
Sieve: Stratified GPU-Compute Workload Sampling
Mahmood Naderan-Tahan Hossein SeyyedAghaei Lieven Eeckhout

Ghent University, Belgium

Abstract—To exploit the ever increasing compute capabilities
offered by GPU hardware, GPU-compute workloads have evolved
from simple computational kernels to large-scale programs with
complex software stacks and numerous kernels. Driving architec-
ture exploration using real workloads hence becomes increasingly
challenging, up to the point of becoming intractable because
of extremely long simulation times using existing architecture
simulators. Sampling is a widely used technique to speed up
simulation, however, the state-of-the-art sampling method for
GPU-compute workloads, Principal Kernel Selection (PKS), falls
short for challenging GPU-compute workloads with a large
number of kernels and kernel invocations.

This paper presents Sieve, an accurate and low-overhead
stratified sampling methodology for GPU-compute workloads
that groups kernel invocations based on their instruction count,
with the goal of minimizing the execution time variability within
strata. For the challenging Cactus and MLPerf workloads, we
report that Sieve achieves an average prediction error of 1.2%
(and at most 3.2%) versus 16.5% (and up to 60.4%) for PKS
on real hardware (Nvidia Ampere GPU), while maintaining a
similar simulation speedup of three orders of magnitude. We
further demonstrate that Sieve reduces profiling time by a factor
of 8× (and up to 98×) compared to PKS.

I. INTRODUCTION

GPUs are by far the most popular hardware accelerators to-
day. General-purpose programming interfaces such as CUDA
and OpenCL have opened up the vast compute capabili-
ties GPUs offer towards GPU-compute applications beyond
traditional graphics processing [30], [46], including high-
performance computing (HPC) [9], [14], graph analytics [10],
[48], and machine learning (ML) [28], [32], [34]. The rapid
growth in raw hardware compute capabilities and software
support has rendered the workloads ever more complex, con-
sisting of multiple tens of kernels that are invoked multiple
(tens or even hundreds of) thousands of times.

As GPU-compute workloads become increasingly more
complex, they stress the performance evaluation methodolo-
gies computer architects use during early stages of the design
cycle to their limit. At a typical simulation speed of 6 KIPS
rate, the state-of-the-art GPU simulator, Accel-sim [26], can
only simulate workload executions on the order of a couple
milliseconds within a simulation time budget of a few hours.
Unfortunately, real applications easily run for minutes, if not
hours, rendering current simulation methodologies inadequate.
As argued by Baddouh et al. [11], some of the recent
MLPerf [34] workloads would take a century to simulate on
current simulators. This is clearly impractical.

Researchers are well aware of the architecture simulation
challenge and have developed a variety of techniques to speed
up architectural simulation. Sampling, through which a limited
number of representative regions are simulated, is a widely

used methodology. While there exists a large body of work
on sampled simulation for CPUs [16]–[20], [24], [38], [39],
[51], sampling techniques specifically developed and tailored
for speeding up GPU simulation have only recently received
attention, see in particular [23], [25], [41], [44]. The state-
of-the-art GPU workload sampling methodology, and most
closely related work compared to ours, is Principal Kernel
Selection (PKS) [11] which was shown to yield high accuracy
and high speed for a variety of GPU-compute workloads.
PKS first profiles all kernel invocations of a workload using a
set of microarchitecture-independent execution characteristics,
after which it groups kernel invocations in clusters based on
similarity. PKS then selects a representative kernel invocation
per cluster for simulation. Overall application performance is
then estimated by computing a weighted performance figure
across all representative kernel invocations.

Unfortunately, we find that although PKS is accurate and
effective for many workloads, it fails to yield high accuracy for
all workloads, and especially the more challenging workloads
with a large number of kernels and kernel invocations. The
reason is that, for these workloads, there is too high variability
in the clusters from which PKS selects a representative kernel
invocation, i.e., the different kernel invocations grouped within
a cluster exhibit too high variability in execution cycle count
for PKS to select an invocation that is representative for
all invocations within the cluster. In addition, profiling the
workload or collecting the dozen execution characteristics that
serve as input to PKS, is time-consuming up to the point of
becoming impractical.

In this paper, we propose Sieve, an accurate and low-
overhead sampling methodology for GPU-compute workloads.
Sieve is based on the simple and intuitive observation that
different invocations of the same kernel most often lead to
a (very) similar or even the same instruction count. Sieve
groups kernel invocations into strata based on instruction
count variability. The stratification process effectively ‘sieves’
kernel invocations into strata such that the execution time
variability within the strata is minimized. Moreover, Sieve
relies on a low-overhead profiling phase in which only a
single microarchitecture-independent execution characteristic
is collected per kernel invocation, namely instruction count.

We evaluate Sieve on two real hardware platforms (contem-
porary Nvidia Ampere and Turing GPUs), and demonstrate
significantly higher accuracy for the challenging Cactus [31]
and MLPerf [34] workloads compared to PKS, while achieving
a similarly high (∼1,000×) simulation speedup. In particular,
Sieve achieves an average prediction error of 1.2% (and at most
3.2%), versus 16.5% (and up to 60.4%) for PKS. Moreover,

profiling time is on average 8× (and up to 98×) faster than
PKS. We further show that Sieve accurately predicts relative
performance differences across architectures, in contrast to
PKS which yields misleading relative performance predictions
in some cases. We provide the Sieve scripts and the iden-
tified representative kernel invocations for the Cactus [31],
MLPerf [34], Rodinia [14], Parboil [40] and CUDA SDK [6]
benchmark suites here: https://github.com/gpubench/sieve.

II. PRIOR WORK AND ITS LIMITATIONS

GPU simulation acceleration is not a new topic and some
prior work has been done in this space. Principal Kernel
Selection (PKS) [11] is the current state-of-the-art, and is most
closely related to Sieve. We now describe the PKS method and
its limitations. We discuss other related work in Section VI.

A. Principal Kernel Selection (PKS)

PKS made a substantial leap forward in GPU sampling
compared to its own prior work [23], [25], [42], [44]. PKS
operates as follows. It first profiles a workload of interest
by collecting a wide variety of execution characteristics for
each kernel invocation. The 12 characteristics that PKS col-
lects are all microarchitecture-independent. PKS subsequently
applies Principal Component Analysis (PCA) to reduce the
dimensionality of the data set, and then uses Cluster Analysis
(i.e., k-means clustering) to group the kernel invocations in
this (reduced) multi-dimensional workload space. The basic
intuition is to group kernel invocations into clusters such that
all kernel invocations within a cluster feature similar execution
characteristics. Note that different kernel invocations in the
same cluster may originate from different kernels, as long as
the execution characteristics are similar.

Once the clusters are formed, a representative kernel in-
vocation is identified per cluster, and its relative weight is
computed. The weight per cluster (representative) is computed
based on the number of kernel invocations within the cluster.
In other words, the more kernel invocations a cluster contains,
the higher its weight.

Performance for the full workload execution is then esti-
mated based on the detailed simulation of the representative
kernel invocations only. Indeed, the representative kernel in-
vocations are simulated, their respective performance numbers
are computed (i.e., cycle count), and an overall performance
prediction is obtained by computing a weighted sum across the
performance numbers obtained for the representative kernel
invocations. In other words, PKS computes a weighted sum
of cycle counts across all representative kernel invocations,
with the weights being the number of kernel invocations per
respective cluster.

To further speed up the simulation, Baddouh et al. [11] com-
plement PKS with a technique which they call Principal Kernel
Projection (PKP) — PKS plus PKP then is their final proposal,
namely Principal Kernel Analysis (PKA). PKP builds upon
the observation that performance quickly converges within a
kernel invocation, i.e., as the execution of a kernel invocation
progresses over time, the overall performance number (e.g.,

instructions executed per cycle or IPC) quickly converges to
its steady-state value. Hence, we do not need to simulate the
entire kernel invocation, and a significant simulation speedup
can be achieved by stopping simulation once the performance
number has converged. According to the results obtained
by Baddouh et al. [11], PKA is receiving the bulk of its
speedup from PKS, however, for a few workloads PKP leads
to additional speedups. In this work, we hence focus on PKS
and discard PKP because (1) it is less effective, and (2) it is
orthogonal to both Sieve and PKS, i.e., PKP can be applied to
both techniques with similar benefits.

B. Limitations

Although Baddouh et al. [11] convincingly demonstrate
PKS’ accuracy and speed, there are a couple limitations
which we overcome with Sieve. First, PKS is effective for
many workloads, particularly relatively simple GPU-compute
workloads from the Parboil [40], Rodinia [14] and CUDA
SDK [6] benchmark suites. However, we find that PKS is in-
accurate for more challenging workloads with a large number
of kernels and kernel invocations. In particular, for the non-
trivial workloads from Cactus [31] and MLPerf [34], we find
that PKS incurs significant inaccuracy. The reason relates to
how PKS characterizes kernel invocations. PKS groups kernel
invocations based on microarchitecture-independent charac-
teristics, and hence invocations from different kernels may
be grouped within the same cluster. Moreover, because PKS
predicts application cycle count as a weighted sum of the
cycle counts of the cluster representatives, with the weights
being the number of kernel invocations per cluster, PKS
essentially assumes that all kernel invocations in the same
cluster have the same execution time. We find though that
there is significant variability in cycle count within clusters.
Selecting a kernel invocation that is representative for the rest
of the invocations in the cluster is hence challenging, or even
(close to) impossible, as we will demonstrate in Section V.

Second, PKS, as mentioned before, characterizes kernel
invocations by collecting 12 microarchitecture-independent ex-
ecution characteristics. Collecting this many characteristics is
time-consuming using existing profiling tools such as Nvidia’s
Nsight Compute [3]. For long-running workloads, profiling
takes multiple days, and in some cases even several weeks.
Although this is a one-time cost only, it is impractical because
one needs to reserve an entire machine for multiple days or
weeks to profile a single workload. To overcome this chal-
lenge, Baddouh et al. [11] propose two-level profiling in which
they perform detailed profiling collecting the 12 characteristics
for a first batch of kernels, followed by low-overhead profiling
to collect the kernel names and grid dimensions for the
remaining kernels in the workload. In our experiments we find
that PKS profiling is indeed time-consuming, and substantially
shorter profiling times can be achieved by collecting only
a single execution characteristic, namely instruction count,
and still achieve high accuracy, as we will demonstrate in
Section V.

A last and more technical concern is that PKS relies on
a golden reference obtained on a real hardware device to
select the representative kernel invocations. More specifically,
PKS relies on k-means clustering to group kernel invocations.
Choosing the optimal number of clusters k is determined by
calculating the error for each k (up to a maximum k of 20), and
then selecting the one that minimizes the prediction error. The
latter step, i.e., computing the prediction error for all k’s, relies
on a golden reference cycle count obtained on real hardware.
This leads to the following concern. Although PKS uses
microarchitecture-independent execution characteristics during
profiling, it uses a specific hardware platform to perform the
clustering, which makes the final selection of representative
kernel invocations not truly microarchitecture-independent.
In contrast, Sieve profiles kernel invocations and selects
representatives only using a microarchitecture-independent
characteristic, namely instruction count; by consequence, the
representative kernel invocations are truly microarchitecture-
independent. In other words, Sieve does not rely on a golden
reference cycle count obtained on a real hardware platform.
There is a caveat though that instruction count, as well as other
microarchitecture-independent execution characteristics, might
vary slightly across different GPU generations. However, it is
expected that the variation in instruction count will be less
than the variation in performance. In that sense, Sieve is more
microarchitecture-independent compared to PKS.

C. Overcoming the Limitations

Sieve overcomes these limitations by only using a sin-
gle microarchitecture-independent execution characteristic,
namely instruction count, to characterize and categorize ker-
nel invocations. Because of the low variability within each
cluster, Sieve’s accuracy is high — significantly higher than
PKS. Because we need to collect only a single execution
characteristic, profiling is also fast — significantly faster than
PKS. Furthermore, the achieved speedup for simulation of
the representative kernel invocations obtained through Sieve
remains high, and is comparable to PKS.

III. SIEVE SAMPLING METHOD

We now describe how Sieve operates, see also Figure 1 for
a high-level block diagram of the workflow. The first step is
to profile the workload of interest. The profile information
serves as input to stratification which selects and outputs the
kernel invocations that are most representative along with their
respective weights. These representative kernel invocations are
then used for detailed simulation or workload analysis. We
now discuss the various parts of the Sieve methodology.

A. Profiling

A GPU program typically consists of multiple kernels, and
each kernel can be executed multiple times. We refer to
different executions of the same kernel as kernel invocations.
The profiling phase of Sieve collects the following information
for each kernel invocation: kernel name, kernel invocation ID,
and number of dynamically executed instructions. In other

Fig. 1. Block diagram for Sieve. Sieve selects representative kernel invo-
cations with their respective weights for driving architecture design space
exploration.

words, the profile essentially is a big table with as many
rows as there are kernel invocations in the workload, and
three columns per row (kernel name, kernel invocation ID,
and instruction count).

Note that profiling is a one-time cost, and its purpose is
to feed the Sieve back-end to select representative kernel
invocations. The representative kernel invocations are then
simulated multiple times during architecture design space
exploration. Although profiling is a one-time cost, it can be
extremely time-consuming. Sieve makes profiling practical by
measuring only a single program characteristic that is easy to
profile, namely dynamic instruction count. PKS on the other
hand collects a dozen execution characteristics, which leads to
impractically long profiling times of more than a month for
some of the complex workloads considered in this work. Sieve
substantially reduces profiling time compared to PKS as we
will quantify in Section V.

B. Stratification

Once the profile information has been collected, the Sieve
back-end selects the most representative kernel invocations.
Sieve uses a simple, yet effective method to categorize kernel
invocations into strata. Sieve considers all invocations of a
kernel and categorizes them based on instruction count in
such a way that each stratum consists of a collection of
kernel invocations of the same kernel with the same or similar

dynamic instruction count. By doing so, Sieve effectively
‘sieves’ kernel invocations into strata with the following shared
attribute: (1) being from the same kernel, and (2) featuring the
same or similar instruction count. The intuition is that strata
selected in this way show limited execution time variability
because all kernel invocations within a stratum are executions
of the same kernel and execute roughly the same number of
instructions, i.e., the work performed by the kernel invocations
within the same stratum is similar.

The stratification per kernel is based on the simple ob-
servation that different invocations of the same kernel often
lead to the same (or very similar) instruction count. We hence
categorize kernel invocations in three so-called tiers:

• Tier-1: There is no variation in the number of instructions
across invocations. In other words, the kernel executes the
exact same number of instructions across invocations.

• Tier-2: There is little variation in the number of executed
instructions across invocations of the same kernel.

• Tier-3: There is large variation in the number of executed
instructions across invocations of the same kernel.

Note that Tier-2 and Tier-3 represent variable instruction count
across invocations, and they are distinguished by a threshold.
We use the Coefficient of Variation (CoV) to quantify the
variability in instruction count across invocations. CoV is
defined as the standard deviation σ (i.e., the average squared
differences with the mean) divided by the mean instruction
count µ:

CoV =
σ

µ
.

If the CoV is below a predefined and user-set threshold θ, the
kernel belongs to Tier-2; otherwise, it belongs to Tier-3. The
smaller the threshold θ, the less the variability within strata.
This suggests higher accuracy but lower speed. We evaluate
Sieve’s sensitivity to θ for accuracy and speed, and find that a
threshold of θ = 0.4 strikes a good balance between accuracy
and speed. We hence consider θ = 0.4 in our setup, unless
mentioned otherwise.

Figure 2 categorizes the kernel invocations across the three
tiers for the various Cactus and MLPerf workloads considered
in this work for three threshold values θ. (See Section IV
for details about our experimental setup.) Interestingly, the
majority of kernel invocations fall within the Tier-1 and Tier-
2 groups, meaning that there is relatively little variability in
instruction count across invocations of the same kernel. On
average, 41% of kernel invocations belong to Tier-1; 22%,
42% and 49% belong to Tier-2 for θ = 0.1, θ = 0.5
and θ = 1.0, respectively. For some workloads, all kernel
invocations belong to Tier-1 and Tier-2, as is the case for gms
and lmr, even for the smallest thresholds; for gru, lmc, bert,
resnet50, all kernel invocations belong to Tier-1 and 2 for the
larger thresholds θ at 1.0 (or 0.5). The gst benchmark has the
largest Tier-3 fraction above 50%. A couple other benchmarks
have a Tier-3 fraction in the 10% to 50% range depending on
the threshold θ.

Because of the large variability within Tier-3, we need to
further stratify the invocations so that the variability within

each stratum is small. We therefore use Kernel Density
Estimation (KDE) [8], [36] which essentially groups kernel
invocations in such a way that it (1) minimizes the number of
strata, and (2) ensures that the variability in instruction count
is less than a preset threshold. Again, we rely on the CoV for
instruction count and we use the same threshold θ as before.
The end result for the stratification process is that we end up
with a number of strata or groups of kernel invocations that
all feature the same or similar instruction count and originate
from the same kernel. For this reason, we expect the execution
behavior to be similar across all invocations within a stratum.

C. Representative Kernel Invocation Selection

Once the kernel invocations have been categorized, the next
step is to select a representative invocation for each stratum.
For Tier-1, this is straightforward because all kernel invo-
cations have the same dynamic instruction count. We hence
simply select the first-chronological kernel invocation. For
Tier-2 and Tier-3, selecting a representative kernel invocation
is a little more complicated because there is some variability
within a stratum (although variability is small). We select the
first-chronological invocation with the most dominant CTA1

size, meaning that the selected kernel invocation occupies the
available hardware resources in a representative way for the
rest of stratum. (We also considered selecting the invocation
with the maximum CTA size to better stress the GPU archi-
tecture, but we found this to be less accurate.)

In addition to identifying a representative invocation per
stratum, we also need to compute its relative weight. We do
this by computing the sum of the instruction count for all
invocations within the stratum. Dividing the total instruction
count per stratum to the total instruction count for the entire
workload yields the stratum’s weight, and thus the weight of
its representative kernel invocation. As such, an invocation that
represents a stratum with a high instruction count receives a
higher weight.

D. Performance Prediction

The output provided by Sieve is the representative kernel in-
vocations and their respective weights, which we subsequently
use to drive architecture design space exploration. To predict
overall application performance, the following two steps need
to be conducted for each architecture configuration of interest.
We first execute or simulate the representative kernel invoca-
tions and we compute their respective performance number,
e.g., the number of instructions executed per cycle (IPC).
Second, we compute the overall, application-level performance
number by weighting the per-stratum IPC numbers with their
respective weights. This is done by computing the weighted
harmonic mean IPC as follows:

IPC =
1∑N

i=1
wi

IPCi

,

1In Nvidia’s terminology, a Cooperative Thread Array (CTA) refers to a
thread block. This is similar to a workgroup in OpenCL’s terminology.

Fig. 2. Fraction kernel invocations belonging to Tier-1, Tier-2 and Tier-3 as a function of the threshold θ = 0.1, θ = 0.5 and θ = 1.0. Most kernel invocations
below to Tier-1 and Tier-2, meaning that there is little to no variability in instruction count across invocations of the same kernel.

with N the number of strata, and IPCi and wi the IPC and
weight per stratum, respectively. Of course, the weights add up
to one, i.e.,

∑N
i=1 wi = 1. Note that if the performance number

per stratum would be CPI, we would need to compute the
weighted arithmetic mean across the per-stratum CPI numbers
with the weights based on instruction count.

E. Discussion

Note that Sieve categorizes kernel invocations into strata
based on (1) kernel name and (2) similar (or same) instruction
count. Hence, a kernel that is invoked only once (or only a few
times) will be identified as a kernel to select (a) representative
kernel invocation(s) from, even if its contribution to the overall
execution time is small. PKS on the other hand may possibly
cluster such kernels and invocations with invocations from
other kernels because it does not rely on kernel names but on
microarchitecture-independent characteristics. In other words,
PKS may cluster invocations from different kernels but with
similar characteristics. By doing so, PKS may possibly se-
lect fewer representative kernel invocations, thereby achieving
higher simulation speedup compared to Sieve. In practice
though, we find that Sieve achieves similar simulation speedup
as PKS while being substantially more accurate.

IV. EXPERIMENTAL SETUP

1) GPU Platform: To evaluate Sieve, we consider a
modern-day high-end Nvidia RTX 3080 GPU system fea-
turing 68 SMs, 10 GB of memory, and 760 GB/s of DRAM
bandwidth. This GPU implements Nvidia’s Ampere architec-
ture [5]. In addition to this baseline architecture, we also
consider a previous generation Nvidia RTX 2080Ti GPU
with 68 SMs, 11 GB of memory, and 616 GB/s of DRAM
bandwidth in some of our experiments. This GPU implements
Nvidia’s Turing architecture [7], and is used in addition to
our baseline architecture to evaluate Sieve’s accuracy for pre-
dicting relative performance differences across architectures.
The main libraries and tools we use in this work include the
CUDA-11 driver, cuDNN-8 library and Nsight Compute 2022.

2) Benchmarks: We use a wide variety of (randomly se-
lected) workloads from different benchmark suites, including
Parboil [40], Rodinia [14], CUDA SDK [6], Cactus [31] and
MLPerf inference [34], see Table I. In the evaluation, we will
focus mostly on the Cactus and MLPerf benchmarks because
they are the most challenging to sample featuring a large
number of kernels and a large number of invocations per
kernel. The benchmarks in the other suites, namely Parboil,
Rodinia and SDK, are relatively easy to sample, and prior
work (PKS) — alike Sieve — achieves high accuracy for
those workloads because of the small number of kernels and
invocations.

Due to infrastructure limitations, and because profiling is
extremely time-consuming, especially for PKS, we do not
consider full-application runs for the Cactus and MLPerf
benchmarks — full-workload profiling for PKS is estimated
(based on extrapolation) to take more than three weeks. In
contrast, we consider and limit the total number of kernel
invocations profiled for the Cactus and MLPerf benchmarks as
listed in Table I; there are two exceptions, namely gst and gru,
which are the shortest running benchmarks and for which we
consider full runs. Overall, the large invocation count provides
confidence that the Cactus and MLPerf benchmark experi-
ments are representative. We profile all kernel invocations for
the Parboil, Rodinia and CUDA SDK benchmarks.

3) Evaluation Methodology: We collect the data as follows.
For Cactus, all applications are built and compiled following
their documentation and makefiles, see [2]. For MLPerf, we
use the Nvidia docker image v2.0 which is publicly available
in the MLPerf repository [4]. Table II shows all the metrics
used by PKS, versus the one metric, instruction count, used by
Sieve. For each application, we run the profiler which produces
a list of values (one for each metric of interest) per kernel
invocation. The data is converted into a readable CSV file
which serves as input to PKS and Sieve.

To compute sampling accuracy, we use cycle count per
kernel invocation obtained on real hardware. This implicitly
assumes perfect warmup, i.e., the cache and microarchitecture

TABLE I
WORKLOADS CONSIDERED IN THIS WORK FROM THE PARBOIL [40],
RODINIA [14], CUDA SDK [6], CACTUS [31] AND MLPERF [34]

BENCHMARK SUITES. THE NUMBER OF KERNELS AND KERNEL
INVOCATIONS IS ALSO LISTED.

Suite Workload #Kernels #Invocations

Pa
rb

oi
l

bfs ny 2 11
histo 4 252
lbm 1 3,000
mri-g 9 51
stencil 1 100

R
od

in
ia

cfd 4 14,003
dwt2d 4 10
gaussian 2 16,382
heartwall 1 20
hotspot3d 1 100
huffman 6 46
lud 3 22
nw 2 255
srad 6 502

SD
K

blackscholes 1 512
cholesky 25 143
gradient 7 84
dct8x8 8 118
histogram 4 68
hsopticalflow 6 7,576
mergesort 4 49
nvjpeg 2 32
random 2 42
sortingnet 4 290

C
ac

tu
s

gru 8 43,837
gst 15 175
gms 14 92,520
lmc 58 248,548
lmr 62 74,765
dcg 59 414,585
lgt 74 532,707
nst 50 1,072,246
rfl 57 206,407
spt 43 112,668

M
L

Pe
rf

3d-unet 20 113,183
bert 11 141,964
resnet50 20 78,825
rnnt 39 205,440
ssd-mobilenet 33 64,138
ssd-resnet34 26 57,267

TABLE II
EXECUTION CHARACTERISTICS PROFILED BY PKS VERSUS SIEVE.

Execution characteristic PKS Sieve

Coalesced global loads ✓
Coalesced global stores ✓
Coalesced local loads ✓
Thread global loads ✓
Thread global stores ✓
Thread local loads ✓
Thread shared loads ✓
Thread shared stores ✓
Thread global atomics ✓
Instruction count ✓ ✓
Divergence efficiency ✓
Number of thread blocks ✓

state is perfectly warmed up at the beginning of each sample or
representative kernel invocation. This is a reasonable assump-
tion for long-running kernel invocations, which is the case for
our workloads. (Studying the impact of warmup on sampling
accuracy is left for future work.) PKS uses cycle count for
the representative kernel invocations to predict cycle count

for the entire application, as described in Section II-A. For
Sieve, we combine cycle count and instruction count for the
representative kernel invocations to predict the application’s
IPC, as described in Section III-D; dividing total instruction
count with the predicted IPC yields the predicted cycle count.

We use the PKS scripts as made publicly available [1], and
we implement Sieve through a separate set of scripts, which
are available at https://github.com/gpubench/sieve. The error
metric to quantify sampling accuracy is the same for PKS
and Sieve, namely the absolute cycle count difference between
the predicted cycle count and the total recorded cycle count
normalized to the total cycle count:

Error =
|Cpredicted − Cmeasured|

Cmeasured
.

Recall that Sieve predicts application IPC as the weighted har-
monic mean of the IPC values across all representative kernel
invocations, with the weights being total instruction count per
cluster; predicted cycle count is then obtained by dividing total
instruction count (which is known) with the predicted IPC.
PKS predicts application cycle count as a weighted sum of the
cycle counts for each cluster representative, with the weights
being the number of kernel invocations per cluster. We obtain
cycle count and IPC for each kernel invocation from real
hardware execution; the golden reference, total cycle count,
is also collected on real hardware. We thus evaluate Sieve
(and compare it against PKS) through real silicon validation
— not through simulation.

We quantify speedup as the ratio of the total cycle count for
the entire workload execution divided by the total cycle count
for all representative kernel invocations — speedup quantified
as such is a measure for the speedup to expect when simulating
the representative kernel invocations as opposed to the entire
workload execution. Profiling time is defined as the total time
it takes to collect all the metrics needed as input for PKS
versus Sieve.

V. RESULTS

We now evaluate Sieve along a number of dimensions,
in particular accuracy, speedup, and profiling time. We also
evaluate Sieve’s accuracy for predicting relative performance
differences across architectures. We mostly evaluate Sieve
using the more challenging Cactus and MLPerf benchmarks,
but also provide results for the other benchmark suites Parboil,
Rodinia, and CUDA SDK. We compare Sieve against the
state-of-the-art Principal Kernel Selection (PKS) approach [11]
— more specifically, we compare against PKS-first which
selects the first chronologically occurring kernel invocation
per cluster, as advocated by Baddouh et al., and we evaluate
sensitivity to other selection policies.

A. Accuracy

Figure 3 reports the prediction error for Sieve versus PKS.
The overall conclusion is that Sieve is substantially more
accurate than PKS. While PKS yields an average error of
20.4% and 16.0% for Cactus and MLPerf, and a maximum

Fig. 3. Prediction error for Sieve and PKS. Sieve is substantially more
accurate than PKS: average error of 1.2% (at most 3.2%) for Sieve versus
16.5% (at most 60.4%) for PKS.

Fig. 4. Cycle count variability (CoV) within a cluster. The degree of dispersion
within each cluster is substantially smaller for Sieve compared to PKS.

error of 60.4% (spt) and 46.0% (rnnt), respectively, the
error is substantially lower for Sieve: average error of 1.1%
(and at most 4.1% in lgt) for Cactus, and 1.3% average
error (and at most 3.2% in rnnt) for MLPerf. Across both
Cactus and MLPerf, Sieve achieves an average error of 1.2%
(at most 3.2%) versus 16.5% (and up to 60.4%) for PKS.
The improvement in accuracy is remarkably consistent across
workloads, especially for the Cactus workloads.

Figures 4 and 5 explain why Sieve is more accurate than
PKS. Figure 4 reports the (weighted) average coefficient of
variation (CoV) of cycle count within each cluster for PKS
versus Sieve. The coefficient of variation is defined as the
standard deviation divided by the mean, and is a measure for
the degree of cycle count variability or dispersion within each
cluster. The smaller the CoV, the smaller the dispersion, and
hence the closer the values within a cluster are to the mean
or centroid of the cluster. The CoV is substantially smaller
for Sieve compared to PKS: the average CoV for Sieve equals
0.09 (at most 0.2 in lmc and 0.17 in ssd-resnet34), versus
0.57 (and up to 3.25 in dcg and 0.51 in rnnt) for PKS.

High dispersion within a cluster is only part of the reason
for PKS’ high prediction error. Figure 5 reports the error for
different ways of selecting a representative kernel invocation
per cluster. PKS by default selects the first kernel invocation

Fig. 5. Prediction error for different representative kernel invocation selection
mechanisms for PKS. Selecting kernel representatives differently does not
close the accuracy gap between PKS and Sieve.

Fig. 6. Speedup for Sieve and PKS on a logarithmic scale. Sieve and PKS
achieve comparable speedup typically in the 100× – 10,000× range.

per cluster as it occurs chronologically during workload ex-
ecution [11]. The authors argue that the first chronological
kernel invocation ‘has practical advantages in reducing tracing
and profiling time’ while being equally accurate as selecting
a representative kernel invocation closest to a cluster centroid.
They further found that selecting of a cluster representative
randomly leads to inconsistent errors. In contrast, we find
that, at least for the Cactus and MLPerf workloads, the first
chronological kernel invocation leads to a substantially higher
error with an average error of 16.5% (and up to 60.4%), see
also Figure 5. Note there is some correlation between the
degree of dispersion and a high error for the first-chronological
representative selection, see lgt, nst, spt and rnnt. Random
selection leads to lower error: 6.8% average error (and up to
25.3% in spt), and so does centroid selection: 3.9% average
error (and up to 17.9% in spt).

The overall conclusion is that Sieve is substantially more
accurate than PKS, for two reasons. First, Sieve groups kernel
invocations in clusters such that the per-cluster dispersion is
substantially less. Second, the default selection of a cluster
representative by PKS (first-chronological) is inaccurate for
clusters with high dispersion. Improved representative kernel
invocation selection techniques, such as random and centroid
selection, are insufficient to close the gap with Sieve though.

B. Speedup

Sieve and PKS achieve approximately the same speedup, see
Figure 6. The harmonic mean speedup across all benchmarks
(excluding gst) achieved through Sieve equals 922×, versus
1,272× for PKS. Sieve selects one representative invocation
for Tier-1 and Tier-2 kernels, and two or more representative
invocations for Tier-3 kernels; hence there are more represen-
tative kernel invocations selected by Sieve than the number
of kernels listed in Table I. PKS limits the number of repre-
sentative kernels to at most 20, however, this is insufficient
for achieving high accuracy. As a result, Sieve yields higher
speedup for some workloads, while PKS achieves higher
speedup for others. It is worth noting that the benchmarks
for which PKS achieves a (slightly) higher speedup are also
the benchmarks for which PKS yields a high error, see in
particular spt (1,398× speedup for PKS vs. 1,183× for Sieve
at an error of 60% for PKS vs. 0.83% for Sieve), and rnnt
(213× speedup for PKS vs. 166× for Sieve at an error of
46% for PKS vs. 3.2% for Sieve). Overall, the speedup for both
Sieve and PKS varies between 100× and 10,000×. The only
exception is gst, which is why we excluded this benchmark
when computing the mean speedup; the reason for the low
speedup is that gst spends most (85%) of its execution time
in a single kernel invocation with high variability in terms of
instruction count and execution characteristics, and hence both
Sieve and PKS are equally ineffective at achieving a significant
speedup, i.e., both techniques select all invocations of that
dominant kernel — a technique such as Principal Kernel
Projection [11] could possibly be effective for both Sieve and
PKS to reduce the runtime of individual representative kernel
invocations.

C. Profiling Time

The third metric of key importance is profiling time. As
previously argued, PKS collects as many as 12 execution
characteristics for each kernel invocation, while Sieve only
measures a single one, namely instruction count, see also
Table II. Although profiling needs to be done only once for
each workload, it can be a matter of practical concern if
profiling time ends up requiring weeks or months of experi-
mentation, as is the case for PKS. In particular, for the MLPerf
workloads, PKS spends more than one month to collect the
profile. Sieve is substantially faster with an average (harmonic
mean) speedup of 8× and up to 98×, see Figure 7. It is
further worth mentioning that the instruction count collected
for Sieve can be calculated using a light-weight (and thus
faster) instrumentation tool such as NVBit [45], versus a more
complex (and thus slower) detailed profiler such as Nsight
Compute [3]. (In particular, we observed that profiling using
Nsight Compute becomes progressively slower as we profile
an increasing number of kernels, i.e., profiling time increases
super-linearly with the number of kernel invocations profiled.)
Interestingly, the profiling time improvement for Sieve is
higher for MLPerf compared to Cactus. The reason is the
larger number of instruction types for the MLPerf benchmarks,
which, combined with the multiple runs needed to collect all

Fig. 7. Profiling time speedup. Profiling takes substantially less time for Sieve
compared to PKS.

Fig. 8. Prediction error for Sieve and PKS in traditional benchmark suites.
Both methods achieve high accuracy: 0.32% average error (at most 2.3%)
for Sieve versus 1.3% (and at most 23%) for PKS.

12 execution characteristics using Nsight Compute and the
overhead for saving and restoring memory across those runs,
leads to a higher runtime overhead for PKS.

D. Other Workloads

So far, we focused on the more challenging workloads from
the Cactus and MLPerf benchmark suites. Figure 8 reports the
prediction error for the other workloads from Parboil, Rodinia
and CUDA SDK. The overall conclusion is that while Sieve
is more accurate than PKS, the error for PKS is also small
except for one workload, namely cfd from Rodinia. We note an
average error of 0.32% (at most 2.3%) for Sieve versus a 1.3%
average error (and at most 23%) for PKS. The reason for the
high accuracy for both Sieve and PKS is that these workloads
are relatively simple compared to Cactus and MLPerf: they
feature few kernels (for some workloads even a single kernel)
and relatively few invocations per kernel, see also Table I. As
a result, these workloads are relatively easy to sample and
select a representative kernel invocation from, and both Sieve
and PKS are adequate.

E. Relative Accuracy

So far, we focused on Sieve’s accuracy for a single GPU
architecture, namely our baseline Nvidia Ampere GPU archi-
tecture. Of particular interest to computer architects is relative
accuracy, i.e., how accurately can a performance analysis
technique predict the relative performance difference between

Fig. 9. Speedup for Ampere versus Turing. PKS provides misleading relative
performance results for some benchmarks in contrast to Sieve.

Fig. 10. Prediction error for Sieve as a function of speedup for different θ
threshold values. A threshold value below 0.5 yields low error.

architectures. Figure 9 reports the relative performance dif-
ference between the Ampere architecture (RTX 3080) relative
to the Turing architecture (RTX 2080Ti) for real hardware
(the golden reference), PKS and Sieve. (Due to infrastructure
limitations on the RTX 20280Ti we were unable to run
the MLPerf workloads as well as Cactus’ rfl.) The Ampere
architecture achieves substantially higher performance than
Turing for gst, dcg and lgt while being slower for lmc and
lmr. Sieve accurately tracks the golden reference, in contrast
to PKS, see in particular the spt, nst and gru benchmarks.
Sieve predicts the speedup with an average error of 1.5%
(and at most 3.5% for dcg), versus 9.8% for PKS, and up
to 12.1% (gru), 23.5% (nst) and 40.3% (spt). In other words,
while PKS may yield accurate speedup predictions for some
workloads, it leads to (largely) inaccurate speedup predictions
for others. The problem of course is that there is no way
of knowing, i.e., the implication is that a computer architect
may be misguided about the relative performance differences
between architectures when using PKS, in contrast to Sieve
which delivers accurate relative performance predictions.

F. Sensitivity Analysis

As aforementioned, Sieve relies on a threshold θ to decide
whether a kernel invocation belongs to Tier-2 versus Tier-3.
Figure 10 reports the average prediction error as a function
of speedup for different values of the threshold θ obtained
on our baseline RTX 3080 GPU system (similar results were
obtained on the RTX 2080). We find that prediction error is

sensitive to the θ value while speedup is (much) less sensitive.
In particular, a threshold below 0.5 yields a low average
prediction error below 1.6%. A threshold in the [0.6 − 0.8]
range leads to an average error around 3% while a threshold
value of 1.0 leads to an average error of 4.8%. To balance
prediction error and speedup, we assumed a threshold value
of θ = 0.4 in this work.

G. Simulation

The ultimate goal of a sampling method like Sieve is to
prepare a reduced set of kernel invocations for simulation
as opposed to simulating full-application runs. To this end,
Sieve’s output is the selected kernel invocations. We have
modified the Accel-sim [26] tracer, which uses the NVBit
instrumentation tool, to only create the SASS trace of the se-
lected kernel invocations. The traces are simple plain text files
which are then simulated by Accel-sim on conventional CPUs.
We have collected the traces for Ampere (both Cactus and
MLPerf) and Turing (only Cactus), which we made available at
the aforementioned Sieve repository. As each kernel invocation
is a plain text file, it is possible to simulate a workload by
dispatching each trace file to a separate core (i.e., parallel
simulation), or simulate them one by one on a single core (i.e.,
serial simulation). For serial simulation, our experiments show
that the simulation time of each workloads is less than 2 days
(expect gst which takes 2.5 days) with instructions counts of
1 B as an average. For parallel simulation, however, the total
simulation time is reduced significantly, and is determined
by the longest-running kernel. Our experiments show that
simulating the representative kernel invocations for most of
the Cactus workloads (gms, gru, lmc, lgt, rfl and spt) takes
less than one hour. Simulating each of the MLPerf workloads
takes around 10 hours, and the longest-running workload is
gst which takes around 30 hours.

VI. RELATED WORK

Sampled simulation is a topic that has received broad
attention over the past few decades, especially for CPUs.
Various proposals have been proposed for sampling single-
threaded workloads (i.e., random sampling [15], periodic
sampling [50], and targeted sampling a.k.a. SimPoint [37])
as well as multi-threaded workloads (i.e., for server work-
loads [49] and synchronization-intensive workloads [12], [13],
[35]). While most sampling methods consider fixed-length
samples [43], some consider variable-length samples [27].
SimPoint computes basic block distributions for fixed-length
instruction intervals. Similarities across instruction intervals
based on the basic block distribution yields a limited set
of representative instruction intervals or so-called simulation
points. The execution characteristic used by Sieve is even
simpler than what SimPoint uses, namely instruction count
per kernel invocation.

Methodologies have been developed to identify similarities
across CPU benchmarks. In particular, Eeckhout et al. [20]
profile workloads using microarchitecture-independent char-
acteristics and then use Principal Component Analysis (PCA)

and Cluster Analysis to identify a select number of represen-
tative benchmarks in the large workload space. Eeckhout et
al. [19] combine PCA-based workload analysis with SimPoint
to identify representative simulation points across benchmarks.
The methodology proposed by PKS [11] is similar except that
it targets GPU workloads and identifies representative kernel
invocations across kernels from the same workload.

Prior work in GPU simulation acceleration has received
recent attention. Yu et al. [52] generate synthetic miniature,
yet representative, GPU-compute workloads based on basic
block profiles. Kambadur et al. [25] use GTPin, a dynamic
binary instrumentation tool for Intel GPUs, to identify rep-
resentative ∼100 M instruction regions within OpenCL work-
loads using a broad set of features including kernel name,
basic blocks executed, number of bytes read or written, etc.
TBPoint [23] collects a broad set of execution characteristics
(related to branch and memory divergence as well as thread
block variation) obtained through functional simulation to
then group kernel invocations through hierarchical clustering.
PKS [11] follows a similar workflow while collecting a
dozen microarchitecture-independent execution characteristics
through profiling on native hardware, and while leveraging
k-means clustering to scale to larger workloads. PKS suffers
from curse-of-dimensionality issues where all kernel invoca-
tions are far away from each other in the 12-D workload space,
making it hard to identify representative kernel invocations.
We find that the only critical execution characteristic to profile
is instruction count per kernel invocation as done by Sieve: this
not only reduces profiling time, it also leads to substantially
higher accuracy while maintaining similarly high simulation
speedups. SeqPoint [33] identifies representative iterations in
sequence-based deep neural network training workloads based
on the iterations’ input sequence length, which can be obtained
without incurring profiling nor simulation overhead. While
SeqPoint was developed to specifically accelerate DNN train-
ing simulation, Sieve is a more generally applicable sampling
technique.

GPU modeling approaches other than synthetic workload
generation and sampling-based simulation include analytical
modeling, hybrid-abstraction simulation, and parallel simula-
tion. A string of analytical GPU performance models have
been proposed over the past decade with different capabil-
ities, see in particular [21], [22], [29], [47]. NVArchSim
(NVAS) [44] is the proprietary hybrid trace-driven simulator
used by Nvidia in which different levels of abstraction (de-
tailed versus high-abstraction timing models) are deployed to
balance simulation speed and accuracy. MGPUSim [41] is a
parallel simulator for modeling multi-GPU systems.

VII. CONCLUSION

Simulating contemporary GPU-compute workloads is a ma-
jor challenge for academia and industry. This paper presented
Sieve, a sampling methodology for GPU-compute workloads
that (1) is substantially more accurate than the state-of-the-art
PKS (average error of 1.2% versus 16.5%, and max error of
3.2% versus 60.4%, respectively); (2) yields comparably high

simulation speedups (on the order of ∼1,000×); and (3) incurs
significantly less profiling overhead (8× average reduction and
up to 98×). While PKS is effective and accurate for many
workloads, Sieve yields superior results for all workloads, in
particular the more challenging workloads with a large number
of kernels and kernel invocations.

ACKNOWLEDGEMENTS

We thank the reviewers for their valuable feedback. This
work is supported in part by the UGent-BOF-GOA grant No.
01G01421, the Research Foundation Flanders (FWO) grant
No. G018722N, and the European Research Council (ERC)
Advanced Grant agreement No. 741097.

REFERENCES

[1] “Artifact - principal kernel analysis github repp.” https://github.com/
cesar-avalos3/micro-2021-artifact, accessed: 2021.

[2] “Cactus benchmark suite for GPGPU,” https://github.com/gpubench/
cactus, accessed: 2022.

[3] “An interactive kernel profiler for CUDA applications,” https://developer.
nvidia.com/nsight-compute, accessed: 2022.

[4] “MLPerf inference v2.0 nvidia-optimized implementations,”
https://github.com/mlcommons/inference results v2.0/tree/master/
closed/NVIDIA, accessed: 2022.

[5] “Nvidia Ampere GA102 GPU architecture,” https://www.nvidia.
com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-
v2.pdf, accessed: 2022.

[6] “Nvidia CUDA SDK code sample,” https://docs.nvidia.com/cuda/cuda-
samples/index.html, accessed: 2022.

[7] “Nvidia Turing GPU Architecture,” https://images.nvidia.com/aem-
dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf, accessed:
2022.

[8] “Simple 1D kernel density estimation,” https://scikit-learn.org/stable/
auto examples/neighbors/plot kde 1d.html, accessed: 2021.

[9] M. Abraham, T. Murtola, R. Schulz, S. Páll, J. Smith, B. Hess, and
E. Lindahl, “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers,” Soft-
wareX, vol. 1-2, pp. 19–25, 2015.

[10] M. Ahmad and O. Khan, “GPU concurrency choices in graph analytics,”
in Proceedings of the International Symposium on Workload Character-
ization (IISWC), 2016, pp. 1–10.

[11] C. A. Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G. Rogers,
“Principal kernel analysis: A tractable methodology to simulate scaled
GPU workloads,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2021, pp. 724–737.

[12] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation
of multi-threaded applications,” in Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2013, pp. 2–12.

[13] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout,
“BarrierPoint: Sampled simulation of multi-threaded applications,” in
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2014, pp. 2–12.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the International Symposium on Workload Character-
ization (IISWC), 2009, pp. 44–54.

[15] T. M. Conte, M. A. Hirsch, and K. N. Meneze, “Reducing state loss
for effective trace sampling of superscalar processors,” in Proceedings
of the International Conference on Computer Design (ICCD), 1996, pp.
468–477.

[16] A. S. Dhodapkar and J. E. Smith., “Dynamic microarchitecture adapta-
tion via co-designed virtual machines,” in Proceedings of the Interna-
tional Solid State Circuits Conference, 2002, pp. 198–199.

[17] A. S. Dhodapkar and J. E. Smith, “Managing multi-configuration
hardware via dynamic working set analysis,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2002, pp.
233–244.

[18] L. Eeckhout, K. De Bosschere, and H. Neefs, “Performance analysis
through synthetic trace generation,” in Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2000, pp. 1–6.

[19] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program microar-
chitecture independent characteristics and phase behavior for reduced
benchmark suite simulation,” in Proceedings of the International Sym-
posium on Workload Characterization (IISWC), 2005, pp. 2–12.

[20] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload
design: Selecting representative program-input pairs,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2002, pp. 83–94.

[21] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2010, pp. 280–289.

[22] J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “GPUMech: GPU per-
formance modeling technique based on interval analysis,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), 2014,
pp. 268–279.

[23] J.-C. Huang, L. Nai, H. Kim, and H.-H. S. Lee, “TBPoint: Reducing
simulation time for large-scale GPGPU kernels,” in Proceedings of
the International Conference on Parallel and Distributed Processing
Symposium, 2014, pp. 437–446.

[24] A. Joshi, J. Yi, R. H. Bell, L. Eeckhout, L. John, and D. Lilja, “Evaluat-
ing the efficacy of statistical simulation for design space exploration,” in
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2006, pp. 70–79.

[25] M. Kambadur, S. Hong, J. Cabral, H. Patil, C.-K. Luk, S. Sajid, and
M. A. Kim, “Fast computational GPU design with GT-Pin,” in Pro-
ceedings of the International Symposium on Workload Characterization
(IISWC), 2015, pp. 76–86.

[26] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An extensible simulation framework for validated GPU modeling,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2020, pp. 473–486.

[27] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder, “Moti-
vation for variable length intervals and hierarchical phase behavior,” in
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2005, pp. 135–146.

[28] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proceedings of the International Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4013–4021.

[29] J. Lee, Y. Ha, S. Lee, J. Woo, J. Lee, H. Jang, and Y. Kim, “GCoM:
a detailed GPU core model for accurate analytical modeling of modern
GPUs,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2022, pp. 424–436.

[30] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[31] M. Naderan-Tahan and L. Eeckhout, “Cactus: Top-down GPU-compute
benchmarking using real-life applications,” in Proceedings of the Inter-
national Symposium on Workload Characterization (IISWC), 2021, pp.
176–188.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in Proceedings of the International
Conference on Neural Information Processing Systems, 2019, pp. 8024–
8035.

[33] S. Pati, S. Aga, M. D. Sinclair, and N. Jayasena, “SeqPoint: Identi-
fying representative iterations of sequence-based neural networks,” in
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2020, pp. 69–80.

[34] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, M. J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu,
G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “MLPerf inference bench-

mark,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2020, pp. 446–459.

[35] A. Sabu, H. Patil, W. Heirman, and T. E. Carlson, “LoopPoint:
Checkpoint-driven sampled simulation for multi-threaded applications,”
in Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), 2022, pp. 604–618.

[36] D. W. Scott, Multivariate Density Estimation: Theory, Practice and
Visualization. John Wiley & Sons, Inc., 1992.

[37] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002, pp. 45––57.

[38] T. Sherwood, E. P. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2001, pp. 3–14.

[39] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2003, pp. 336–349.

[40] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, University of
Illinois at Urbana-Champaign, Tech. Rep. IMPACT-12-01, 2012.

[41] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli,
“MGPUSim: Enabling multi-GPU performance modeling and optimiza-
tion,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2019, pp. 197–209.

[42] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A
simulation framework for CPU-GPU computing,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2012, pp. 335–344.

[43] M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Efficient sampling
startup for sampled processor simulation,” in Proceedings of the Inter-
national Conference on High Performance Embedded Architectures and
Compilers, 2005, pp. 47–67.

[44] O. Villa, D. Lustig, Z. Yan, E. Bolotin, Y. Fu, N. Chat-terjee, N. Jiang,
and D. W. Nellans, “Need for speed: Experiences building a trustworthy
system-level GPU simulator,” in Proceedings of the International Sym-
posium on High Performance Computer Architecture (HPCA), 2021, pp.
868–880.

[45] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A
dynamic binary instrumentation framework for nvidia GPUs,” in Pro-
ceedings of the International Symposium on Microarchitecture (MICRO),
2019, pp. 372–383.

[46] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” in Proceedings of the International Conference on
Supercomputing, 2008, pp. 1–11.

[47] L. Wang, M. Jahre, A. Adileho, Huawei, and L. Eeckhout, “MDM: The
GPU memory divergence model,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2014, pp. 1009–1021.

[48] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Transactions on Parallel Computing, vol. 4, no. 2, pp.
1–49, 2017.

[49] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “SimFlex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[50] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2003, pp. 84–97.

[51] Z. Yu, L. Eeckhout, N. Goswami, T. Li, L. John, H. Jin, and C. Xu,
“Accelerating GPGPU architecture simulation,” in Proceedings of the
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2013, pp. 331–332.

[52] Z. Yu, L. Eeckhout, N. Goswami, T. Li, L. K. John, H. Jin, C. Xu,
and J. Wu, “GPGPU-MiniBench: Accelerating gpgpu micro-architecture
simulation,” IEEE Transactions on Computers, vol. 64, no. 11, pp. 3153–
3166, 2015.

