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ABSTRACT
Emerging GPU applications exhibit increasingly high computation
demands which has led GPU manufacturers to build GPUs with
an increasingly large number of streaming multiprocessors (SMs).
Providing data to the SMs at high bandwidth puts significant pressure
on the memory hierarchy and the Network-on-Chip (NoC). Current
GPUs typically partition the memory-side last-level cache (LLC) in
equally-sized slices that are shared by all SMs. Although a shared
LLC typically results in a lower miss rate, we find that for workloads
with high degrees of data sharing across SMs, a private LLC leads to
a significant performance advantage because of increased bandwidth
to replicated cache lines across different LLC slices.

In this paper, we propose adaptive memory-side last-level GPU
caching to boost performance for sharing-intensive workloads that
need high bandwidth to read-only shared data. Adaptive caching
leverages a lightweight performance model that balances increased
LLC bandwidth against increased miss rate under private caching. In
addition to improving performance for sharing-intensive workloads,
adaptive caching also saves energy in a (co-designed) hierarchical
two-stage crossbar NoC by power-gating and bypassing the second
stage if the LLC is configured as a private cache. Our experimental
results using 17 GPU workloads show that adaptive caching im-
proves performance by 28.1% on average (up to 38.1%) compared to
a shared LLC for sharing-intensive workloads. In addition, adaptive
caching reduces NoC energy by 26.6% on average (up to 29.7%)
and total system energy by 6.1% on average (up to 27.2%) when
configured as a private cache. Finally, we demonstrate through a
GPU NoC design space exploration that a hierarchical two-stage
crossbar is both more power- and area-efficient than full and concen-
trated crossbars with the same bisection bandwidth, thus providing a
low-cost cooperative solution to exploit workload sharing behavior
in memory-side last-level caches.

CCS CONCEPTS
• Computer systems organization → Single instruction, multiple
data.
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1 INTRODUCTION
Graphics processing units (GPUs) are widely used to accelerate
a wide range of emerging throughput-oriented applications, e.g.,
machine learning and data analytics [1–3]. GPUs rely on streaming
multiprocessors (SMs) to run a massive number of parallel threads,
grouped in cooperative thread arrays (CTAs). To match the rising
computational demands of GPU-compute applications, the number
of SMs and the available memory bandwidth have both been steadily
increasing with successive GPU generations. For example, Nvidia
scaled memory bandwidth from 177 GB/s to 900 GB/s while scaling
the number of SMs from 14 in Fermi [4] to 80 in Volta [5]. The large
number of SMs on the one side and the high memory bandwidth
on the other side increases pressure on the cache hierarchy and the
Network-on-Chip (NoC).

GPUs typically feature a two-level on-chip cache hierarchy in
which the first-level caches are private to each SM while the last-level
cache (LLC) is a shared memory-side cache that is partitioned into
equally-sized slices and accessed via the NoC. As an intermediary
component between the SMs and main memory, it is essential to
properly design the LLC and NoC for high-throughput GPUs. While
countless research efforts have optimized the cache hierarchy for
multicore CPUs [6–25], there is a fundamental difference between
optimizing the cache hierarchy for a GPU versus a CPU.

Unlike latency-sensitive CPUs, GPUs desire high bandwidth ac-
cess to application data. The traditional CPU solution of designing a
banked large shared LLC (to accommodate large application data
footprints) can create bandwidth bottlenecks for a GPU. This is espe-
cially the case when multiple SMs concurrently access shared data
resident in the shared LLC. In fact, we find that GPU workloads have
large read-only shared data footprints. For such sharing-intensive
workloads, multiple SMs experience a bandwidth bottleneck when
they serialize on accesses to the same shared cache line. In the CPU
world, a CPU-side cache close to the cores (e.g., L2 cache) can pro-
vide high bandwidth access by replicating shared data cache lines.
While this is a practical solution for a limited number of cores in a
CPU, it does not scale to a large number of SMs due to limitations
in scaling GPU die size.

This paper provides a low-cost solution to improve memory-side
last-level cache performance for sharing-intensive workloads that
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demand high bandwidth to shared data. Shared LLCs incur a perfor-
mance bottleneck for workloads that frequently access data shared
by multiple SMs. A shared memory-side LLC consists of multiple
slices each caching a specific memory partition, i.e., a specific ad-
dress range of the entire memory space is served by a particular
memory controller. As a result, a shared cache line appears in a
single LLC slice, which leads to a severe performance bottleneck if
multiple SMs concurrently access the same shared data. Requests
from different SMs queue up in front of the LLC slice, which leads
to long queuing delays, up to the point that these queuing delays
can no longer be hidden, ultimately deteriorating overall application
performance. The underlying performance bottleneck is a lack of
LLC bandwidth to shared data. A potential solution to the bandwidth
problem may be to replicate shared data across the different LLC
slices to increase the LLC bandwidth to the shared data. A private
LLC achieves exactly this although it also leads to higher miss rates
because of cache line replication. Because of the conflicting phe-
nomena (higher LLC bandwidth versus increased miss rate), it is
unclear whether a shared or private LLC organization is preferred
for sharing-intensive workloads.

In this paper, we study private versus shared organizations for
memory-side last-level caching in GPUs. We find that GPU applica-
tions with high degrees of read-only data sharing significantly benefit
from a private LLC organization. Replicating cache lines across the
different LLC slices in a private LLC organization leads to increased
bandwidth to shared data, as the different copies of the shared cache
lines can be accessed in parallel in the different LLC slices. In a
shared cache on the other hand, a frequently accessed shared cache
line resides in a single LLC slice providing insufficient bandwidth.
GPU applications with moderate data sharing tend to benefit from
a shared LLC organization because of reduced conflict misses, i.e.,
shared cache lines are stored only once in one of the LLC slices,
improving the effective capacity of the LLC. GPU applications with
no data sharing are performance-neutral to a private versus shared
LLC organization. These observations suggest an opportunity to
improve performance by dynamically adapting a memory-side LLC
to the needs of an application’s sharing behavior.

To that end, this paper proposes adaptive memory-side caching to
dynamically choose between a shared or private memory-side LLC.
Selecting a shared versus private LLC is done using a lightweight
performance model. By default, the GPU assumes a shared LLC.
Profiling information is periodically collected to predict LLC miss
rate and bandwidth under a private LLC organization while executing
under a shared LLC. If deemed beneficial, the LLC is adapted to
a private cache. The LLC reverts back to a shared organization
periodically and when a new kernel gets launched.

Adaptive last-level caching not only improves performance for
workloads that need high bandwidth to shared data, it also provides
an opportunity to save energy if the NoC is co-designed with the
memory hierarchy. In particular, we propose a reconfigurable hier-
archical two-stage crossbar NoC in which the first-stage crossbars,
the SM-routers, are connected to disjoint clusters of SMs, and the
second-stage crossbars, the MC-routers, are connected to the mem-
ory controllers via the LLC slices. NoC/LLC co-design involves that
the number of MC-routers equals the number of memory controllers,
and the number of SM-routers (or the number of clusters) equals the
number of LLC slices per memory controller. By power-gating and

SMSM SM SMSM SM

Memory Controller

LLC LLC

Memory Controller

LLC LLC

Memory Controller

LLC LLC

Memory Controller

LLC LLC

(a) Shared LLC (b) Private LLC
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Figure 1: Shared versus private memory-side LLC organization
in GPUs. (a) In a shared LLC organization, each LLC slice is shared
by all SMs. (b) In a private LLC organization, an LLC slice is private
to a cluster of SMs. In either case, a slice in a memory-side LLC
only caches the memory partition served by the respective memory
controller.

bypassing the MC-routers, the SMs are connected to a subset of the
LLC slices that are private to the respective SM cluster.

In summary, this paper makes the following contributions:

• We study private versus shared organizations in memory-side
last-level GPU caches and make the observation that sharing-
intensive GPU workloads favor a private LLC over a shared
LLC because a private LLC provides higher bandwidth to
read-only shared cache lines due to data replication in the
different LLC slices, which increases LLC response rate and
improves overall performance.

• We propose adaptive memory-side caching to dynamically
reconfigure the LLC between shared versus private modes
depending on the workload’s execution characteristics. LLC
adaptation is low-cost and is driven by a lightweight per-
formance model that estimates private LLC miss rate and
bandwidth while executing under shared caching. Adaptive
caching enables saving power in a co-designed hierarchical
two-stage crossbar NoC by power-gating and bypassing the
second stage if the LLC is configured as a private cache.

• We perform a GPU NoC design space exploration in which
we compare full, concentrated and hierarchical two-stage
crossbar designs. We conclude that the hierarchical cross-
bar achieves the highest performance at much lower power
and chip area overhead compared to a full and concentrated
crossbar with the same bi-section bandwidth. Moreover, the
hierarchical two-stage crossbar provides power saving oppor-
tunities under adaptive memory-side last-level caching.

• We quantitatively evaluate adaptive memory-side last-level
caching and report an average performance improvement
of 28.1% (and up to 38.1%) compared to a conventional
shared LLC for workloads with high degrees of data sharing.
Adaptive caching reduces NoC energy by 26.6% on average
(and up to 29.7%) and total system energy by 6.1% on average
(up to 27.2%) if the LLC is configured as a private cache.

2 SHARED VERSUS PRIVATE LLC
This work is motivated by the observation that some GPU applica-
tions benefit from a shared LLC whereas other applications benefit
from a private LLC. We now describe and quantitatively compare
both memory-side LLC organizations.
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Figure 2: Normalized performance for a shared versus private LLC. Shared cache friendly applications prefer shared caching because of
a reduced number of conflict misses; private cache friendly applications prefer private caching because of increased LLC bandwidth to shared
cache lines in different LLC slices; shared/private cache neutral applications perform equally well under both LLC organizations.
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(c) Shared/private cache neutral applications

Figure 3: Inter-cluster locality. Private cache friendly applications tend to exhibit high degrees of inter-cluster sharing; shared/private cache
neutral applications lack inter-cluster locality; shared cache friendly applications exhibit some inter-cluster sharing.

2.1 Memory-Side LLC Organizations
We consider a GPU with a shared and private memory-side LLC
organizations as shown in Figure 1. The LLC is divided in equally-
sized LLC slices. A slice in a memory-side LLC only caches data for
the memory partition served by the respective memory controller.

In the shared LLC organization, an LLC slice is shared by all SMs,
see Figure 1(a). The LLC slice for a given cache line is determined
by a few address bits. Collectively, all LLC slices associated with
a given memory controller cache the entire memory address space
served by the memory controller.

In the private LLC organization, an LLC slice is private to a
cluster of SMs. An LLC slice caches the entire memory partition
served by the respective memory controller for only a single cluster
of SMs. The LLC slice for a cache line is thus determined by the
cluster ID. For example, a red LLC slice in Figure 1(b) caches the
entire memory partition served by the respective memory controller
for the SMs in the red cluster on the left; likewise, the blue LLC
slices can only be accessed by the blue cluster on the right. This
organization enables each SM to index the entire memory address
space under a private LLC organization.

2.2 Workload Characterization
We now evaluate how different workloads are affected by the LLC
organization. Of particular interest in this discussion is how shared
cache lines are treated in both organizations. A cache line that is
shared by different SMs appears only once in a single LLC slice in
the shared LLC organization. In the private LLC organization on the

other hand, a cache line that is shared by SMs in different clusters
appears in as many LLC slices as there are clusters accessing the line.
Shared cache lines in the private organization are thus replicated
across the different LLC slices. Data replication leads to increased
cache interference (conflict misses), but also increases the available
bandwidth to the shared cache lines, i.e., the different copies of the
same shared cache line in the different LLC slices can be accessed
in parallel.

We now discuss how our set of GPU workloads is affected by
the private versus shared LLC organizations. In this evaluation, we
assume a total of 80 SMs, organized in 8 clusters of 10 SMs each, and
64 LLC slices. An important characteristic of the GPU workloads
considered in this study is that the shared data footprint tends to be
read-only and requires hundreds of KB to several MBs in storage
space. Because of its large size, the shared data cannot reside (and
be replicated) in the L1 caches. As a result, a significant fraction of
the shared data tends to be serviced by the LLC. (See Section 5 for
more details about our experimental setup, including a discussion of
the shared data footprint size for each benchmark.)

Figure 2 reports performance for a private memory-side LLC
normalized to a shared memory-side LLC. We classify the different
workloads in three categories depending on their performance for
the shared versus private LLC organization, namely shared cache
friendly, private cache friendly, and shared/private cache neutral.
To gain additional insight regarding the performance differences
between the shared versus private LLC organizations, Figure 3 quan-
tifies inter-cluster locality or the degree of sharing at the cluster level
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for the shared LLC. We group the SMs per cluster as for the private
LLC organization, and quantify what fraction of the last-level cache
lines in the shared LLC are accessed by a single cluster, 2 clusters, 3
or 4 clusters, or 5 to 8 clusters, in a time window of 1,000 cycles.

We observe that the private cache friendly applications tend to
exhibit high degrees of inter-cluster locality, i.e., more than 60% of
the LLC cache lines are accessed by SMs in different clusters, see
Figure 3(b). This leads to a bandwidth bottleneck due to serialized
accesses in a shared LLC organization — different SM clusters want
to access the same cache lines at the same time. Replicating shared
lines across LLC slices in a private LLC organization provides more
bandwidth to the shared cache lines. The increase in effective LLC
bandwidth offsets the increase in miss rate due to shared cache line
replication, which leads to higher performance under private caching.
The shared cache friendly applications on the other hand exhibit
much less sharing among clusters, by slightly more than 20% on
average, see Figure 3(a); the only exception is LUD, however, this
application suffers from a 3× increase in LLC miss rate under the
private LLC organization. In general, we find that the LLC miss rate
increases by 2× on average for the shared cache friendly applica-
tions under the private LLC organization. Although these workloads
exhibit some inter-cluster locality, and benefit from increased LLC
bandwidth to shared cache lines in a private LLC, replication of
the large shared data footprint across different LLC slices increases
the LLC miss rate substantially, which ultimately leads to lower
performance for the private LLC. Finally, the shared/private cache
neutral applications lack inter-cluster locality, see Figure 3(c), and
hence are neutral to the LLC organization.

The overall conclusion is that whether an application prefers
a shared versus private LLC organization depends on its sharing
characteristics. An application with high degrees of inter-cluster
sharing benefits from a private LLC. In contrast, applications with
no or limited sharing intensity favor a shared LLC organization.

2.3 Adaptive LLC Opportunity
The observations from the previous section suggest an adaptive
memory-side LLC in which the organization (shared versus private)
is determined on a per-workload basis. The above analysis also
illustrates that whether the private LLC is the preferred organization
involves a delicate trade-off between increased LLC bandwidth to
shared cache lines versus increased miss rate.

Note that the reconfiguration from a shared to private cache can
be done in a fairly straightforward way. It suffices to dynamically
change the bits that are used to index the LLC. For a shared LLC
organization, the target LLC slice is determined by a few address bits
of the request. In contrast, for the private LLC, the target LLC slice
is determined by the cluster ID from which the request is issued.

Although adaptive memory-side caching can be implemented
irrespective of the underlying NoC that connects the SMs to the LLC
slices, we find an additional opportunity to save energy consumption
in the NoC if the NoC is properly co-designed with the rest of the
GPU. In particular, we propose a reconfigurable hierarchical two-
stage crossbar NoC in which the second stage, when power-gated
and bypassed, configures the adaptive LLC as a private cache.
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Figure 4: Full Xbar. Full connectivity is provided between all input
and output ports.
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Figure 5: Concentrated Xbar. Input and output ports are concen-
trated and distributed, respectively, to reduce switch complexity.

3 GPU CROSSBAR NoC DESIGN SPACE
We now further motivate the hierarchical two-stage crossbar (H-
Xbar) by contrasting it against a full crossbar and a concentrated
crossbar (C-Xbar) in terms of performance, power, and chip area.

3.1 Full Crossbar
Figure 4 shows the full crossbar that connects the SMs to the LLC
slices. Note that a GPU NoC in fact consists of two networks, the
request network for sending requests from the SMs to the memory
side and the reply network for sending replies from the memory
side to the SMs. The fully connected crossbars only provide the
connection between SMs and LLC slices, and vice versa. There is
no communication between the SMs; likewise there is no communi-
cation among the LLC slices. The right part of Figure 4 shows the
micro-architecture of a high-radix router that consists of input ports
with input buffers or virtual channels (VCs), a route computation
unit, a virtual channel allocator, a switch allocator and a crossbar
switch that connects the input and output ports.

3.2 Concentrated Crossbar
The physical size of a full crossbar grows quadratically with port
count. The area and power overhead of a full crossbar makes it
impractical to build [26]. To improve cost-efficiency, concentration
can be devised where SMs and LLC slices are grouped in a cluster
to share one network port through a concentrator and distributor,
respectively [27]. Figure 5 shows a concentrated crossbar, or C-Xbar
for short, with a concentration of two, which means that two SMs
and two LLC slices share one network port, respectively. When
network contention happens, e.g., two SMs want to send packets
through the concentrator at the same time, the allocator follows a
round-robin policy to determine which input port can send.
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Figure 6: Hierarchical Xbar. A two-stage crossbar network con-
nects the SMs and LLC slices per cluster and memory controller,
respectively.

3.3 Hierarchical Crossbar
Multi-stage networks have been widely explored in the CPU world [26].
GPUs differ from CPUs though in the sense that the NoC does not
need to provide connectivity between all network ports. As men-
tioned before, in a GPU, there is only communication between
SMs and LLC slices, and vice versa, hence naively deploying CPU-
optimized multi-stage networks to the GPU world would lead to
many unused connections. Instead, we propose a hierarchical cross-
bar, or H-Xbar for short, which is an adaptation of a traditional
2-stage butterfly network [26] to a GPU context. Figure 6 illustrates
the H-Xbar NoC with two stages of routers, the SM-router and the
MC-router. The SM-routers connect the SMs to the MC-routers. The
MC-routers connect the SM-routers to the LLC slices. In terms of
layout, it is natural to physically place an SM-router near its respec-
tive cluster of SMs and put the MC-router near its LLC slices, and
then use long links to connect the routers. The links to connect the
SMs to the SM-routers and the links to connect the LLC slices to the
MC-routers are relatively short.

Wormhole switching is employed in which a packet is split in
fixed-length flits with a size equal to the network channel width.
Credit-based flow control is used to keep track of the input buffer
status of downstream ports to guarantee that the downstream router
always has the available buffer space before sending a packet. Each
flit needs to traverse two hops from source to destination in H-Xbar,
in contrast to a single hop in a fully connected crossbar. Although
this increases per-packet transfer latency, it incurs negligible impact
on performance, as we will quantify.

3.4 NoC Design Space Exploration
We now compare the three crossbar designs in terms of performance,
power and chip area, see Figure 7. We use GPGPU-Sim [28] for
collecting performance numbers and we use DSENT [29] for eval-
uating chip area and power consumption, assuming a 22 nm chip
technology and assuming that all crossbar designs can operate at
the same clock frequency. We pair the different designs by bisection
bandwidth. A full crossbar has the same bisection bandwidth (BW)
as H-Xbar, both with a 32-byte channel width. A concentrated cross-
bar with concentration of 2 and 32-byte channel width has the same
bandwidth (BW/2) as H-Xbar with 16-byte channel width, etc.

Figure 7a reports performance for the various configurations, all
normalized to a full crossbar. The key take-away is that H-Xbar
achieves similar performance as a full or concentrated crossbar
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Figure 7: Performance, chip area and power for a full crossbar,
C-Xbar and H-Xbar. Design points are grouped by the same
bisection bandwidth. The hierarchical crossbar achieves similar
performance as a full and concentrated crossbar with the same
bisection bandwidth at much higher area and power efficiency.

with the same bisection bandwidth. The reason is that GPUs are
more sensitive to bandwidth than latency, hence the extra hop count
for H-Xbar compared to a concentrated (or full) crossbar does not
significantly affect performance. Compared to a C-Xbar with a con-
centration of 8, H-Xbar achieves even better performance as it does
not suffer from contention in shared network ports.

H-Xbar is more area-efficient than a full or concentrated crossbar,
see Figure 7b. H-Xbar employs several low-radix crossbars that
consume (much) less chip area than the high-radix crossbar used
in the full and concentrated crossbars; moreover, compared to the
concentrated crossbar, the channel width of the low-radix crossbars
in H-Xbar is also smaller for the same bi-section bandwidth. The
input buffer area however increases due to the extra input buffers
of the second stage in H-Xbar. Overall, the extra buffer space is
offset by the large reduction in crossbar switch area, which leads to
a substantial net NoC area reduction ranging between 62% and 79%.

H-Xbar is more power-efficient than a full or concentrated cross-
bar, see Figure 7c. Power consumption mirrors chip area: the increase
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in buffer power is offset by the reduction in switch power and pri-
marily link power. The short links that connect the SMs and the LLC
slices to the SM-routers and MC-routers, respectively, and the long
low-bandwidth links between the SM-routers and MC-routers con-
sume much less power than the long high-bandwidth links employed
in the full and concentrated crossbars. Overall, the hierarchical cross-
bar consumes up to 80% less power than a concentrated design.

Because the hierarchical crossbar delivers the same performance
as a full and concentrated crossbar, while drastically reducing chip
area and power consumption, we consider the H-Xbar design as our
baseline NoC for the remainder of this paper.

4 ADAPTIVE LAST-LEVEL CACHING
We now propose adaptive last-level caching, a novel LLC organiza-
tion that dynamically reconfigures the LLC from a shared to private
organization, and vice versa. Although adaptive caching can be im-
plemented for any NoC architecture, in this paper, we specifically
focus on adaptive last-level caching in the context of a hierarchical
two-stage crossbar.

4.1 NoC-Enabled Adaptive LLC
By default, H-Xbar provides a shared LLC. However, bypassing
the second-stage MC-routers, provides a private LLC, as illustrated
in Figure 8. In particular, assuming there are as many SM-routers
(or clusters) as there are LLC slices per memory controller, directly
connecting the input ports to the output ports in the MC-routers leads
to a private LLC organization in which an LLC slice is private to a
cluster of SMs.

Note that in the private LLC organization, each LLC slice caches
the entire address space served by the respective memory controller.
This enables all SMs to index the entire memory space, even in
the private LLC organization. In our baseline design, we assume
full connectivity between the LLC slices and the memory channels
per memory controller, e.g., a 3D-stacked high-bandwidth memory
(HBM) system with a total of 16–32 memory channels provides full
connectivity in the memory controller between the different LLC
slices and the different memory channels attached to the memory
controller [30]. In case of full connectivity between the LLC slices
and the memory channels, providing a private LLC mode does
not incur additional overhead. In a design where there is no full
connectivity, the overhead of adding full connectivity between 8
LLC slices and 8 channels per memory controller is limited to 0.14%
of the entire GPU chip.

NoC/LLC Co-design. Co-designing the NoC and LLC provides an
interesting opportunity to save energy by power-gating and bypass-
ing the MC-routers if the adaptive LLC is configured as a private
cache. Co-design involves two requirements: (i) we need as many
SM-routers as there are LLC slices per memory controller, or in
other words, we need as many LLC slices per memory controller as
there are clusters, and (ii) we need as many MC-routers as there are
memory controllers. These requirements enable power-gating the
MC-routers while enabling all SMs to still access the entire memory
space under either LLC organization. Note that this also enables
H-Xbar to feature the same bisection bandwidth as a full crossbar
with the same channel width.

Coherence Implications. Changing the LLC from shared to private
has implications for managing the cache in the context of coherence.
GPUs exploit software-based coherence to circumvent the need
for hardware coherence support [31–33]. This implies that the L1
cache needs to implement a write-through policy and needs to be
flushed (invalidated) through cache control operations inserted by the
compiler, e.g., at the execution boundary of a kernel. In conventional
GPUs, because the LLC is shared by all SMs, no other support for
coherence is needed. To support adaptive last-level caching, the LLC
needs to support a write-through policy when configured as a private
cache, and when the L1 cache is flushed, the private LLC needs
to be flushed as well. Previous work adopts a similar approach to
support GPU software-based coherence in a multi-chip-module GPU
environment [32]. The cache flush operation typically only happens
at the end of a kernel, which incurs limited overhead.

Another concern for the private LLC is how to deal with the global
memory atomic operation which is handled by the raster operations
(ROP) unit in the LLC [33, 34]. One way to solve this problem is
to set a small size LLC near the memory controller that is (always)
shared by all SMs to handle atomic operations. Alternatively, one
could dynamically opt for the shared LLC organization if the work-
load contains global atomic operations. The workloads in this study
do not contain global atomics, hence we leave this for future work.

Dynamic Reconfiguration. To guarantee correctness of operation
during a transition between the two LLC organizations, we first need
to stall the SMs and wait until there are no more in-flight packets
in the NoC and memory system. We then need to write back the
dirty cache blocks in the LLC to main memory when transitioning
from shared to private caching. We need to flush (invalidate) the
LLC when transitioning from private to shared caching. Finally, we
power-gate or power-on the MC-routers to engage private and shared
caching, respectively. In our experiments, we account for all these
reconfiguration overheads. However, we find the overhead to be
minimal. Writing back dirty cache lines, invalidating the cache and
waiting for the in-flight packets to propagate through the network
incurs a performance overhead of a couple hundreds of cycles (a
couple thousand cycles at most).

Dynamic Profiling. Adaptive last-level caching is driven by online
profiling. Profiling estimates LLC miss rate and bandwidth con-
sumption of the private LLC organization while executing under a
shared LLC. Each profiling phase takes 50K cycles, and we find this
to be sufficient to make accurate predictions — this is especially
true because CTAs from the same kernel typically exhibit similar
execution characteristics [35]. We initiate a profiling phase every



Adaptive Memory-Side Last-Level GPU Caching ISCA ’19, June 22–26, 2019, PHOENIX, AZ, USA

A1A1 A1 A1A1 A1

Memory Controller Memory Controller

A2A2 A2 A2A2 A2

Cluster Cluster

LLC LLC LLC LLC

Figure 9: Multi-program support: A1 is a shared cache friendly
application that views a shared LLC, whereas A2 is a private
cache friendly applications that views a private LLC. Different
LLC organizations can be supported for co-executing applications
while still benefiting from the entire LLC capacity.
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Figure 10: MC-router architecture in the reconfigurable H-
Xbar. Bypassing enables power-gating the MC-router to save power
under a private LLC organization.

1M-cycle epoch or whenever a new kernel comes in. This enables
dynamically adapting to new kernels as well as to kernels that exhibit
time-varying execution behavior. Our experimental evaluation shows
that the runtime overhead is limited to 0.8% on average. We provide
more details about dynamic profiling and LLC reconfiguration in
Section 4.3.

Multi-Program Support. Adaptive last-level caching can also be
used under multi-program execution in a multitasking GPU. Co-
executing applications may prefer the same caching mode, which is
trivial to support. If the co-executing applications prefer a different
LLC mode, we can still accommodate this, i.e., different LLC modes
may be employed for the different applications as they co-execute
on a multi-tasking GPU. In other words, shared-friendly and private-
friendly data streams co-exist in the different LLC slices without
extra hardware support. We suggest to map the different programs
across the different clusters as illustrated in Figure 9 to uniformly
distribute the workload across the different clusters while enabling
the co-executing applications to access the entire LLC capacity.
Obviously, the MC-router cannot be bypassed (and power-gated) if
different applications prefer a different LLC mode.

4.2 Reconfigurable H-Xbar Support
Figure 10 illustrates the reconfigurable MC-router to support adap-
tive last-level caching in H-Xbar. To support a shared LLC, all input
ports in the MC-router can be connected to any output port, hence
the MC-router needs to be powered on. For a private LLC on the

other hand, an input port needs to be connected only to its corre-
sponding output port. In other words, we can bypass the MC-router.
This provides an opportunity to save (static and dynamic) power as
we power-gate the MC-router. Bypassing is a commonly used tech-
nique in low-power NoCs, see for example [36–38], however, these
prior proposals only power-gate routers when the network is idle. In
this work on the other hand, we employ bypassing in a completely
different way to alter the LLC organization while at the same time
reducing NoC power. An alternative to bypassing the MC-router
is to set the existing routing paths to a private LLC configuration.
While this eliminates the need for additional wiring, power savings
will be less. Power-gating and powering-on the MC-routers incurs
a runtime overhead of a couple tens of cycles [36, 39], which we
account for in our experiments.

4.3 Reconfiguration Rules
With the proposed reconfigurable NoC architecture, the challenge
now is to dynamically choose between shared versus private caching.
An online profiling and selection mechanism is needed to dynami-
cally choose the most suitable LLC organization based on a work-
load’s execution characteristics. By default, we start with a shared
LLC and transition to a private LLC if deemed appropriate based
on the profiling data. We transition back to a shared LLC at the
beginning of a new 1M-cycle epoch or when a new kernel comes
in, after which we collect profiling data for 50K cycles. The profil-
ing information is used to decide which LLC organization to adopt
according to the following transition rules:

• Rule #1 (S → P): Transition from shared to private LLC if
both LLC organizations lead to similar LLC miss rates.

• Rule #2 (S → P): Transition from shared to private LLC if
the benefits of increased LLC bandwidth are higher than the
harm caused by increased LLC miss rate.

• Rule #3 (P → S): Transition from private to shared LLC at a
new 1M-cycle epoch or when a new kernel starts.

If both LLC organizations yield the same (or similar) LLC miss
rates, this indicates that the application has limited or no inter-cluster
locality and is thus insensitive to private versus shared caching. We
hence transition to the private LLC organization which enables
power-gating the MC-routers to save power (Rule #1). Applica-
tions with high degrees of inter-cluster locality benefit from private
caching because of increased bandwidth to shared cache lines. If the
benefits from increased LLC bandwidth are higher than the increase
in LLC miss rate, we also transition to private caching (Rule #2). If
in private LLC mode, the LLC transitions back to shared mode at a
new epoch or when a new kernel is launched (Rule #3).

4.4 Miss Rate and Bandwidth Model
The above transition rules lead to two challenges: we need to com-
pare LLC miss rates for both organizations, and we need to quantify
the trade-off between increased miss rate versus increased LLC
bandwidth. This is non-trivial as we need to estimate the miss rate
and LLC bandwidth demands under private caching while executing
under shared caching. We use the following lightweight performance
models to do so.

We estimate private LLC miss rate through dynamic set sam-
pling [40] in which we profile 8 sets for a single LLC slice using
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a separate hardware structure called the Auxiliary Tag Directory
(ATD). Each entry in the ATD holds a tag plus one additional bit
per SM-router to store which SM-router last accessed the cache line.
(The hardware cost for the ATD is limited to 432 bytes.) Estimating
the number of hits for the private LLC organization is done by count-
ing the number of ATD hits for which the access originates from
the same SM-router as the one stored in the ATD. Comparing the
estimated LLC miss rate under private caching with the measured
LLC miss rate under shared caching provides the input for Rule
#1, i.e., if the miss rate under private caching is predicted to be
within 2% of the miss rate under shared caching, adaptive caching
transitions to private caching.

We make the trade-off for Rule #2 using a bandwidth model. We
first estimate LLC Slice Parallelism (LSP), or the average number of
parallel LLC slice accesses:

LSP =
N

∑
i=1

LLCi
/

Max{LLCi}.

LSP is computed as the sum of all LLC slice accesses (LLCi) for
all N slices divided by the maximum LLC slice access count. LSP
equals N if the memory accesses are evenly distributed across all
LLC slices; conversely, LSP equals one if all memory accesses are
sent to a single LLC slice. We estimate LSP under private caching by
computing the target LLC slice for each request. This is trivial, i.e.,
the target LLC slice is the LLC slice that corresponds with the cluster
from which the request originates. Counting the number of requests
to each LLC slice (LLCi) is done using 8 16-bit counters. We do
this at the SM-router of the first cluster only, to reduce hardware
overhead.

LSP serves as input to the bandwidth model, which computes the
overall bandwidth supplied by the memory subsystem (LLC plus
main memory):

BW = LLChit ·LSP ·LLCBW +LLCmiss ·MEMBW

The first term computes the effective LLC bandwidth as the LLC
hit rate times LSP times the raw LLC slice bandwidth. The second
term computes the effective memory bandwidth as the LLC miss
rate times the raw memory bandwidth. We use this bandwidth model
to compute the bandwidth supplied under both private and shared
caching. The LLC organization for which the bandwidth supplied is
the highest is chosen following Rule #2.

5 EXPERIMENTAL SETUP
Simulated System. We use GPGPU-sim v3.2.2 [28] to evaluate
performance. Table 1 lists the baseline GPU configuration. We con-
sider the recently proposed page address entropy (PAE) mapping
scheme [46] to maximize parallelism across the different LLC slices
and main memory subsystem by increasing entropy in the bank
and channel bits1. We compare adaptive memory-side last-level
caching against a shared LLC organization (baseline) and a private
LLC organization. We assume 128 B cache lines which is typical for
modern-day GPUs. We have evaluated the effect of larger cache lines
beyond 128 B and find that the number of potential sharers increases
by 10% for 256 B cache lines — more sharers per cache line further

1We confirm that PAE address mapping uniformly distributes memory accesses across
the different LLC slices.

Table 1: Baseline GPU architecture.

Parameter Value
Streaming Multiprocessors 80 SMs, 1400 MHz
Warp Size 32
Schedulers/Core 2 (GTO)
Number of Threads/Core 2,048
Registers/Core 65,536
Shared Memory/Core 64 KB
L1 Data Cache/Core 48 KB, 6-way, LRU, 128 B line
Memory Controllers 8
8 LLC slices/MC 96 KB, 16-way, LRU, 128 B line
LLC 6 MB, 120 cycles access time
Interconnection Network Crossbar, 32 B channel width

4-stage router
1 VC per port - 8 flits/VC
VC/Switch allocator - Islip

DRAM Bandwidth FR-FCFS, 16 banks/MC, 900 GB/s
GDDR5 Timing tCL=12, tRP=12, tRC=40, tRAS=28,

tRCD=12, tRRD=6, tCCD=2, tWR=12

Table 2: GPU benchmarks considered in this study.

Benchmark Abbr. Shared Knl LLC
Data [MB]

LU Decomposition [41] LUD 33.4 3 shared
Survey Propagation [42] SP 17.0 2 shared

3D Convolution [43] 3DC 51.1 48 shared
B+TREE Search [41] BT 13.7 1 shared

GEMM [43] GEMM 1.8 1 shared
Backprop [41] BP 18.8 2 shared

AlexNet [44] AN 1.0 6 private
ResNet [44] RN 4.2 6 private

SqueezeNet [44] SN 0.7 1 private
NeuralNetwork [28] NN 5.7 2 private
Matrix Multiply [45] MM 1.9 2 private

BlackScholes [45] BS 0.001 3 neutral
DWT2D [41] DWT2D 0.001 1 neutral

Merge Sort[45] MS 0.001 1 neutral
BinomialOptions[45] BINO 0.017 1 neutral

Histogram [45] HG 0.003 1 neutral
Vector Add [45] VA 0.001 1 neutral

exacerbates the LLC bandwidth problem which adaptive caching
addresses. The H-Xbar NoC consists of 8 SM-routers, servicing a
cluster of 10 SMs each, and 8 MC-routers. A router constitutes a
4-stage pipeline. All LLC slices can access the entire memory space
served by the respective memory controller. The hardware overhead
for making H-Xbar reconfigurable is limited to 448 bytes in total:
432 bytes (ATDs to estimate private miss rate) plus 16 bytes (private
LLC slice access counters). We consider two-level round-robin CTA
scheduling, which distributes CTAs across clusters and then across
SMs, to balance the workload across the different clusters — we
also explore sensitivity to other CTA scheduling policies.

We use DSENT v0.91 [29] to estimate NoC power assuming a
22 nm technology node. We collect activity factors through timing
simulation using GPGPU-sim, which we then use as input to DSENT
to compute power consumption. NoC chip area is computed as the
active silicon area. We do account for repeater area for the long links;
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Figure 11: Normalized performance (IPC) for a shared, private and adaptive memory-side LLC. Adaptive caching improves performance
by 29.8% for the private cache friendly workloads, while being performance neutral for the other workloads.

the links themselves are routed in the higher metal layers which
attributes to the global wire area. We assume that long links measure
12.3 mm which is half the Pascal die size [47]2. For evaluating GPU
power, we use GPUWattch [49].

Workloads and Performance Metrics. We consider a representa-
tive and broad set of CUDA GPU benchmarks from a range of
application domains including neural networks, machine learning,
image processing, graph search, etc. These benchmarks include reg-
ular applications from Rodinia [41], CUDA SDK [45], as well as
irregular applications from Lonestar [42], deep learning applications
from Tango [44] and additional sources [28, 43]. Table 2 lists these
benchmarks along with their classification, the number of kernels,
and the shared data footprint (in MB). We quantify performance
in terms of instructions per cycle (IPC). We simulate one billion
instructions, which is in line with recent GPU research [50, 51].

6 EVALUATION
We evaluate adaptive caching in terms of performance and NoC
energy consumption. We also provide various sensitivity analyses.

6.1 Performance
We first evaluate performance, see Figure 11. Adaptive memory-
side caching improves performance by 28.1% on average and up
to 38.1% for the private cache friendly workloads, while being
performance-neutral for the other workloads. A private LLC on
the other hand degrades performance severely for the shared cache
friendly workloads, by 18.1% on average and up to 22.6%. Note that
these performance results include profiling overhead.

To gain further insight into where the performance benefits are
coming from for the adaptive LLC organization, we now quantify
the LLC response rate for the private cache friendly applications,
see Figure 12. LLC response rate is defined as the average number
of responses supplied by the LLC slices per cycle. Private caching
increases the LLC response rate by 35.3% on average and up to
45.9% compared to a shared LLC organization. The improvement in
LLC response rate quantifies the increase in effective LLC bandwidth
because of replication of shared cache lines across different LLC
slices, and translates into a proportional improvement in overall
application performance.

2This is a conservative estimate. Wire length can be reduced through optimized floor-
planning [39, 48].
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Figure 12: LLC response rate (flits/cycle) for the private cache
friendly workloads for a shared, private and adaptive memory-
side LLC. Adaptive caching increases the LLC response rate by
1.5× on average.

The shared cache friendly applications do not benefit from adap-
tive caching, although there is some inter-cluster locality as previ-
ously noted in Figure 3. The reason is that duplication of shared
cache lines across different LLC slices in a private LLC organiza-
tion, severely increases the LLC miss rate by 27.9 percent point on
average and up to 52.3 percent point, as shown in Figure 13. These
workloads have a large shared data footprint in the multi-MB range,
see Table 2, which leads to severe interference in a private LLC.
The private cache friendly applications also experience an increase
in LLC miss rate but the increase is less, by 12.7 percent point on
average and up to 33.3 percent point (not shown here because of
space constraints).

6.2 Energy
The adaptive LLC significantly reduces NoC energy consumption by
power-gating the MC-routers in the private LLC mode, see Figure 14.
More specifically, NoC energy reduces by 26.6% on average, and
up to 29.7%, for the private cache friendly and shared/private cache
neutral applications compared to a shared LLC. Adaptive caching is
energy-neutral for the shared cache friendly workloads. The private
LLC organization reduces NoC energy but increases DRAM power
due to an increase in DRAM traffic due to the write-through LLC
policy. When quantifying total system (GPU plus DRAM) energy,
we conclude though that under private LLC mode energy consump-
tion reduces by 6.1% on average and up to 27.2% for the private
cache friendly and shared/private cache neutral workloads.
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private cache increases the LLC miss rate by 27.9 percent point on
average and up to 52.3 percent point for the shared cache friendly
applications, hence adaptive caching opts for a shared LLC.
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6.3 Multi-Program Workloads
We now evaluate adaptive caching using multi-program workloads.
We consider all possible two-program combinations of shared cache
friendly and private cache friendly applications, and quantify system
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Figure 16: Sensitivity analyses. The adaptive LLC outperforms a
shared LLC across address mapping schemes (P: PAE, H: Hynix),
channel widths (byte), SM count, L1 sizes (KB), and CTA scheduling
policies (B: BCS, D: DCS).

throughput (STP) [52], see Figure 15. The shared cache friendly
application views the LLC as a shared cache, whereas the private
cache friendly application views the LLC as a private cache. In these
experiments, we distribute both applications across the clusters giv-
ing half the SMs per cluster to each application — this uniformly
distributes the workload across the clusters and allows both applica-
tions to access the entire LLC capacity, as previously argued. STP
improves by 8% on average compared to a shared LLC because
of increased LLC bandwidth to shared data for the private cache
friendly application.

6.4 Sensitivity Analyses
We now perform a couple sensitivity analyses in which we change
the address mapping scheme, channel width, number of SMs, L1
cache size and CTA scheduling policy, see also Figure 16.

Address Mapping. PAE [46], the address mapping scheme used
in this paper, evenly distributes the requests. The Hynix memory
address mapping scheme [53] on the other hand, incurs imbalance
in the memory subsystem by unevenly distributing memory requests
across channels and banks. Adaptive caching yields higher perfor-
mance improvements under an imbalanced memory request stream.
In particular, we note an average performance improvement by
31.1% for the Hynix address mapping scheme. This can be under-
stood intuitively because private caching increases LLC bandwidth
through data duplication across multiple LLC slices.

Channel Width. Adaptive caching is sensitive to NoC bandwidth.
The performance benefit under adaptive caching is higher under
constrained NoC bandwidth. We note a 22.6%, 28.1% and 38.2%
average performance improvement for a channel width of 64 bytes,
32 bytes (default) and 16 bytes, respectively. Constrained channel
widths renders the NoC a performance bottleneck, thereby making
the LLC adaptive even more critical.

SM Count. We evaluate sensitivity with the number of SMs by
changing SM count from 40 to 160 SMs; we do so while keeping
the number of SMs per cluster constant, which implies that we scale
the number of clusters (and thus, the number of SM-routers) and
the number of LLC slices (and thus, the number of MC-routers)
proportionally. We note that adaptive caching leads to an average
performance improvement of 40% for 160 SMs. Adaptive caching is
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more beneficial at higher SM counts, primarily because of increased
NoC pressure and increased LLC contention.

L1 Cache Size. We vary the per-SM L1 cache size from 48 KB (our
default) to 64, 96 and 128 KB. The performance benefit of adaptive
caching remains stable around 28% on average for the 64 and 96 KB
L1 caches. The performance benefit reduces to 15% on average for
a 128 KB L1 cache. The increased size enables replicating shared
data in the L1 cache, thereby somewhat reducing the opportunity for
adaptive last-level caching.

CTA Scheduling Policy. In addition to our default CTA scheduling
policy (two-level round-robin), we also consider block CTA sche-
duling (BCS) [54] (mapping adjacent CTAs to the same SM to im-
prove L1 cache locality) and distributed CTA scheduling (DCS) [32]
(evenly dividing CTAs across the clusters). We conclude that adap-
tive caching improves performance under all CTA scheduling poli-
cies, while yielding a slightly smaller benefit for distributed schedu-
ling (23.9% average improvement) because of reduced inter-cluster
locality, i.e., adjacent CTAs are mapped to the same cluster some-
what reducing the amount of inter-cluster locality.

7 RELATED WORK
The LLC and the NoC are focal points in computer architecture
research. We now survey the most closely prior work.

LLC Optimization in CMPs. With the advent of CMPs, numerous
efforts went into optimizing LLC sharing among cores. Huh et al. [7]
propose an LLC organization that supports various sharing degrees.
Dynamic NUCA techniques start either from a private or a shared
LLC and seek to bring data close to the cores that use it while
effectively using the cache capacity. They do so by a combination of
replication [8–12], placement and migration [18, 21, 22], and cache
block spilling [17, 55]

Other research efforts focus on LLC partitioning schemes in
CMPs. Yeh et al. [13] and Merino et al. [14] propose approaches to
split the cache into private and shared slices. Guz et al. [15] propose
separate private and shared caches, laying both out in close proximity
to all cores. Zhao et al. [16] propose a hybrid architecture in which
each LLC slice has both a private and a share space. Jigsaw [24] uses
a hardware/software approach to partition cache banks and manage
the data placement in ‘shares’ of sub-partitions to address scalability
and interference issues in shared caches. Kwon et al. [56] cluster
cores and LLC banks and use a fast interconnect to provide cores
with a fast inter- and intra-cluster LLC access. Abousamra et al. [57]
propose a symbiotic NoC/LLC design to reduce latency and improve
cache utilization.

Techniques tailored for CMPs are not readily applicable to a GPU.
The main objective in CMPs is to bring data close to the relevant
core(s) to reduce LLC access latency. Most CMP papers presume
spatial affinity of an LLC slice to a core, which does not exist in
GPUs with a memory-side LLC. Many CMP techniques rely on
hardware coherence mechanisms that are not supported in GPUs.
Moreover, the tradeoff is different in GPUs which are bandwidth-
sensitive and less sensitive to latency than CPUs. We highlight a
bottleneck in GPU workloads with significant read-only sharing,
whereby numerous SMs frequently access the shared cache lines
creating a bandwidth bottleneck at the corresponding LLC banks.

NoC Optimization. Hybrid and adaptive routing schemes have been
explored for multicore processors. Hybrid circuit/packet switch-
ing NoCs have been proposed for coherence communication [58]
and heterogeneous processors [59]. ReNoC [60] is a reconfigurable
NoC architecture that dynamically changes the NoC topology in
a Systems-on-Chip according to an application’s communication
pattern. More recently, MAERI [61] provides a reconfigurable in-
terconnect to enable a flexible dataflow mapping in DNN accelera-
tors. BiNoCHS [62] reconfigures network resources to traffic pat-
terns in a heterogeneous CPU/GPU system. Jin et al. [63] propose
domain-specific NoCs with large-scale caching using a novel mul-
ticast router for fast cache access, and to reduce unnecessary links
in general-purpose NoCs. This technique, similar to both MAERI
and BiNoCHS, targets NoCs in specialized architectures and is not
readily applicable to GPUs. None of these proposals optimize the
NoC and LLC cooperatively to exploit the sharing characteristics in
GPU applications.

Our work uses NoC crossbars as they naturally support the com-
munication pattern between SMs and LLC slices in a GPU. Prior
techniques that optimize GPU NoCs presume mesh topologies due
to their simplicity and scalability. The main goal is to reduce the
hardware cost associated with providing all-to-all communication in
a mesh which is not necessary in GPUs [64–68]. In this work, we
propose a hierarchical two-stage crossbar that is more power and
area-efficient while delivering similar performance to a full crossbar.
Moreover, adaptive last-level caching enables saving NoC energy
and total system energy by power-gating the second-stage routers
when configured for a private LLC.

GPU Optimization. Numerous papers consider optimizing various
aspects of a GPU architecture, and focus on SM-related aspects
including warp scheduling [69–73], L1 cache optimization [74–77],
register file optimization [78–80], and virtualized SM resources [81,
82]. Recent work explores cache hierarchy designs in multi-module
GPUs within a single package [32] and across sockets [31]. They
explore dedicating part of the LLC local to a GPU to hold data from
remote memory modules, i.e., those attached to remote GPU mod-
ules/sockets. However, in this prior work, the LLC remains shared
among the SMs within a single GPU. In this work, we demonstrate
the performance benefit from a private LLC organization through
adaptive last-level caching.

8 CONCLUSION
This paper studies private versus shared organizations in memory-
side last-level GPU caches. We find that although a shared memory-
side LLC performs well for workloads with no to moderate data
sharing among SMs, sharing-intensive workloads with high degrees
of read-only sharing significantly benefit from a private LLC orga-
nization because of increased bandwidth to replicated shared cache
lines across different LLC slices. In response, this paper proposes
adaptive last-level caching to dynamically choose between a shared
versus private LLC based on the workload’s execution character-
istics through a lightweight performance model that predicts and
trades off LLC miss rate and bandwidth under private caching while
executing under shared caching. In addition to significantly improv-
ing performance, adaptive last-level caching provides an interesting
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opportunity to save NoC energy and total system energy for a co-
designed hierarchical two-stage crossbar in which the second stage
can be bypassed and power-gated under the private LLC mode.

Our experimental results show that adaptive memory-side caching
improves performance by 28.1% on average, and up to 38.1%, for
sharing-intensive workloads. Furthermore, adaptive caching reduces
NoC energy by 26.6%, and up to 29.7%, and system energy by
6.1% on average, and up to 27.2%, when configured as a private
LLC. A NoC crossbar design space exploration demonstrates that
a hierarchical two-stage crossbar is both more power- and area-
efficient than a full and concentrated crossbar with the same bisection
bandwidth. This leads to the overall conclusion that cooperative
NoC/LLC adaptive caching is an effective and scalable solution to
exploit a workload’s (lack of) sharing behavior in future GPUs.
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