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Abstract—The memory wall places a significant limit on
performance for many modern workloads. These applications
feature complex chains of dependent, indirect memory accesses,
which cannot be picked up by even the most advanced microar-
chitectural prefetchers. The result is that current out-of-order
superscalar processors spend the majority of their time stalled.
While it is possible to build special-purpose architectures to
exploit the fundamental memory-level parallelism, a microarchi-
tectural technique to automatically improve their performance
in conventional processors has remained elusive.

Runahead execution is a tempting proposition for hiding
latency in program execution. However, to achieve high memory-
level parallelism, a standard runahead execution skips ahead of
cache misses. In modern workloads, this means it only prefetches
the first cache-missing load in each dependent chain. We argue
that this is not a fundamental limitation. If runahead were instead
to stall on cache misses to generate dependent chain loads, then
it could regain performance if it could stall on many at once.
With this insight, we present Vector Runahead, a technique that
prefetches entire load chains and speculatively reorders scalar
operations from multiple loop iterations into vector format to
bring in many independent loads at once. Vectorization of the
runahead instruction stream increases the effective fetch/decode
bandwidth with reduced resource requirements, to achieve high
degrees of memory-level parallelism at a much faster rate. Across
a variety of memory-latency-bound indirect workloads, Vector
Runahead achieves a 1.79× performance speedup on a large
out-of-order superscalar system, significantly improving on state-
of-the-art techniques.

I. INTRODUCTION

Modern-day workloads are poorly served by current out-
of-order superscalar cores. From databases [40], to graph
workloads [49, 67], to HPC codes [11, 30], many workloads
feature sparse, indirect memory accesses [9] characterized by
high-latency cache misses that are unpredictable by today’s
stride prefetchers [1, 19]. For these workloads, even out-
of-order superscalar processors spend the majority of their
time stalled, since their ample reorder buffer and issue queue
resources are still insufficient to capture the memory-level
parallelism necessary to hide today’s DRAM latencies.

Still, this performance gap is not insurmountable. Many
elaborate accelerators [1, 3, 40, 44, 45, 48] have shown sig-
nificant success in improving the performance of these work-
loads through domain-specific programming models and/or
specialized hardware units dedicated to the task of fetching
in new data. Part of the gap can even be eliminated with
sophisticated programmer- and compiler-directed software-
prefetching mechanisms [2, 4, 30, 41].

More ideal is a pure-microarchitecture technique that can
do the same: achieving high performance for memory-latency-
bound workloads, while requiring no programmer input, and
being binary-compatible with today’s applications. For simple

stride patterns, such techniques are endemic in today’s cache
systems [19]. For more complex indirection patterns, the
inability at the cache-system level to identify complex load
chains and generate their addresses limits existing techniques
to simple array-indirect [88] and pointer-chasing [23] codes.

To achieve the instruction-level visibility necessary to cal-
culate the addresses of complex access patterns seen in to-
day’s workloads [3], we conclude that this ideal technique
must operate within the core, instead of within the cache.
Runahead execution [25, 32, 34, 57, 58, 64] is the most
promising technique to date, where upon a memory stall
at the head of the reorder buffer (ROB), execution enters
a speculative ‘runahead’ mode designed to prefetch future
memory accesses. In runahead mode, the addresses of future
memory accesses are calculated and the memory accesses are
speculatively issued. When the blocking load miss returns,
the ROB unblocks and the processor resumes normal-mode
execution, at which time the memory accesses hit in the nearby
caches. Runahead execution is a highly effective technique
to identify independent load misses in the future instruction
stream when the processor is stalled on a first long-latency load
miss. By speculatively issuing multiple independent memory
accesses, runahead execution significantly increases memory-
level parallelism (MLP), ultimately improving overall appli-
cation performance.

While runahead execution successfully prefetches indepen-
dent load misses in the future instruction stream, it suffers from
three fundamental limitations. First, runahead is unsuitable for
complex indirection patterns that consist of chains of depen-
dent load misses [62]. While combining a traditional hardware
stride prefetcher with runahead might enable prefetching one
level of indirection, it does not provide a general solution
to prefetch all loads in a chain of dependent loads. Second,
runahead execution is limited by the processor’s front-end
(fetch/decode/rename) width: the rate at which runahead ex-
ecution can generate MLP is slow if there is a large number
of instructions between the independent loads in the future
instruction stream. Third, the speculation depth of runahead is
limited by the amount of available back-end resources (issue
queue slots and physical registers) [64].

In this paper, we propose Vector Runahead, a novel runa-
head technique that overcomes the above limitations through
three key innovations. First, Vector Runahead alters the runa-
head’s termination condition by remaining in runahead mode
until all loads in the dependence chain have been issued,
as opposed to returning to normal mode as soon as the
blocking load miss returns from main memory. This enables
Vector Runahead to prefetch entire load chains. Second,

Lieven Eeckhout
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

Camel G5-s16 G5-s21 HJ2 HJ8 Kangar NAS-CG NAS-IS Rand Avg

C
yc

le
s 

Pe
r 

In
st

ru
ct

io
n

Base IQ full Stride Indirect Other

Fig. 1: CPI stacks for an out-of-order (OoO) core, Precise
Runahead Execution (PRE) and our new Vector Runahead
(VR). The memory component is broken down and attributed
to striding loads and indirect dependent-chain loads. The pre-
vious state-of-the-art runahead cannot prefetch the majority
of (indirect) memory accesses, unlike Vector Runahead.

Vector Runahead vectorizes the runahead instruction stream
by reinterpreting scalar instructions as vector operations to
generate many different cache misses at different offsets. It
subsequently gathers many dependent loads in the instruction
sequence, hiding cache latency even for complex memory-
access patterns. In effect, vectorization virtually increases the
effective fetch/decode bandwidth during runahead mode, while
at the same time requiring very few back-end resources, e.g.,
only a single issue queue slot is required for a vector operation
with 8 (memory) operations. Third, Vector Runahead issues
multiple rounds of these vectorized instructions through vector
unrolling and pipelining to speculate even deeper and increase
the effective runahead fetch/decode bandwidth even further —
e.g., 8 rounds of vector runahead with 8 vector loads each, lead
to 64 speculative prefetches that are issued in parallel.

We evaluate Vector Runahead through detailed simulation
using a variety of graph, database and HPC workloads, and
we report that Vector Runahead improves performance by
1.79× compared to a baseline out-of-order processor —
a significant improvement over the state-of-the-art Precise
Runahead Execution (PRE) technique [64] which achieves
a speedup of 1.20×. The performance speedup results from
much higher memory-level parallelism by prefetching loads
within dependent load sequences in an accurate and timely
manner. Vector Runahead does not significantly impact system
complexity, adding only 1.3 KB of new state over our baseline.

II. BACKGROUND AND MOTIVATION

Before explaining Vector Runahead in detail, we first pro-
vide context around the limitations of previous runahead
techniques, and the potential left to be exploited.

A. Memory Stalls in Out-of-Order Cores
Modern out-of-order (OoO) cores frequently stall on long-

latency memory accesses. When a load turns out to be a last-
level cache miss, it often reaches the head of the reorder buffer
(ROB), stalling commit as it waits for the miss to return.
In the meantime, the front-end pipeline continues dispatching
instructions until the ROB completely fills up, leading to a

full-window stall. Such a memory access typically stalls the
core for tens to hundreds of cycles. Figure 1 shows CPI
stacks for a range of benchmarks on an OoO core [27] (see
Section V for our experimental setup). In addition to the
cycles spent on performing useful work (shown as the ‘Base’
component), the CPI stacks also show the number of cycles the
processor is waiting due to a full issue queue (‘IQ full’) or a
memory access. Memory-access cycles are divided into three
types of load instruction stalling the processor: (1) striding
load instructions (‘Stride’); (2) indirect load instructions that
directly or indirectly depend on a striding load instruction
(‘Indirect’); and (3) other types of load instructions (‘Other’).
We find that indirect load instructions stall the processor for
61.6% of the total execution time on average, and up to 89.8%
(HJ8). For high performance, it is critical to eliminate stalls
from indirect memory accesses in OoO cores.

B. Limitations of Runahead Techniques
To alleviate the bottleneck caused by memory accesses,

standard runahead execution [25, 32, 34, 57, 58] checkpoints
and releases the architectural state of an application after a full-
window stall and enters runahead mode. The processor then
continues speculatively generating memory accesses. When
the blocking memory access returns, the runahead interval
terminates, at which point the pipeline is flushed, the archi-
tectural state is restored to the point of entry to runahead, and
normal execution resumes. The prefetches generated during
runahead mode bring future data into the processor caches that
reduce the number of upcoming stalls during normal mode,
thus improving performance.

Precise Runahead Execution (PRE) [63, 64], the state-of-
the-art in runahead execution, improves upon standard runa-
head through three key mechanisms. (1) PRE leverages the
available back-end (issue queue and physical register file)
resources to speculatively execute instructions in runahead
mode, thereby eliminating the need to release and flush proces-
sor state when entering and exiting runahead mode. (2) PRE
only speculatively pre-executes instructions that are required
to generate memory accesses after a full-window stall. (3) PRE
includes a mechanism to quickly recycle back-end resources
during runahead mode. PRE’s performance benefits come from
reduced overheads when transitioning between runahead mode
and normal mode, which enables running ahead even during
short runahead intervals, and only dispatching loads and their
address-generating instructions during runahead mode, and not
the dependents of memory accesses (as long as they do not
lead to dependent loads), thereby reducing the amount of back-
end resources needed during runahead mode.

PRE prefetches a substantial fraction of the memory ac-
cesses in the upcoming instruction stream, i.e., PRE reduces
the total fraction of processor cycles stalled on memory
accesses by 31.5% on average, see Figure 1. Although PRE
eliminates some of the full-ROB stalls caused by indirect
memory accesses, it fails to prefetch the majority of the
indirect memory accesses. Accesses beyond the reach of the
runahead interval soon stall the core again, causing the pro-



for (int x=0; x<N; x++)
y += B[hash(A[x])]->value;

(a) Example code, with memory access by array indirection, with
intermediate address computation and pointer access.

(b) PRE is able to prefetch array elements from A. In contrast, the
array elements to B cannot be prefetched during runahead mode as
they depend on A. Likewise, the data values cannot be prefetched
either because they depend on B. Note that the elements in A are
accessed serially as indicated. PRE runahead mode is terminated
before it can prefetch array elements of B; furthermore, the number
of back-end resources needed during runahead mode limits the
speculation depth.

(c) Hardware stride prefetching can prefetch the array elements from
A, enabling PRE to prefetch the array elements from B during
runahead mode. Unfortunately, the data values cannot be prefetched
during runahead mode as they depend on B. Note that the order in
which the elements in B are indexed depends on the pointer values
in A. The same limitations apply as in Figure 2(b) off-by-one.

(d) Vector Runahead vectorizes memory accesses along the memory
dependence chain during runahead mode. Multiple accesses to A
happen in parallel, followed by parallel accesses to B, followed by
parallel data value reads.

Fig. 2: Vector Runahead versus PRE, with and without stride
prefetching, for an illustrative code example. The loads high-
lighted in green can only be triggered by stalling on loads
highlighted in gray, and those in blue by stalling on gray and
green. Vector Runahead prefetches multiple memory accesses
in parallel along the memory dependence chain during runa-
head mode.

cessor to re-enter runahead mode. Consequently, the processor
remains stalled for 51.2% of the total execution time on
indirect memory accesses on average, and up to 76.5% (HJ8).
Overall, despite a positive performance impact, PRE still
leaves huge potential for improving performance because of
its inability to effectively prefetch indirect memory accesses.

C. Vector Runahead Execution for Dependent Loads
We now analyze in more detail why PRE fails to effectively

prefetch indirect memory accesses using the illustrative exam-

ple shown in Figure 2(a). This code example includes two
levels of indirection: the index to array A leads to a (hashed)
index into array B, which in turn leads to a dependent access
of a data value.

PRE is initiated upon a full-window stall, and speculatively
executes the future instruction stream during runahead mode.
As illustrated in Figure 2(b) and assuming all memory accesses
miss in the cache, PRE will issue a prefetch for the access
to the first element in array A. The instructions that depend
on this memory access cannot execute, and hence the access
to array B and the pointer value cannot be prefetched. As
the processor continues through the instruction stream during
runahead mode, it will hit the access to the second element in
array A, for which it will issue another prefetch; unfortunately,
the dependent accesses to B and the data values cannot be
prefetched. Next, a prefetch is issued for the third element
in A, etc. Runahead mode stops when the blocking load that
initiated runahead mode returns from main memory. At this
point, a number of accesses to array A have been prefetched
but not the elements to array B nor the dependent data values.
Once back in normal mode, the processor will soon stall again
due to the first cache miss to array B.

Modern-day processors typically feature a hardware stride
prefetcher that should be able to prefetch the strided accesses
to array A. If so, when PRE accesses elements from array A,
they will hit in the cache, and therefore PRE is able to issue
prefetch requests for the first level of indirection to array B,
as illustrated in Figure 2(c). During runahead mode, PRE will
turn the first access to array B (labeled ‘1’) into a prefetch
request. The dependent data value cannot be prefetched though
as it depends on the access to B. The next access to A leads
to a hit in the cache — as it was successfully prefetched by
the stride prefetcher — and hence the processor can compute
the address for the next access in array B and issue a prefetch
request (labeled ‘2’). Again, the dependent data value cannot
be prefetched. The next access to A is a cache hit, and
the processor then prefetches the third access to B (labeled
‘3’), etc. In summary, even though stride prefetching enables
runahead execution to prefetch one more level of indirection,
it still cannot prefetch the second level (or beyond).

The fact that PRE can prefetch future memory accesses
while being stalled on a first initiating memory access, im-
proves MLP and overall performance. Unfortunately, as illus-
trated in this example, PRE runs into a number of limitations.
First, PRE is unable to prefetch all loads along a chain of
dependent loads because the data required for the next access
in the chain is not available. A hardware prefetcher alongside
runahead solves the problem off-by-one, but does not provide
a general solution. Second, the rate at which PRE can issue
speculative prefetches is limited. Indeed, while runahead is
able to service some independent loads from multiple load
chains simultaneously, it takes time before those independent
loads can be issued, limiting the effective MLP that can
be achieved — this is especially the case if the number of
instructions per loop iteration is large, e.g., a complicated hash
function in the example in Figure 2(a). Third, we note that a



significant number of processor back-end resources are needed
during runahead mode to reach the independent loads, which
can limit PRE’s speculation depth into the future.

Vector Runahead overcomes these fundamental limitations
as follows. Vector Runahead changes runahead mode’s ter-
mination condition, i.e., instead of returning to normal mode
once the blocking load miss returns from main memory, Vector
Runahead continues runahead mode until all loads along the
dependent load chain have been issued. In addition, Vector
Runahead vectorizes the dynamic instruction stream during
runahead mode, which in effect is equivalent to running ahead
at a much faster rate. This is illustrated in Figure 2(d).
When vector-runahead mode is initiated, multiple accesses
to array A are vectorized, i.e., the same memory operation
is speculatively issued at multiple induction-variable offsets
in parallel. We vectorize as many copies as the available
vector width, or 8 in this example. Instructions that depend
on the values from array A are also vectorized, including the
accesses to array B and the dependent data values. Vectoriz-
ing the dependent instruction stream during runahead mode,
while staying in runahead mode until the last dependent load
has been issued, enables speculatively prefetching the entire
chain of dependent loads. Vectorizing the runahead instruction
stream has the effect of issuing the same memory operations
from multiple iterations of the loop simultaneously, before
issuing the next parallel batch of dependent memory accesses,
etc. This effective reordering of memory accesses compared to
the original instruction stream enables Vector Runahead to first
issue a batch of accesses to A, then a batch of accesses to B,
and finally a batch of accesses to the dependent data values. In
other words, even though independent memory accesses may
be far apart from each other in the original dynamic instruction
stream, Vector Runahead issues them in parallel. This re-
ordering of memory accesses is enabled through vectorization
which features two key benefits: (1) it substantially increases
the effective fetch/decode bandwidth during runahead mode,
i.e., we are fetching/decoding multiple loop iterations at once,
and (2) it requires very few back-end hardware resources, i.e.,
a vector instruction in vector-runahead mode corresponds to
multiple scalar instructions from multiple loop iterations in the
original code, while occupying only a single issue-queue slot.

The above example illustrates that Vector Runahead boosts
runahead performance by issuing multiple loop iterations in
parallel. We can achieve even higher performance by generat-
ing more MLP at an even faster rate through vector unrolling
and pipelining, as we will describe in the next section. Vector
unrolling issues multiple rounds of vector runahead (before
returning to normal mode), which vector pipelining reorders
so the processor can issue multiple vector copies of each
instruction in immediate succession. For example, 8 rounds
of vector runahead with 8 loop iterations per round enables
speculating across 64 loop iterations in parallel.

Note that Vector Runahead does not require the original
code to be vectorizable, nor does it require verifying that
the vectorized instructions preserve the exact behavior of the
original sequence — it only vectorizes the instruction stream

during runahead mode to increase the performance of memory-
latency-bound code by allowing many cache misses to become
eligible for prefetching at once, increasing load coverage upon
our return to normal execution. By doing so, Vector Runahead
successfully prefetches indirect memory accesses, reducing
the time the processor stalls on indirect memory accesses to
19.9% on average, see Figure 1. The next section describes
the mechanics of Vector Runahead in detail.

III. VECTOR RUNAHEAD

Implementing Vector Runahead requires several modifica-
tions to the core microarchitecture, which we now describe.

A. Microarchitecture Overview
Figure 3 shows our baseline OoO pipeline with the mod-

ified and newly added hardware structures to support Vector
Runahead. The stride detector [19] (Section III-B) is used to
find regular access patterns in the code that can be used as
‘induction variables’ to produce speculative vectorized copies
of code. Once we enter vector-runahead mode (Section III-C),
instructions dependent on this vectorized stride pattern are
tracked by a taint vector (Section III-D), and vectorized
themselves (Section III-E): address-calculating arithmetic op-
erations are converted into vector-unit operations, and the
dependent loads themselves into vector gathers. Branches are
assumed to match across each vectorized copy, with masking
used to handle other cases (Section III-F). To further improve
memory-level parallelism to greater levels than supported by a
single vector load, we design vector unrolling and pipelining
techniques (Section III-G) to issue many future loads simul-
taneously. Since this results in a one-to-many relationship
between old scalar instructions and new vector instructions,
a vector register allocation table (VRAT) is introduced at the
front-end for register allocation (Section III-H), and a register
deallocation queue (RDQ) at the back-end (Section III-I).
Vector-runahead mode is terminated (Section III-J) once we
have completed each unrolled iteration, where each iteration
executes all loads dependent on the vectorized stride load.

B. Detecting Striding Loads
To detect sequences in the code from which we can generate

induction variables to vectorize future memory accesses, we
use a simple reference prediction table [19, 62] that is updated
after the execution of each load instruction. This is indexed
by the load PC, and each entry maintains four fields: (1) the
last accessed memory address; (2) the last observed stride for
the load; (3) a 2-bit saturating counter to indicate confidence;
and (4) the terminator or the PC of the final dependent load
in the instruction chain from the strided load.

From this, once we enter vector-runahead mode, we can
generate streams of new instructions, to generate future indi-
rect memory accesses based on the strided load, computation,
and other intermediate memory accesses. The first three fields,
(1) through (3), are standard for reference prediction ta-
bles [19]. The final field (4) is new and filled in during a round
of vector runahead, and allows us to terminate early once all
useful work finishes in vector-runahead mode (Section III-J).
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Fig. 3: Processor pipeline for vector runahead execution.

C. Entering Vector Runahead
The core enters runahead mode when either of the following

two conditions is satisfied after a load instruction blocks the
head of the ROB: (1) the ROB is filled with instructions;
or (2) the issue queue is filled to 80% of its full capacity.
Vector Runahead checkpoints the PC and the front-end register
allocation table (RAT) by storing one checkpoint per entry of
the front-end RAT, in addition to the checkpoints stored for
recovery from branch misprediction. This marks the entry to
runahead mode. The processor state will be restored to this
checkpoint when we return to normal mode.

After entering runahead mode, the processor continues to
fetch, decode, and execute future instructions. We access the
stride detector for each load instruction. Until we reach a
strided load, or if no such striding load exists, Vector Runahead
performs similarly to PRE [64], though without the use of its
fully-associative stalling-slice table, which Vector Runahead
eliminates the need for, to avoid harming workloads without
such patterns, and to capture any scalar dependencies later
used by Vector Runahead. Equivalently, this mode behaves
like a traditional runahead execution [57], only with active
register reclamation and efficient checkpointing [64].

Entry to vector-runahead mode begins when we decode a
striding load (with confidence = 3). We vectorize the striding
load, followed by the sequence of instructions depending on
it. The process terminates when another dynamic instance of
the same striding load is detected, or the dependent chain is
complete (Section III-J). We call the dependent instructions
between two dynamic striding-load instances an indirect chain.

D. Taint Vector
To keep track of which operations (transitively) depend on

the newly vectorized striding loads in the instruction stream,
we use the taint vector (TV). This features an entry for each
architectural integer register, and stores two flags: (1) if the
previous instruction to write to this register was a vectorized
operation (vectorize bit); and (2) if the previous instruction to
write to this register was invalid (invalid bit). The TV is empty
at the start of runahead, as it is cleared whenever runahead
terminates. Vectorize bits are initially set for the destination
architectural register of a discovered striding load. Invalid
bits are initially set based on the destinations of unsupported
operations, e.g., those that take floating-point operations as
input (which are always invalid and so need no TV entry). Both
bits are propagated using vector taint tracking, a mechanism
to propagate vectorization where needed. If any of an instruc-
tion’s input registers are tagged, then the destination register

becomes tagged as well. If no input registers are tagged, the
destination register’s flag is unset. Instructions with no bits
set are issued as conventional scalar runahead operations, and
treated as loop-invariant with respect to vectorized copies of
the instruction sequence in the current vector-runahead mode
iteration. Instructions with the invalid bit set are discarded,
and instructions with only the vectorize bit set are vectorized.

E. Vectorizing Instructions
Vectorization is performed via a microprogrammed routine

that generates vectorized versions of input scalar instructions.
For striding loads, the vectorizer generates their vectorized
versions by taking the current memory address accessed by the
striding load and its stride as inputs. The vectorizer generates
one 512-bit vector load instruction and injects the vector
instruction into the pipeline (see Section III-G for generating
multiple 512-bit vector instructions). Regardless of input bit
width, eight scalar operands are fit in this 512-bit vector, such
that we can operate on any size up to 64 bits. We assume that
each vector instruction uses 512-bit vector registers (similar to
Intel AVX-512) for its source and destination, and we reuse the
microarchitecture’s physical vector registers, and the micro-
ops implemented by the microarchitecture’s vector units.

Similarly, we vectorize all arithmetic and load instructions
(directly or indirectly) depending on a striding load, and gener-
ate their corresponding 512-bit vector versions. All vectorized
instructions are renamed using the vector register allocation
table (VRAT) (Section III-H). The renamed instructions are
dispatched to the processor back-end where they are executed
speculatively. It is possible that there is a chain of load
instructions depending on a striding load, for example, in
the case of multiple levels of indirect dependent loads (as in
pointer-chasing code). In such cases, all the load instructions
forming the dependency chain are vectorized into gather
operations, and the stride table’s terminator (Section III-B)
is updated, if empty at the start of runahead, with the PC of
the latest dependent gather load. Therefore, Vector Runahead
can generate memory-level parallelism for multiple levels
of indirect memory accesses. If individual lanes within the
vector generate invalid memory accesses, the individual lane
is marked invalid, which causes lanes within subsequent vec-
torized instructions to be masked, and their execution ignored.

The instructions executed in runahead mode are useful
only in generating memory accesses and their state is not
maintained in the ROB. Therefore, no ROB entries are allo-
cated in runahead mode. Instead, we use the simpler register
deallocation queue [64] (RDQ, Section III-I) to handle register



availability. Since floating-point instructions are rarely used
to calculate addresses themselves, we ignore such instruc-
tions (marking them and any instructions using them as
invalid [57]), along with stores, and any instructions that are
already vectorized in the original code.

F. Control Flow
When vectorizing, we make the implicit assumption that

all vector lanes will follow the same pattern of control flow
as each other. However, when executing in vector-runahead
mode there may be divergence between the lanes when they
meet a branch instruction. We use a micro-op that converts
scalar branches into a predicate mask for the eight vector
lanes. Since Vector Runahead need not cover all code, we
then use only the results of the first lane to determine the
direction of the branch, and mask off any lanes that would have
taken a different control path. This masking persists until we
terminate a single iteration of vector-runahead. By contrast,
different unrolled iterations (Section III-G) within a single
vector-runahead interval may follow independent control flow.

G. Vector Unrolling and Pipelining
This basic Vector Runahead suffers from the following key

drawbacks, as illustrated in Figure 4(a) assuming a processor
vector width of four1: (1) it does not move far enough ahead
in the execution stream — limiting timeliness; (2) it does not
spend enough time in runahead mode — limiting coverage;
and (3) it does not issue enough simultaneous loads to saturate
the miss status holding registers (MSHRs) — limiting MLP.

To solve the first two problems, we issue multiple rounds of
vector runahead before returning to normal mode, in a process
called vector unrolling (Figure 4(b)). Once the first round
is complete, we issue a vector load for the next N values
identified in the strided sequence, where N is the number of
words in the vector (4 in this example or 8 for AVX-512).
We then repeat this, incrementing the addresses of the strided
loads, until we have issued U , the unroll length, copies of the
vector-runahead sequence. In case N = 8 and U = 8, we
issue 64 iterations of the original scalar loop before leaving
vector-runahead mode.

Vector unrolling by itself does not solve the limited MLP
problem. Even with AVX-512, we can only fit eight loads
into a single gather, limiting the number of parallel memory
accesses to eight before stalling on dependent loads. With
smaller vector sizes, this problem becomes (even) worse. We
hence introduce vector pipelining, a software-pipelining-style
optimization [7, 41, 80] that reorders loads to issue multiple
independent memory accesses in parallel. Instead of waiting
for a previous round of Vector Runahead to finish before
starting the next, we issue multiple copies of every vectorized
instruction simultaneously, all with stride-load inputs at dif-
ferent lookahead distances, creating a one-to-many mapping
between scalars and vector instructions. In Figure 4(c), we
have an unroll length U of 2, and a pipeline depth P of 2.

1A vector width of 4 is chosen in this example for illustrative purposes
only. We consider a vector width of 8 in our simulated configuration.

(a) Basic Vector Runahead. In this example, MLP is limited to a sin-
gle vector instruction, so only four outstanding memory accesses can
be prefetched at once, and few future memory accesses are covered
by the memory-parallel vector runahead, limiting performance gains
for future normal execution.

(b) Vector Unrolling. While the Vector Runahead operations are still
run in sequence, with a maximum MLP of 4, we cover significantly
more of the future memory accesses before returning to normal
execution, improving the latter’s observed performance gain.

(c) Vector Pipelining. We overlap the independent operations from
multiple unrolled iterations. This allows many misses to be handled
simultaneously: in this example, 1 and 2 can be executed in parallel,
doubling MLP to 8, as can 3 and 4, and 5 and 6.

Fig. 4: Vector Runahead uses two techniques, vector unrolling
and vector pipelining, to improve performance by increasing
the degree of runahead to allow wider vectors than supported
natively by the instruction-set architecture.

This allows us to issue the two vector loads to A (1 and 2)
in parallel, before moving on to their dependents (3 and 4)
which are also issued in parallel, and then finally 5 and 6.

Though pipelining better allows us to extract memory-level
parallelism, there are limits to this, as we will never be able
to service more simultaneous cache misses than there are
MSHRs. Unrolled vectors in distinct pipeline groups can reuse
the same physical registers, as they are not live simultaneously.
By contrast, vector pipelining deliberately overlaps the live
range of physical registers for different unrolled iterations, and
also increases the VRAT size (Section III-H). By default, we
assume both an unroll length U and a pipeline depth P of
8, which allows us to issue vector gathers for 64 scalar loads
simultaneously. While we hard-code these in our implemen-
tation, they could be tuned dynamically based on observed
system performance, accuracy and register availability.

H. Vector RAT
For each scalar architectural register input, when the vec-

torize bit is set, we must redirect the new vector instruction



to the appropriate source vector physical register. Normally,
the register allocation table (RAT) renames architectural scalar
registers into physical scalar registers. However, we must
rename into physical vector registers instead, and with the
addition of vector pipelining (Section III-G), we have a one-
to-many relationship between architectural scalar registers and
renamed physical vector registers. For a pipeline depth of 4, we
need to rename an architectural scalar register into 4 separate
vector physical registers (each covering 8 data elements). This
means we add a new vector register allocation table (VRAT),
with P entries per architectural integer register, recording
the P destination physical vector registers assigned to the P
pipelined copies of the instruction. When we look up these
P registers in the VRAT, each of the P copies of the new
vectorized instruction use one of the P entries as its own
input. This enables us to distinguish the inputs and outputs
of separate pipelined iterations within the vector-pipelining
arrangement, which, from an instruction fetch point of view,
all alias to the same instruction. We need P entries for each
of the 16 integer registers, which is typically small in size.

I. Managing Pipeline Resources During Runahead
There must be a sufficient number of unused issue queue

and physical (scalar and vector) register file entries for specu-
latively executing indirect chains leading to indirect loads. In
Vector Runahead, one vector instruction occupies one issue-
queue entry from dispatch to execution. Upon execution, the
issue-queue entry is freed and can be allocated to a younger
instruction, similar to a standard OoO core.

Unlike the issue queue, physical register file entries cannot
be released out-of-order. In an OoO core, a physical register is
freed only when a new instruction writing to the same archi-
tectural register to which the physical register was mapped,
is committed [78]. Since we do not commit instructions in
runahead mode, the core may stall due to unavailability of
physical registers, so Vector Runahead frees a physical register
when the register is no longer required for address generation.
This is done via a simple in-order register deallocation queue
(RDQ), also used by PRE [64]. Each instruction is looked up
in the VRAT to see the P (under vector pipelining) physical
vector registers holding the destinations of the instruction that
last wrote to the same architectural register, which will become
dead once the new instruction reaches the end of the pipeline.
P vector-pipelined instruction copies, generated from a single
scalar instruction and issued as independent vector operations,
each have their own RDQ entry, covering one of the P soon-
to-be-dead physical vector registers.

Figure 5 shows the RDQ operating on the hot loop from the
RandAcc benchmark, assuming P = 2. Instruction #1, and its
pipelined copy #2, are striding loads, which load addresses
based on the stride detector. Before we enter vector-runahead
mode, we assume that S1..3 are scalar physical registers that
currently store rdx, rdi and rbp, respectively; S4 is a free
physical scalar register; and P1..15 are free physical vector
registers. All instructions except #3, and the invalid stores,
form two indirect chains leading to the indirect loads #16

inst.
id

instruction dst src1 src2

1 mov rcx, qword ptr [rdx] P1 S1

2 Pipe Inst. #1 P2

3 add rdx, 0x8 S4 S1

4 lea rax, ptr [rcx+rcx*1] P3 P1

5 Pipe Inst. #4 P4 P2

6 sar rcx, 0x3f P5 P1

7 Pipe Inst. #6 P6 P2

8 and ecx, 0x7 P7 P5

9 Pipe Inst. #8 P8 P6

10 xor rax, rcx P9 P3 P7

11 Pipe Inst. #10 P10 P4 P8

12 mov rcx, rax P11 P9

13 Pipe Inst. #12 P12 P10

INV mov qword ptr [rdx-0x8], rax INV S4 P9

INV Pipe (INV) INV S4 P10

14 and rcx, rdi P13 P11 S2

15 Pipe Inst. #14 P14 P12 S2

16 xor qword ptr [rbp+rcx*8], rax P15 P13 S3

17 Pipe Inst. #16 P1 P14 S3

inst.
id

register 
to free

executed
?

1 1

2 1

3 1

4 1

5 1

6 P1 1

7 P2 0

8 P5 1

9 P6 0

10 P3 1

11 P4 0

12 P7 0

13 P8 0

14 P11 0

15 P12 0

16 P13 0

17 P14 0

Register Deallocation QueueRenaming AVX Registers in Vector Runahead

Fig. 5: Example of an instruction sequence in vector-runahead
mode, with duplication of vectorized instructions via vector
pipelining P = 2, and associated renaming. The RDQ is filled
in as a result of lookup in the VRAT, which can be used to
reuse destination registers once no longer live.

and #17, so all apart from instruction #3 and the stores are
vectorized. Next to each instruction we show the source and
destination physical register IDs and the contents of the RDQ,
which consists of the physical register ID to free (when safe
to do so) and a bit to indicate whether the instruction has
been executed. An RDQ entry is allocated for each vectorized
instruction; no RDQ entry is allocated for invalid instructions
such as stores — marked in dark gray. The RDQ maintains
a head pointer that points to the first unexecuted instruction;
in our example, the head pointer points to instruction #7 —
all younger instructions have been executed and are marked in
light gray. When an instruction reaches the head of the RDQ
and has been executed, the RDQ frees the physical register
indicated and moves the head pointer on. The only vector
register to have been released so far is P1, which is reused
for instruction #17. Once #7 executes, registers P2 and P5
will be released (since instruction #8 has also been executed),
and the head pointer will move to instruction #9.

J. Terminating Runahead
Vector-runahead mode terminates when any of the following

four conditions is satisfied: (1) we encounter a dynamic
instance of the same striding load again; (2) we encounter, and
issue, the terminator: the PC identified by the stride detector
(Section III-B) as the last dependent load in the sequence;
(3) all vector lanes have been marked as invalid; or (4) we
time out (after 200 scalar-equivalent instructions have been
executed in vector-runahead mode), in case of traveling down
an unexpected code path. When U > P (Section III-G), i.e.,
the unroll length is greater than the pipeline depth, we re-enter
vector-runahead mode immediately, with the next striding load



for(i=0; i<NUM_KEYS; i++) {
C[hash(B[hash(A[i])])]++;

}
(a) C code

inst. id instruction

1 mov edx, dword ptr [rax]

2 add rax, 0x4

3 mov ecx, edx

4 shr ecx, 0x10

5 xor ecx, edx

6 imul edx, ecx, 0x45d9f3b

7 mov ecx, edx

8 shr ecx, 0x10

9 xor ecx, edx

10 imul edx, ecx, 0x45d9f3b

11 mov ecx, edx

12 shr ecx, 0x10

13 xor ecx, edx

14 and ecx, 0x1fffff

inst. id instruction

15 mov edx, dword ptr [rcx*4+0x18602220]

16 mov ecx, edx

17 shr ecx, 0x10

18 xor ecx, edx

19 imul edx, ecx, 0x45d9f3b

20 mov ecx, edx

21 shr ecx, 0x10

22 xor ecx, edx

23 imul edx, ecx, 0x45d9f3b

24 mov ecx, edx

25 shr ecx, 0x10

26 xor ecx, edx

27 and ecx, 0x1fffff

28 add dword ptr [rcx*4+0x106021e0], 0x1

(b) Assembly
Fig. 6: Example hot loop from Kangaroo with a striding load
(#1) followed by two dependent indirect loads (#15 and #28).

issuing vector gathers again. This is repeated until we have
issued U/P total rounds and only then is normal execution
resumed. As we show in Section VI, the benefit of vectorizing
the entire indirect chain far exceeds the additional duration the
core is in runahead mode, as Vector Runahead yields higher
memory-level parallelism than typical out-of-order execution.

Upon termination, we restore the front-end RAT to the point
of entry into runahead mode, and the TV, VRAT and RDQ
are cleared. The front-end is redirected to fetch from the next
instruction after the last dispatched instruction in the ROB.

K. Hardware Overhead
Vector Runahead incurs few new structures, and they are all

small; the other Vector Runahead structures repurpose existing
components. The stride detector (48-bit last address, 16-bit
stride distance, 2-bit counter, 48-bit terminator, 32 entries)
requires 456 bytes of storage. The taint vector uses 4 bytes
of storage (2 bits for each of 16 registers), and the VRAT
incurs 112 bytes (to encode a mapping to eight pipelined
physical vector registers for each scalar architectural register).
The RDQ, with 192 entries as used by PRE [64], takes up 768
bytes. In all, the SRAM overhead for Vector Runahead is just
1.31 KB, compared with PRE at 1.24 KB [64].

IV. REPRESENTATIVE CODE EXAMPLE

We now contrast Vector Runahead against the state-of-
the-art Precise Runahead Execution (PRE) [64] through a
representative code example from the Kangaroo benchmark,
see Figure 6. This hot loop consists of one striding load (#1),
which fetches a value that is hashed to generate the indirect
address for the first indirect load #15, which in turn is hashed
to generate the address for the second indirect load (#28). Note
that all instructions from #3 to #14 are required to generate the
indirect addresses for #15; similarly, #15 and all instructions
from #16 to #27 are required to generate the addresses for
#28; finally, #2 is needed for #1 in the next loop iteration.

The behavior that we observe for PRE is very similar to
what we described in Figure 2(c). Since our baseline procesor
includes a stride prefetcher, the #1 loads typically hit in the
L1 D-cache, enabling the quick issuing of the #15 loads. The
indirect nature of #15 causes a DRAM access and delays the
execution of any #28 load. In other words, no copies of #28
will be executed. Furthermore, the degree of MLP that can be
exploited is limited by the number of #15 loads that make it
into the issue queue. Because instructions #16 to #28 occupy
issue queue slots, the exploitable degree of MLP is limited
by how many copies of instructions #16 to #28 can fit in the
issue queue during runahead mode. We find that MLP saturates
around 5 for PRE, as we will later quantify in the evaluation
section (see Figure 8 in particular).

In contrast, Vector Runahead generates a substantially
higher degree of MLP. After entering into runahead mode,
Vector Runahead initiates vectorization when it hits a dynamic
instance of the striding load #1. Assuming U = 8 and P = 8,
Vector Runahead generates eight vector instructions for #1,
and continues the vectorization until it hits #28; note that this
corresponds to 64 iterations of the original loop. In contrast
to PRE, Vector Runahead’s ability to issue 64 independent
scalar-equivalent loads in immediate succession allows it to
generate substantially higher MLP. The processor remains in
vector-runahead mode until all eight vectorized copies of #28
are issued, to maximize coverage for all loads (including #28)
when the processor resumes to normal mode.

Note that in addition to higher degrees of MLP, Vector
Runahead also generates the MLP at a much faster pace
compared to PRE. Whereas PRE is fundamentally limited
by the processor’s fetch/decode bandwidth, and how many
operations can fit within the issue queue, Vector Runahead
generates many more independent memory accesses in imme-
diate succession. The effect is that Vector Runahead dramat-
ically increases the effective fetch/decode bandwidth during
runahead mode. In other words, Vector Runahead generates
more MLP at a much faster rate.

V. EXPERIMENTAL SETUP

A. Simulation Setup
We use the most accurate superscalar core model in Sniper

6.0 [15], a cycle-level and hardware-validated simulator, which
we adjust to faithfully model Vector Runahead. Table I pro-
vides the configuration of our baseline out-of-order processor
based on Intel Skylake [24]. We consider an aggressive PC-
based L1-D stride prefetcher supporting 16 streams, and 24
MSHRs to keep track of outstanding cache misses. The branch
predictor is an 8 KB TAGE-SC-L from the 2016 Branch Pre-
diction Championship [75]. We skip initialization and run for
200 million instructions within the workloads’ representative
regions of interest.

B. Workloads
We consider a variety of benchmarks featuring complex

memory and compute dependencies in their execution stream.
These benchmarks are memory latency bound on today’s sys-
tems, and are based on high-performance computing (HPC),



Core 3.2 GHz, out-of-order
ROB size 224
Queue sizes issue (97), load (64), store (60)
Processor width 4-wide fetch/dispatch/rename, 8-wide commit
Pipeline depth 8 front-end stages
Branch predictor 8 KB TAGE-SC-L
Functional units 3 int add (1 cycle), 1 int mult (3 cycles),

1 int div (18 cycles), 1 fp add (3 cycles),
1 fp mult (5 cycles), 1 fp div (6 cycles)

Register file 180 int (64 bit)
180 fp (128 bit)
96 vector (512 bit)

L1 I-cache 32 KB, assoc 4, 2-cycle access
L1 D-cache 32 KB, assoc 8, 4-cycle access,

stride prefetcher (16 streams)
Private L2 cache 256 KB, assoc 8, 8-cycle access
Shared L3 cache 8 MB, assoc 16, 30-cycle access
Memory 45 ns min. latency, 51.2 GB/s bandwidth,

request-based contention model

TABLE I: Baseline configuration for the out-of-order core.

graph and database workloads evaluated in previous work
on programmer- and compiler-managed prefetching mecha-
nisms [3, 4]. The benchmarks’ basic parameters of interest
are provided in Table II. The benchmarks are:

• Camel [4] (2 hashes input), a workload with significant
computation between indirect memory accesses;

• Graph 500 [56] with inputs -s 16 -e 10 and -s21
-e 10, a graph breadth-first search;

• Hash Join [13] (2 elements per bucket and 8 elements per
bucket [3]), a database kernel where a hashing calculation
must be performed to generate chains of addresses;

• Kangaroo [4] (3 arrays, 2 hashes), a workload with long
indirect chains and complex address computation;

• Conjugate Gradient (CG) and Integer Sort (IS) from the
NAS Parallel Benchmark Suite [11] (input B), supercom-
puting kernels with indirect memory accesses where CG’s
indirect memory access is likely to fit in the last-level
cache (LLC); and

• RandomAccess [50], an HPC kernel with complex indi-
rect address computation.

These benchmarks represent a variety of different complex
memory-access patterns, with differing indirect chains and
compute requirements. We use compiler flag -ftree-vectorize
(via O3) in all comparisons, but we find that autovectorization
does not alter performance because the code is not vectorizable
(despite being amenable to Vector Runahead).

VI. EVALUATION

We compare the following microarchitectural mechanisms:

• Out-of-Order (OoO): Baseline out-of-order core as
shown in Table I, with hardware stride prefetcher.

• Precise Runahead Execution (PRE): The state-of-
the-art runahead execution technique, as proposed by
Naithani et al. [64]. We assume an ideal stalling-slice
table; therefore, there are no misses in the table.

• Indirect Memory Prefetcher (IMP): The indirect mem-
ory prefetcher, as proposed by Yu et al. [88]. IMP is

Workload Ind. Chain Arithmetic Insts per Load
Camel 2 × 15
Graph500-s16 2–4 × 7
Graph500-s21 2–4 × 5
HJ2 2 X 7
HJ8 5 X 6
Kangaroo 3 X 11
NAS-CG 2 × 4
NAS-IS 2 × 4
RandAcc 2 X 8

TABLE II: A summary of our workloads, including the length
of the indirect chain (including striding load) within the most
common inner loops; whether complex arithmetic (beyond
basic array indexing) is necessary to calculate the addresses
needed for prefetching in runahead mode; and how many total
instructions occur on average per load at run-time.
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Fig. 7: Performance of vector-runahead execution on the
baseline out-of-order core. Vector Runahead yields a 1.79×
and 1.49× harmonic mean speedup compared to the baseline
OoO core and PRE, respectively.

attached to the L1 D-cache; it detects indirect access
patterns starting from striding memory accesses.

• Vector Runahead (VR): The mechanism proposed in
this paper. Our representative vector runahead technique,
with unroll length U of 8 and pipeline depth P of 8,
unless mentioned otherwise.

A. Overall Performance Comparison
Figure 7 reports speedup for all the evaluated techniques.

Vector Runahead achieves a 1.79× harmonic mean speedup
across the benchmarks compared to our baseline OoO architec-
ture. The achieved speedup is as high as 3.6× (Camel), 2.9×
(HJ2), 2.7× (HJ8) and 2.7× (Kangaroo). PRE on the other
hand achieves a harmonic mean speedup of 1.20× compared
to the baseline — in other words, Vector Runahead achieves a
speedup of 1.49× relative to PRE. IMP cannot detect complex
address computation patterns and improves speedup by only
1.19× relative to the baseline. In short, the significant improve-
ment in performance achieved by Vector Runahead results
from much higher memory-level parallelism (Figure 8), while
fetching in all loads within dependent sequences (Figure 12),
and without fetching irrelevant data (Figure 13(a)), as we
elaborate in the next few subsections. Before doing so, we
first discuss where PRE falls short.

PRE improves performance by processing future instruc-
tions beyond the ROB after a full-window stall. The perfor-



mance improvement through PRE depends on the number of
indirect accesses covered in each runahead interval. Since the
baseline system has a stride prefetcher attached to it, the stride
part of a single-level stride-indirect (indirect chain of 2) may
be in the cache for runahead execution to then use, allowing
it to prefetch the single indirect memory access somewhat
successfully (e.g., Camel and CG). Still, this is ineffective for
any workload with an indirect chain greater than two, where
the lack of access to intermediate loads for address calculation
hinders coverage, limiting the amount of MLP exposed by
PRE over standard out-of-order execution. This holds true even
if we modify PRE to stay in runahead mode as long as Vector
Runahead does to prefetch indirect chains, where the extra
performance improvement is limited to 3.5% on average.

IMP is also able to improve performance for applications
with primarily single-level indirect patterns (e.g., Camel and
CG). However, for more complex chains of instructions be-
tween the striding and indirect loads (e.g., HJ8, Kangaroo and
RandAcc), IMP cannot perform the necessary computation.

Vector Runahead achieves higher performance by three
main mechanisms. The most important is the software-
pipelining effect that reordering of load instructions gives us,
in that a large number of misses can be serviced simulta-
neously. This same reordering, implemented with 64 scalar
micro-ops instead of 8 vector micro-ops, is still sufficient to
gain an average 1.47× speedup. The optimization of packing
these into fewer vector operations, due to their now-SIMD
layout, increases performance to 1.69× by virtue of improving
compute throughput and by requiring fewer issue queue slots
so that loads can issue earlier. Finally, altering the termination
condition, such that Vector Runahead completes the entire
chain of memory accesses before exiting, allows it to cover
longer chains, of multiple main memory accesses, rather than
just the ones it can achieve before the head of the ROB returns,
increasing performance to the full 1.79× shown in the graph.

B. Performance and Sensitivity Analysis

Memory-Level Parallelism. Figure 8 shows why Vector
Runahead is able to achieve higher performance. Its pipelined
vectors are able to issue many gathers to memory at once,
thus hiding the serialization of dependent loads observed by
the out-of-order core and PRE. This also shows us why some
workloads are sped up more than others. Although our baseline
OoO core features a relatively big ROB, which enables it to
achieve high MLP on the simplest workloads, we note that
Vector Runahead can extract significantly more MLP. Perhaps
unsurprisingly, Vector Runahead achieves the largest speedups
when the out-of-order core is comparatively weakest: for
Camel, HJ2, HJ8 and Kangaroo, there are many instructions
(address-computing or otherwise) executing along with the
loads (Table II), which starve the out-of-order core of reorder
buffer and issue queue resources [4, 5], limiting its memory-
reordering ability. By contrast, Vector Runahead does not rely
on the reorder buffer for high memory-level parallelism, as it
can achieve the same effect through its vector gathers.
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Fig. 8: Memory-level parallelism measured in terms of MSHR
entries utilized per cycle if at least one is allocated. While
precise runahead improves MLP by 1.2×, vectorizing indirect
chains generates 2.3× more MLP than an OoO core.

Some workloads, such as G5-s16 and G5-s21, start from a
low baseline and stay relatively low even with Vector Runa-
head: complex control flow limits the ability of Vector Runa-
head to cover enough of the application’s memory accesses, in
effect throttling the vector gathers issued, particularly for the
smaller s16 input, which frequently moves between variable-
length data-dependent inner- and outer-loops. Others, such as
CG and G5-s16, have small datasets that often hit in the
LLC, meaning their L1 cache misses are serviced quickly
with or without Vector Runahead. Finally, even though many
workloads end up MSHR-constrained within vector-runahead
mode (Figure 11), thus achieving the highest MLP the CPU
can feasibly achieve, the average MLP is still lower than 24,
the maximum achievable with 24 MSHRs: this is because
Vector Runahead cannot run continuously, and only kicks in
when the out-of-order system runs out of resources.

Unrolling and Pipelining Analysis. Our default setting of
an unroll length U of 8 and a pipeline depth P of 8, allows
us to issue 64 scalar-equivalent copies of a dependent load
chain at a time. We see in Figure 9 that with no unrolling or
pipelining (U = 1, P = 1), since we only issue 8 scalar loads
at a time (and in total) before leaving runahead, almost no
performance improvement is registered; the limit on MLP of
the eight loads in a single gather means we struggle to beat
the OoO core’s performance, and so the compute time we take
away from it to execute in runahead is barely worth the effort.
Issuing larger unroll lengths without increasing the pipeline
depth (e.g., U = 8, P = 1) improves performance slightly,
by increasing coverage of Vector Runahead, but still lacks in
memory-level parallelism. Still, U = 8, P = 4 (32 loads at
once) is often sufficient to saturate 24 MSHRs; U = 8, P = 8
gains only a small amount more performance overall.

LLC Size. As we see in Figure 10, a larger cache is no sub-
stitute for Vector Runahead. The workloads it targets feature
large datasets, which is typical of today’s big-data workloads,
that do not fit in any reasonably sized cache, meaning neither
the baseline nor the performance of Vector Runahead is af-
fected significantly by large cache sizes. The speedup obtained
through Vector Runahead is largely invariant.

Number of MSHRs. Figure 11 shows the IPC, relative to our
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Fig. 9: Performance impact of unrolling and pipelining. U
(unroll length) is the total number of separate copies of the
vectorized scalar instructions. P (pipeline depth) is the number
of vector instructions launched simultaneously in each round.
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Fig. 10: Speedup through Vector Runahead as a function of
LLC size. Performance is normalized to a baseline OoO core
with the same respective LLC size. Increasing LLC size has
minor impact on performance due to the indirect memory ac-
cesses in these workloads. Hence, Vector Runahead’s speedup
is largely invariant.

baseline 24-MSHR setup, from varying the number MSHRs in
the cache. As Figure 8 previously demonstrated, 12 MSHRs
is insufficient to achieve the full benefits of Vector Runahead;
contention between concurrent misses for MSHRs limits the
achievable MLP. Still, even though our average utilization
in Figure 8 is always below 24 MSHRs, 36 and 48 still
gain small improvements for a few workloads: during vector-
runahead mode with the vector-pipelining P = 8 setting, we
can theoretically issue 64 gather loads simultaneously, and
some workloads issue more of these in parallel, thus leaving
vector-runahead mode more quickly, with more MSHRs.

C. Vector Runahead Effectiveness

Coverage. Figure 12 shows the number of off-chip memory
accesses issued by the core under Vector Runahead versus
PRE, relative to our baseline. It also shows the fraction of
these that are issued in normal mode only, and thus have
been adequately prefetched during runahead mode. There are
two key observations. First, neither technique significantly
overfetches: both generate few unnecessary memory accesses
in their pursuit of MLP. Second, Vector Runahead has much
higher coverage: the proportion of memory accesses during
normal mode is small for Vector Runahead (11.5% on average)
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Fig. 11: Impact of varying the number of MSHRs on the
performance of Vector Runahead. A sufficient number of
MSHRs is needed to fully benefit from Vector Runahead.
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Fig. 12: Coverage: number of off-chip memory accesses for
PRE and Vector Runahead normalized to OoO. The graph also
shows the fraction of memory accesses in normal versus runa-
head mode. Vector Runahead successfully prefetches DRAM
accesses, converting them into on-chip cache hits when the
program actually accesses them during normal mode.

compared to PRE (43%), due to its comprehensive handling
of indirect chains.
Accuracy. The low number of excess DRAM reads is echoed
in Figure 13(a). Vector Runahead rarely brings in data during
runahead mode that is not later used in normal mode before it
leaves the cache hierarchy. The exception is when the dataset is
large and the control flow complex, causing the stride detector
to generate vector addresses that are not later accessed, as is
the case for Graph500-s21, but still accuracy is over 90%, and
net performance improvement is high.
Timeliness. Despite the high MLP exploited by Vector Runa-
head, its prefetches are timely: we see in Figure 13(b) that
most are in the L1 cache by the time they are used, and while
some have been evicted into the L2 or L3 caches, these are still
preferable over high-latency off-chip accesses. Since Vector
Runahead can terminate as soon as it issues the last load in a
chain, some prefetches are still incomplete by the time normal
mode accesses them, and so a portion of the off-chip memory
latency is still observed through MSHR hits during normal
mode. Overall, most are ready by the time normal execution
reaches them.

VII. RELATED WORK

Vector Runahead is a form of prefetching, summaries of
which have been performed by Mittal [53], and Falsafi and
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Fig. 13: (a) Accuracy: fraction of total prefetched cachelines
in runahead mode that are later accessed in normal mode.
(b) Timeliness: fraction of total prefetched cachelines in
runahead mode for which the data is present in the L1-D,
L2 and L3 caches during normal mode; ‘Off-chip’ represents
the cachelines for which the data is still being transferred
from memory. Vector Runahead rarely brings in data during
runahead mode that is later not used during normal mode,
and most cachelines prefetched during runahead mode turn
into short-latency cache hits during normal mode.

Wenisch [28]. The most relevant work is categorized below.

A. Auto-vectorization
Vector Runahead has its roots in auto-vectorization [51, 69,

70] and software pipelining [18, 41, 73, 80, 81] to improve the
number of load misses serviced simultaneously under limited
front-end and back-end resources. In contrast to these static
software techniques, Vector Runahead is a dynamic hardware
technique, which does not need to be correct to adequately
prefetch into the cache.

B. Runahead Execution
Runahead execution [25, 57] is a microarchitecture tech-

nique designed to skip ahead of long-latency loads: runahead
execution unblocks the processor when blocked by a long-
latency load to prefetch independent memory accesses long
before they are needed. Mutlu et al. throttle [58, 60] and
redesign [61] for increased efficiency. Filtered runahead [32]
uses backwards dataflow to directly target instruction se-
quences. Precise runahead execution [64] further improves
performance with more efficient checkpointing techniques,
register reclamation, and filtering of unnecessary instructions.
Continuous runahead [34] offloads execution to an accelerator,
to avoid sharing resources with the main core; while the in-
order core would not directly be able to achieve the high
memory-level parallelism needed for indirect workloads, Vec-
tor Runahead also could hypothetically be offloaded to such
a processor. Load Slice Core [16], Freeway [43] and Forward
Slice Core [46] slice up programs, offloading memory accesses
to in-order queues; Vector Runahead could further increase the
exploitable MLP in these slice-out-of-order cores. Other work
improves runahead’s efficiency [71, 72, 82, 83].

Runahead execution’s inability to target dependent memory
accesses is well known in the literature. Address-value delta

prediction [59, 62] uses a value predictor to predict address-
generating load values, instead of directly performing the loads
themselves in a vector style, as Vector Runahead does. For se-
quential list walks without memory-level parallelism, Hashemi
et al. [33] move calculation into the memory controller.

Fundamentally, Vector Runahead presents a solution for
achieving memory-level parallelism down dependent chains,
which gives the above mechanisms the ability to deal with
complex memory-access patterns. While our implementation
considers this runahead within-thread and within-core, as
in the original runahead paper [57], the technique is more
general, and could equally be applied to mechanisms that
offload the runahead work [33, 34, 71, 72, 82, 83].

C. Pre-Execution and Helper Threads
More generally, techniques exist in the literature that pre-

compute memory accesses. Dependence-graph computation [8,
74] uses a separate execution engine to precompute instruc-
tion sequences for memory accesses. Slice Processors [54]
similarly extract instruction sequences to generate loads. Pre-
execution of loads can also be done through other threads.
Kim and Yeung [38] use the compiler to generate ‘helper
threads’, which bring in data for the main computation thread.
Speculative Precomputation [22] allows speculative helper
threads to spawn their own speculative helper threads, to target
complex chain dependencies, which Vector Runahead handles
via vectorization. Lau et al. [47] offload these to small partner
cores. Ultimately, both helper threading and runahead execu-
tion have roots in Decoupled Access Execute [77], where load
and compute slices are executed independently. DeSC [31]
splits up the entire processor into access- and execute-helper
threads. Ganusov and Burtscher [29] emulate microarchitec-
tural prefetchers via helper threading. By contrast to these
techniques, Vector Runahead needs no separate thread, no
separate execution units, and neither programmer nor com-
piler support. Moreover, since Vector Runahead can follow
dependent chains, unlike pre-execution and helper threads, it
can achieve substantially higher memory-level parallelism.

D. Architecturally Visible Prefetching
The workloads that Vector Runahead targets have mostly

been targeted by prefetchers that require software support.
Harbinger instructions [6] and Guided-Region Prefetching [84]
introduce the idea of controlling a hardware prefetcher with
programmer hints. Specialized configurable prefetchers have
been developed for Graph workloads [1] and linked struc-
tures [21, 42]. RnR [89] uses programmer hints to assist
temporal history prefetchers, discussed below. Cavus et al. [17]
present an array-tracking prefetcher. More generally, pro-
grammability can be added within the memory hierarchy [87].
The Event-Triggered Programmable Prefetcher [3] extracts
memory-level parallelism via extreme thread-level parallelism,
by contrast to the data-level parallelism within a core we use
for Vector Runahead, on a many-core accelerator. Fetchers,
which control memory accesses directly, and thus change
program semantics instead of being prefetch hints, include



Minnow [90], Meet the Walkers [40], SQRL [44], DASX [45],
Ho et al. [35], Livia [48] and Pipette [66].

Software prefetching [14, 18] is a widely deployed example
of a prefetching technique that requires software support,
where special non-blocking loads are inserted into the program
stream. Mowry [55] develops algorithms to insert software
prefetches in the compiler. Ainsworth and Jones develop
compiler techniques for indirect memory accesses [2, 4].
Software prefetching can also be used as a building block to
enable fetcher-unit-like behavior: AMAC [41] uses software
prefetching to emulate Walkers [40]. More generally, instruc-
tions can be software-pipelined in the compiler to better ex-
tract memory-level parallelism, such as in Clairvoyance [80].
By comparison, Vector Runahead is microarchitecture-only,
requiring no changes to the binary or source code, and since
it can speculate within runahead mode, Vector Runahead can
freely vectorize sequences of instructions that would cause
software prefetchers to fault.

E. Microarchitectural Prefetchers
Most prefetchers deployed to date require no software

support, sitting in the microarchitecture. Stride prefetchers [19,
20], which pick up sequences in address patterns, have seen
wide use in commercial systems [10], and a wide body
of work exists to improve their coverage, performance and
selectivity [12, 39, 52, 76]. Temporal-history prefetchers [36,
37, 65, 85, 86] store and replay histories of past cache misses,
but cannot support the volume of data necessary for, or lack
of repetition in, complex big-data workloads [1, 88]. Cooksey
et al. [23] present a content-directed prefetching mechanism
to fetch any data brought into the cache that appears to be
a pointer, regardless of whether it is used by the program,
though compiler input [6, 26] is typically necessary to throttle
over-fetching. The Bouquet of Prefetchers [68] uses multiple
different styles of prefetcher, selected by a PC-based predictor.
IMP [88] targets stride-indirect memory access patterns in the
cache, as do Takayashiki et al. [79] via observing gathers.
In contrast, Vector Runahead operates within-core, allowing
it to cover arbitrary indirection depths with complex address
calculation, as needed in many workloads [10].

VIII. CONCLUSION

We have presented Vector Runahead, a new microarchi-
tectural method for generating high degrees of memory-level
parallelism even for highly complex workloads that feature
chains of dependent memory accesses and complex address
computation. By dynamically, and speculatively, vectorizing
the runahead sequence, we generate a form of runahead
execution that brings in many future dependent memory ac-
cesses at once, hiding the memory wall by overlapping many
vector gather accesses in parallel. We report an average 1.79×
performance speedup over a baseline out-of-order architecture
with minimal amount of new state added to the processor.
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