intel i7-1260P chip running stress-ng on
all 8 physical cores which yield 4.7 W per core. Implementing TEA
on this system would hence increase per-core power consumption
by ∼0.1%. If this power overhead is a concern, the PSVs can be clock
or power-gated and enabled ahead of time such that the PSVs for
all in-flight instructions are updated when sampling.

TEA’s performance overhead is the same as TIP because we can
pack the PSVs into the CSR that TIP uses to communicate sample
metadata to software. A CSR must be 64 bit wide to match the
width of the other registers in the architecture, but TIP only uses 10
bits for metadata. Communicating four PSVs requires 36 bits which
result in TEA using 46 out of 64 CSR bits. TEA hence retains the
88 B sample size from TIP which results in a performance overhead
of 1.1% [22]. TEA’s logic is not on any critical path of the BOOM
core, and TEA hence does not impact cycle time.

4 EXPERIMENTAL SETUP
Simulator. We use FireSim [33], a cycle-accurate FPGA-accele-
rated full-system simulator, to evaluate the different performance
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Table 2: Baseline architecture configuration.
Part Configuration

Core OoO BOOM [58]: RV64IMAFDCSUX @ 3.2 GHz
Front-end 8-wide fetch, 48-entry fetch buffer, 4-wide decode, 28 KB TAGE

branch predictor, 60-entry fetch target queue, max. 30 outstanding
branches

Execute 192-entry ROB, 192 integer/floating-point physical registers, 48-entry
dual-issue memory queue, 80-entry 4-issue integer queue, 48-entry
dual-issue floating-point queue

LSU 64-entry load/store queue
L1 32 KB 8-way I-cache, 32 KB 8-way D-cache w/ 16 MSHRs, 64

SDQ/RPQ entries, next-line prefetcher
LLC 2 MiB 16-way dual-bank w/ 12 MSHRs
TLB Page Table Walker, 32-entry fully-assoc L1 D-TLB, 32-entry fully-

assoc L1 I-TLB, 1024-entry direct-mapped L2 TLB
Memory 16 GB DDR3 FR-FCFS quad-rank, 16 GB/s maximum bandwidth, 14-

14-14 (CAS-RCD-RP) latencies @ 1 GHz, 8 queue depth, 32 max
reads/writes

OS Buildroot, Linux 5.7.0

profiling strategies. The simulated model is the BOOM 4-way su-
perscalar out-of-order core [58], see Table 2 for its configuration,
which runs a common buildroot 5.7.0 Linux kernel. The BOOM
core is synthesized to and runs on Xilinx U250 FPGAs in NTNU’s
Idun cluster [45]. We account for the frequency difference between
the FPGA-realization of the BOOM core and the FPGA’s memory
system using FireSim’s token mechanism. We use TraceDoctor [23]
to capture cycle-by-cycle traces that contain the instruction address
and the valid, commit, exception, and flush flags as well as the PSV
of the head ROB-entry in each ROB bank; the trace includes the
ROB’s head and tail pointers which we need to model dispatch-
tagging. We configure a highly parallel framework of TraceDoctor
workers on the host to enable on-the-fly processing while minimiz-
ing simulation slowdown. The performance analysis approaches
are hence modeled on the host CPUs that operate in parallel with
the FPGA by processing the traces. This allows us to simulate and
evaluate multiple configurations out-of-band in a single simulation
run; we run up to 15 configurations on 12 CPUs per FPGA simu-
lation run. We evaluate multiple configurations with a single run
because (i) it enables fairly comparing analysis approaches as they
sample in the exact same cycle, and (ii) it reduces evaluation time.
Benchmarks. We run a broad set of SPEC CPU2017 [46] bench-
marks that are compatible with our setup. We simulate the bench-
marks to completion using the reference inputs. We compile all
benchmarks using GCC 10.1 with the -O3 -g compilation flags
and static linking. We enable the performance analyzers when the
system boots up until the system shuts down after the benchmark
has terminated. We only retain the samples that hit user-level code
because (i) the time our benchmarks spend in OS code (e.g., syscalls)
is limited (1.7% of total time), and (ii) we do not want to include
system boot and shutdown time in the profiles.
Golden reference. The baseline we compare against computes
PICS for every instruction, i.e., we know for each instruction how it
contributes to the total execution time and where it spends its time
—we consider this to be our golden reference. This is clearly imprac-
tical to implement in a real system because it would require com-
municating the PSVs to software for every dynamically executed
instruction which would incur too high performance overhead.
More specifically, the golden reference requires communicating
and parsing 2.7 petabytes of performance data in total at a rate

of 116 GB/s. This golden reference is nevertheless extremely use-
ful because it represents the ideal performance profile to compare
against.
Error metric. Quantifying the accuracy of the cycle stacks ob-
tained by TEA (or any other technique) requires an error metric
that quantifies the error across all components in the cycle stack.
Moreover, we want to be able to compute the error metric at the
level of granularity at which the cycle stack is computed. We con-
sider instruction and function granularities in this work. We re-
fer to a component in the cycle stack as 𝐶𝑖, 𝑗 , 1 ≤ 𝑗 ≤ 𝑁 with
𝑁 being the number of components in the stack and 𝑖 being a
unit of granularity, i.e., an instruction, a basic block, a function or
the entire application. The corresponding component in the cycle
stack as obtained through the golden reference is referred to as
𝐶𝑅
𝑖,𝑗
. The correctly attributed cycle count per component hence

equalsmin(𝐶𝑖, 𝑗,,𝐶𝑅
𝑖,𝑗
). Summing up these correctly attributed cycle

counts across all components and all units 𝐺 at the granularity of
interest yields the total number of correctly attributed cycles, i.e.,
𝑇correct =

∑𝐺
𝑖=1

∑𝑁
𝑗=1min(𝐶𝑖, 𝑗,,𝐶𝑅

𝑖,𝑗
). The error is defined as the rela-

tive difference between the total cycle count𝑇total and the correctly
attributed cycle count, i.e., 𝐸 = (𝑇total −𝑇correct ) /𝑇total . Not all tech-
niques that we evaluate generate the same set of components. In
particular, IBS, SPE, and RIS do not provide the same components
as TEA. For fair comparison against the golden reference, we hence
compare each scheme against a golden reference with the same set
of components as the scheme supports.

5 RESULTS
The state-of-the-art approaches for creating Per-Instruction Cycle
Stacks (PICS) are represented by IBS, SPE, and RIS which are our
best-effort implementations4 of AMD IBS [1], Arm SPE [4], and
IBM RIS [29]. IBS and SPE tags instructions at dispatch whereas
RIS tags instructions while forming instruction groups in the fetch
stage. IBS, SPE, and RIS all record the performance events that
tagged instructions are subjected to while they travel through the
pipeline but support different event sets (see Table 1). We also com-
pare against two variants of TEA. NCI-TEA combines the events
supported by TEA with the Next-Committing Instruction (NCI)
sampling policy used by Intel PEBS [30] which has been shown to
be significantly more accurate than tagging instructions at fetch or
dispatch [22]. TEA is our approach as described in Section 3 which
uses time-proportional PSV sampling. We sample instructions at
a frequency of 4 KHz for all techniques, unless mentioned other-
wise. We also evaluated a version of TEA that tags instructions at
dispatch which yields similar accuracy to IBS, SPE, and RIS, but we
could not include this configuration due to page restrictions.

5.1 Average Accuracy
We first focus on the accuracy of TEA for generating PICS, and
Figure 5 reports error per benchmark. A couple of interesting obser-
vations can be made. First, IBS, SPE, and RIS are significantly less
accurate than NCI-TEA and TEA. The reason is that IBS, SPE, and

4While we took great care to implement and configure IBS, SPE, and RIS as faithfully
as possible, we are ultimately limited by the information that has been disclosed
publicly. The fundamental issue with these approaches is however that they are not
time-proportional.
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Figure 5: Quantifying the error for the PICS obtained through IBS, SPE, RIS, NCI-TEA, and TEA. TEA achieves the highest accuracy
within 2.1% (and at most 7.7%) compared to the golden reference.
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Figure 6: PICS for the top-3 instructions as provided by IBS, TEA, and the golden reference (GR). The PICS provided by TEA are
accurate compared to the golden reference, in contrast to IBS.

RIS tag instructions at dispatch or fetch which leads to non-time-
proportional performance profiles. (This confirms the observation
from prior work [22].) Fundamentally, tagging an instruction in the
front-end skews the profile to instructions that spend a significant
amount of time at dispatch or fetch — which are not necessarily the
instructions the application spends time on at commit. RIS performs
slightly worse than IBS and SPE because it captures more events
and the cycle stacks thus have more components. By consequence,
accurately capturing all components in the stack is more challeng-
ing. The marginal difference between IBS and SPE is also due to
capturing different event sets.

Second, sampling instructions at commit substantially improves
accuracy as is evident from comparing NCI-TEA versus IBS, SPE,
and RIS. NCI-TEA samples the instructions as they contribute to
execution time, i.e., an instruction that stalls commit has a higher
likelihood of being sampled, and, as a result, the cycle stack is
more representative of the contribution of this instruction to the
program’s overall execution time.

Third, sampling at commit is not a sufficient condition for ob-
taining accurate cycle stacks. We need to attribute the sample to
the correct instruction and we need to attribute the sample to the
correct signature. Attributing the sample to the next-committing
instruction (NCI) is inaccurate in case of a pipeline flush due to a
mispredicted branch or an exception. The instruction which is to
blame is not the next-committing instruction but the instruction
that was last committed, namely the mispredicted branch or the
excepting instruction. TEA solves this issue by keeping track of the

PSV of the last-committing instruction as previously described in
Section 3.

Overall, TEA achieves an average error of 2.1% (and at most
7.7%). This is significantly more accurate compared to the other
techniques: NCI-TEA (11.3% average error and up to 22.0%), RIS
(56.0% average error and up to 79.7%), IBS (55.6% average error and
up to 79.7%), and SPE (55.5% average error and up to 79.7%).

5.2 Per-Instruction Accuracy
The previous section quantified the average accuracy of the PICS
across all instructions within a benchmark. We now zoom in on the
accuracy for individual instructions. Figure 6 reports the PICS of the
top-3 (most execution time) instructions for four benchmarks for
IBS, TEA, and the golden reference; we take IBS as representative
of SPE and RIS since their accuracy is very similar (see Figure 5).
We select bwaves, omnetpp, and fotonik3d because they collectively
illustrate how TEA reports solitary versus combined events, and
exchange2 because it is the benchmark for which IBS yields the
lowest error. The overall conclusion is that the PICS reported by IBS
are inaccurate for two reasons: (i) the height of the cycle stacks is
inaccurate because IBS is not time-proportional, and (ii) the relative
importance of the components within the cycle stacks is inaccurate
because of signature misattribution. This also applies to exchange2
which is the benchmark for which IBS incurs the lowest error (i.e.,
comparing Figure 6d to Figure 5).

This analysis also illustrates TEA’s ability to detect combined
events. For example, the combination of cache and TLB misses,
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Figure 7: Quantifying the correlation between event count
and its impact on performance. Some event counts correlate
strongly with their impact on performance while others do not.

i.e., (ST-L1, ST-TLB) and (ST-LLC, ST-TLB), accounts for a signifi-
cant fraction of the PICS of the top-3 instructions for bwaves and
omnetpp (see Figures 6a and 6b). Out of all dynamic instruction
executions that are subjected to at least one event, 30.0% encounter
combined events. Combined events are hence not too common,
but they can help explain specific performance problems. Optimiz-
ing bwaves would for example require improving both cache and
TLB utilization, whereas optimizing fotonik3d can focus solely on
improving cache utilization (see Figures 6a and 6c).

5.3 Why Event-Driven Analysis Falls Short
As aforementioned in the introduction, event-driven performance
analysis attempts to answer question (Q2) of why instructions are
performance-critical by counting performance events (e.g., cache
misses, TLB misses, branch mispredicts, etc.). This is a widely used
approach for software tuning. Unfortunately, it is extremely tedious
and time-consuming and appears to be more of an art than a sci-
ence, i.e., performance tuning requires intimate familiarity with
the code and the underlying hardware. The fundamental reason is
that event counts do not necessarily correlate with the impact these
events have on overall performance. Having developed a method
to compute accurate PICS, we can now quantify the adequacy of
performance event counting.

We do this by computing the correlation between event counts
and the corresponding components in the cycle stack. We com-
pute the Pearson correlation coefficient 𝑟 which varies between
-1 and +1. In our context, 𝑟 close to one implies an almost perfect
positive correlation; on the other hand, 𝑟 close to zero means no
correlation. Figure 7 reports box plots for the Pearson correlation
coefficient for all PSV events across all benchmarks.5 Some perfor-
mance events strongly correlate with performance, as is the case for
branch mispredictions (FL-MB), exceptions (FL-EX), and memory
ordering violations (FL-MO). The reason is that these events lead to
a pipeline flush, which in most cases cannot be hidden. TLB misses
(DR-TLB and ST-TLB) and cache misses (ST-L1, ST-LLC, and DR-L1)
on the other hand show moderate correlation with performance,
with LLC misses (SL-LLC) showing higher correlation than L1 data
cache misses (ST-L1). The reason is that cache misses can be par-
tially hidden, and this is true more so for L1 data cache misses than
for LLC misses. The least correlation and the largest spread are
observed for store queue stalls (DR-SQ), i.e., in some cases, a full
5Event-driven approaches such as Intel PEBS [30] and DCPI [3] cannot detect combined
events because they must fundamentally sample based on the event they are counting;
many events only apply to certain instruction types (e.g., only loads and stores can
miss in the cache). When counting multiple events in parallel, the events will not be
captured in the same cycle, yielding independent profiles.
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Figure 9: Errors at instruction and function granularity.

store queue is completely hidden while in other cases a full store
queue stalls the processor.

While the above analysis is intuitively understood, i.e., architects
are well aware of latency hiding effects, this work is the first to
quantify the (lack of) correlation between event counts and their
impact on performance. This is also the fundamental reason why
performance tuning using event counts is so tedious and time-
consuming. TEA solves this problem by providing accurate PICS.

5.4 Sensitivity analysis
Sampling frequency. Figure 8 reports the accuracy of the various
techniques as a function of sampling frequency. Accuracy is rather
insensitive to sampling frequency above 4 KHz, which is why we
chose it as our baseline sampling frequency to balance accuracy
and run-time overhead.
Analysis granularity. Figure 9 evaluates the accuracy of the vari-
ous techniques when cycle stacks are computed at the instruction
and function granularities; basic block and application granulari-
ties exhibit the same trends. TEA is uniformly the most accurate
technique. While the error decreases at function granularity for the
alternative approaches, it does not decrease as steeply as one may
expect. The reason is that cycles are systematically misattributed
to the wrong events. As a result, the alternative approaches fall
short, even at coarse granularity. This reinforces the need for a
more adequate analysis technique such as TEA.

6 CASE STUDIES
We now demonstrate that TEA — by identifying the performance-
critical instructions (Q1) and explaining why they are performance-
critical (Q2) — comprehensively identifies application optimization
opportunities that state-of-the-art approaches miss by analyzing
and optimizing lbm and nab. As in Section 5.2, we take IBS as
representative of SPE and RIS.
Analyzing lbm.When using current state-of-the-art approaches,
the first step is to collect a performance profile. If we use TIP [22],
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Figure 10: Lbm performance analysis. TEA identifies the
performance-critical load whereas IBS does not.

the profile is time-proportional and hence reports the contribution
of each static instruction to overall execution time (i.e., answers
Q1). TIP however does not explain why a particular instruction
is performance-critical and therefore forces developers to guess
what the problem could be from the instruction type and TIP’s flags.
In the case of lbm, TIP will identify the performance-critical load
instruction and, unsurprisingly perhaps, report that this load stalls
commit.

TEA in contrast provides PICS as shown in Figure 10a which (i)
identify the performance-critical lw instruction — thereby answer-
ing Q1 — and (ii) explains that this lw instruction always misses in
the LLC while hiding the latency of the following load instructions
that also miss in the LLC — hence answering Q2; TEA’s PICS are
practically identical to the PICS generated by the golden reference.
Figure 10b shows PICS generated by IBS for the region of the code
which it identifies as performance-critical. IBS attributes the per-
formance problem to some floating-point arithmetic instructions
that happen to dispatch while the performance-critical lw instruc-
tion is stalled at the head of the ROB. The event-driven analysis
is also unclear because lbm has 11 load instructions in the inner
loop which all incur between 3.3 and 3.9 billion misses each. The
key problem is that event counting does not differentiate between
hidden and non-hidden misses.

TEA explains that the key performance problem of lbm is that (i)
its working set exceeds the size of the LLC, and (ii) the architecture
is not able to issue the load instructions sufficiently early to hide
their latency. More specifically, the body of the inner loop of lbm
contains sufficient compute instructions to fill the ROB and hence
blocks the processor from issuing the loads of the next iteration
while processing a previous iteration. TEA, unlike TIP, IBS, and
event counting, provides all of this information in its PICS — and
thereby explains that software prefetching is the optimization to
apply.
Optimizing lbm. Applying software prefetching is challenging
because the developer must insert prefetches sufficiently early to
hide memory latencies while at the same time taking care not to
bottleneck other core resources (e.g., the LSQ) or pollute the caches.
(Since the BOOM core does not support software prefetching, we im-
plemented a custom software prefetch instruction using its ROCC
interface.) Figure 11 shows the TEA-generated PICS for the most
performance-critical load and store instructions when issuing soft-
ware prefetches for the three cache lines lbm requires to execute
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Figure 11: PICS and speedup for the most performance-
critical load instruction and store instruction of lbm across
a range of prefetch distances.
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(a) PICS generated by TEA.
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(b) PICS generated by IBS.

Figure 12: Nab performance analysis. TEA identifies that the
fsqrt.d instruction issues too late to hide its execution latency.

the body of its inner loop 𝑛 iterations before it is used (we refer to
this as a prefetch distance of 𝑛). The PICS show that as we increase
prefetch distance, the impact of the most performance-critical load
instruction on overall execution time goes down until it saturates
at prefetch distance 4, i.e., LLC hits (ST-L1) accounts for most of its
execution time impact. This increases performance which in turn
increases store bandwidth requirements. The performance impact
of the most performance-critical store instruction hence increases,
mainly due to categories involving a full store queue (DR-SQ). Lbm
writes 19 cache lines in each iteration, and prefetching hence moves
its bottleneck from load latency to store bandwidth. While latency
issues typically affect one static instruction, a bandwidth problem is
typically distributed over multiple instructions, e.g., lbm has seven
store instructions with a runtime over 10 billion clock cycles at
distance 4.

Addressing this performance problem requires sweeping prefetch
distances to identify the point where the load latency and store
bandwidth effects balance out which exemplifies why TEA — by
providing a comprehensive view on performance after running
the application once — is desirable. The optimal prefetch distance
for this architecture is 3 which yields a speedup of 1.28× over the
original (see the line in Figure 11).
Analyzing nab. Figure 12a shows the PICS as reported by TEA
for the code region that contains the performance-critical fsqrt.d
instruction of nab. Again, the PICS reported by TEA are very similar
to the golden reference whereas the PICS generated by IBS are not
(Figure 12b). (Flushing instructions such as fsflags and frflags
always flush the pipeline in this architecture and can hence be
identified statically.) In this example, none of the instructions are
subjected to performance events, and the key advantage of TEA
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is hence that the developer can trust that (i) the time attributed to
fsqrt.d is accurate, and (ii) that TEA did not miss any performance
events that can majorly impact performance.

Fsqrt.d is hence performance-critical because its execution la-
tency was not hidden. The reason is that the fsflags and frflags
instructions that were executed just prior to it always flush the
pipeline in this architecture. These instructions are inserted by the
compiler to be compliant with the IEEE 754 standard because flt.d
by default should not trigger an exception upon a comparison in-
volving a NaN value. The RISC-V ISA however does not include a
non-excepting version of the flt.d instruction, and the fsflags
and frflags instructions are hence required to mask exceptions.
While understanding this (involved) behavior is possible when look-
ing at the PICS of these exact instructions, it would be extremely
challenging to understand otherwise.
Optimizing nab. Addressing this problem is simple because nab
does not require any special handling of comparisons involvingNaN
values. More specifically, enabling the compiler options –finite
-math or –fast-math yields speed-ups of 1.96× and 2.45×, respec-
tively. The reason for the significant speedups is that avoiding
pipeline flushes enables the processor to fetch and execute fur-
ther ahead into the instruction stream, thereby better hiding the
execution latencies of independent floating-point instructions.

7 RELATEDWORK
The most related approaches to TEA are the instruction-driven
performance analysis approaches AMD IBS [19], Arm SPE [4],
and IBM RIS [29] which are inaccurate because they are not time-
proportional (see Section 5).

A large body of work relies on event-driven performance analy-
sis using Performance Monitoring Counters (PMCs) as provided by
Intel [30] and DCPI [3]. Researchers have hence investigated PMU
design [36], and PMUs have a variety of uses (e.g., runtime opti-
mization [9], performance analysis in managed languages [47, 52,
59], profile-guided compilation [12, 13], and profile-guided meta-
programming [8]). Xu et al. [53] focus on providing correct offsets
in PMC sampling by exploiting counters that are the same when
running on real hardware and during binary instrumentation (e.g.,
retired instructions). BayesPerf [7] encodes known relationships be-
tween performance counters in a machine learning model and then
infers which performance counter values can be trusted. It is well-
known that PMCs can be challenging to make sense of [50, 51, 57],
and approaches have been proposed for reducing the consequences
of the fact that only a limited number of events can be monitored
concurrently (e.g., [41]). We demonstrated in Section 5 that opti-
mization based on PMCs is challenging because PMC counts often
correlate poorly with performance, and adopting TEA will hence
also address these issues.

Eyerman et al. [20] propose a PMC architecture that enables
constructing Cycles Per Instruction (CPI) stacks. The top-down
model [54], which combines PMC output with a performance model
to classify the application as mainly retiring instructions or being
front-end-bound, back-end-bound, or suffering from bad specula-
tion, can be viewed as a restricted form of a cycle stack because

it presents a classification of an application’s predominant per-
formance bottleneck whereas a CPI stack breaks down an appli-
cation’s overall CPI across the units of the processors in which
time was spent. Unlike TEA, these approaches cannot produce
per-instruction cycle stacks — and our case studies demonstrate
that instruction-level analysis is critical to understand performance
issues.

While TEA explains why instructions are performance-critical,
other performance aspects are also interesting. Vertical profiling [26,
27] combines hardware performance counters with software in-
strumentation to profile an application across deep software stacks,
while call-context profiling [60] efficiently identifies the common
orders functions are called in. Causal profiling [15, 40, 43, 55] is
able to identify the criticality of program segments in parallel codes
by artificially slowing down segments and measuring their impact.
Researchers have also devised approaches for profiling highly opti-
mized code [48], assessing input sensitivity [14, 56], and profiling
deployed applications [35].

Static instrumentation modifies the binary to gather (exten-
sive) application execution data at the cost of performance over-
head [24, 25, 37, 44, 49]. Dynamic instrumentation (e.g., Pin [39]
and Valgrind [42]) does not modify the binary which leads to higher
performance overheads than static instrumentation. Statistical per-
formance analysis approaches (e.g., TEA, IBS, SPE, and RIS) do not
modify the binary and hence have (much) lower overhead than
instrumentation-based approaches. Simulation and modeling can
also be used to understand key performance issues. The most re-
lated approach to ours is FirePerf [34] which uses FireSim [33] to
non-intrusively gather extensive performance statistics. FirePerf
would hence, unlike TEA, incur a significant performance overhead
if used in a non-simulated environment.

8 CONCLUSION
We have presented Time-Proportional Event Analysis (TEA) which
explains execution time by mapping commit stalls to the perfor-
mance events that caused them — thereby enabling the creation of
time-proportional Per-Instruction Cycle Stacks (PICS). To generate
PICS, TEA tracks performance events across all in-flight instruc-
tions, but, by carefully selecting which events to track, it only
increases per-core power consumption by ∼0.1%. TEA relies on sta-
tistical sampling and hence has a performance overhead of merely
1.1%, yet only incurs an average error of 2.1% compared to a non-
sampling golden reference. We demonstrate the utility of TEA by
using it to identify performance problems in the SPEC CPU2017
benchmarks lbm and nab that, once addressed, yield speedups of
1.28× and 2.45×, respectively.
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