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Abstract—Processor simulators rely on detailed timing models
of the processor pipeline to evaluate performance. The diver-
sity in real-world processor designs mandates building flexible
simulators that expose parts of the underlying model to the
user in the form of configurable parameters. Consequently,
the accuracy of modeling a real processor relies on both the
accuracy of the pipeline model itself, and the accuracy of
adjusting the configuration parameters according to the modeled
processor. Unfortunately, processor vendors publicly disclose
only a subset of their design decisions, raising the probability
of introducing specification inaccuracies when modeling these
processors. Inaccurately tuning model parameters deviates the
simulated processor from the actual one. In the worst case,
using improper parameters may lead to imbalanced pipeline
models compromising the simulation output. Therefore, simu-
lation models should be hardware-validated before using them
for performance evaluation. As processors increase in complexity
and diversity, validating a simulator model against real hardware
becomes increasingly more challenging and time-consuming.

In this work, we propose a methodology for validating sim-
ulation models against real hardware. We create a framework
that relies on micro-benchmarks to collect performance statistics
on real hardware, and machine learning-based algorithms to
fine-tune the unknown parameters based on the accumulated
statistics. We overhaul the Sniper simulator to support the
ARM AArch64 instruction-set architecture (ISA), and introduce
two new timing models for ARM-based in-order and out-of-
order cores. Using our proposed simulator validation framework,
we tune the in-order and out-of-order models to match the
performance of a real-world implementation of the Cortex-A53
and Cortex-A72 cores with an average error of 7% and 15%,
respectively, across a set of SPEC CPU2017 benchmarks.

I. INTRODUCTION

Computing systems are subject to continuous optimization
to meet the ever-increasing performance, power-efficiency,
reliability, and security demands. The high cost and turnaround
time for prototyping computing systems lead computer archi-
tects to use processor simulators for swift and cost-efficient
evaluation of novel ideas. Simulators rely on detailed models
to account for the impact of the various processor components
on overall performance. General-purpose processor simulators
often expose these models to users in the form of configurable
parameters. Simulation accuracy is thus a function of both how
accurate the timing models are, and how accurately a user
can tune the configuration parameters to model a real-world
processor. According to Black and Shen’s taxonomy [1], the
former relates to abstraction accuracy whereas the latter relates
to specification accuracy.
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Modern simulators vary according to their modeling preci-
sion and level of abstraction. Each level is intended to drive
processor assessment at a different stage of the processor
design cycle. In general, high-precision modeling of timing
and microarchitectural details induces long simulation times.
Cycle-accurate simulators, such as [2]–[7], model the various
processor components on a cycle-by-cycle basis. This level of
accuracy comes at the cost of prohibitively long simulation
times. In contrast, functional simulators, such as [8]–[10], are
faster (by at least one order of magnitude) because they only
model processor functionality without modeling its timing be-
havior. Sniper [11] and ZSim [12] are widely-used simulators
that provide additional points on the speed-accuracy trade-off
curve. More specifically, Sniper takes a unique approach to
cycle-level simulation by relying on detailed high-abstraction
models for all the processor components without having to
simulate each component at each simulated cycle. By doing
so, Sniper provides simulation accuracy comparable to de-
tailed cycle-accurate simulators at a much higher simulation
speed [13].

Modeling a real-world processor goes beyond the timing
model. General-purpose simulators provide their users with
a set of configurable parameters to model a processor of
interest. Accurate simulation requires tuning the configuration
parameters according to the modeled processor, in addition to
the accurate timing model. Deviations between the settings
of the model parameters and their counterparts in the real
processor lead to incorrect findings. In a worse scenario,
making errors when setting the configuration parameters can
result in simulating an unbalanced processor design, and
leaves the user with incorrect conclusions. Unfortunately,
commercial processor vendors limit the amount of information
they publicly disclose concerning their products. The scarcity
of disclosed processor information encumbers the process of
tuning the model according to a real-world processor. Thus,
simulator users resort to best-effort estimates or rely on dated
processor information to fill the missing model parameters. In
an attempt to limit the margin of simulation error and raise
the confidence in their results, simulator users validate their
models against real-world processors [14]–[17]. The increas-
ing complexity and diversity in modern-day microprocessors
calls for a systematic approach to validate simulators against
processors of interest.

In this paper, we propose a methodology for systematically
validating simulators against real hardware. We rely on a
machine learning-based racing algorithm [18] that compares
the performance results of an actual processor with the per-
formance of numerous processor configurations in simulation.



Every step of the algorithm eliminates the statistically unlikely
configurations as new configurations with a lower error are
evaluated. Within a finite number of iterations, our methodol-
ogy generates a configuration that minimizes the error between
the simulator and the real hardware. We advocate using a set of
targeted (i.e., each stressing a specific processor component)
micro-benchmarks because they allow quick evaluation of
numerous configurations. Our methodology can be used to
tune and validate any simulator, regardless of its precision,
against any real-world processor.

We showcase the effectiveness of our methodology by
demonstrating brand new support for the ARM ISA to the
Sniper simulator [13], and by validating Sniper against actual
ARM cores. We overhaul Sniper’s front-end to decode ARM
AArch64 binaries. We also adjust the timing contention mod-
els in Sniper to reflect the publicly disclosed information for
existing in-order and out-of-order processors. We compare the
in-order and out-of-order ARM models against the Cortex-A53
and Cortex-A72 cores, respectively. We show that by relying
only on publicly available information, the error of the timing
models could reach 33% and 45% on average across a set of
SPEC CPU2017 benchmarks, relative to the Cortex-A53 and
the Cortex-A72, respectively. Using our validation and tuning
methodology, we manage to adjust the missing configuration
parameters to limit the average error to less than 7% and 15%
for the Cortex-A53 and Cortex-A72, respectively.

We make the following contributions in this paper:
• We propose a simulator validation methodology that

leverages machine learning to automatically fine-tune
unknown hardware simulation parameters to match real
hardware measurements for a set of targeted microbench-
marks.

• We overhaul the Sniper simulator to provide sup-
port for the ARM AArch64 ISA. This includes re-
placing the Sniper front-end and the development of
novel timing contention models for in-order and out-of-
order ARM cores. We publicly release Sniper-ARM at
http://snipersim.org/.

• Using the proposed simulator validation methodology,
we validate Sniper-ARM against real hardware, including
an in-order Cortex-A53 core as well as an out-of-order
Cortex-A72 core. We report average simulation errors of
7% and 15% for the Cortex-A53 and Cortex-A72 cores,
respectively, for a set of SPEC CPU2017 benchmarks.

II. BACKGROUND AND MOTIVATION

Black and Shen [1] describe several potential causes of
simulation errors. Aside from accidental bugs in simulator
code, two main sources of error relate to modeling and
abstraction errors. This work makes contributions that address
both the abstraction and the modeling sides of simulation.

A. Hardware-Validated Simulation

Due to the significant role of simulation in processor ar-
chitecture research and development, simulator accuracy must
be scrutinized. Early work by Desikan et al. [14] shows cases

where the expected error in simulation exceeds the benefits
they expect from architectural techniques. As a result, follow-
on work strives at understanding the sources of error in
commonly used simulators and advocates validating simulators
against real hardware, see for example [16], [19]–[23]. Real
hardware is the golden reference according to which simulator
accuracy can be judged. Using a simulator to assess the
performance of a processor hinges on first establishing that
the simulator accurately models real hardware.

Simulator validation is a challenging task. It is error-prone,
time-consuming and tedious. Processor vendors offer a wide
variety of designs to meet the market demands. One of
the main challenges to simulator validation is the lack of
the publicly disclosed information on the processor being
modeled. For this reason, Desikan et al. [14] restricted their
validation to the Alpha 21264 processor whose microarchi-
tecture is disclosed in considerably more detail than other
processors [24], [25].

This specification challenge (or lack thereof) triggered
Walker et al. [17] to propose a methodology to evaluate
the sources of error in simulation relative to real hardware
using the gem5 simulator and the configuration parameters
that come with it. Their proposed methodology employs
clustering and regression analysis to understand the relation
between hardware and simulator performance events and their
association to the error in performance. Unfortunately, their
methodology is cumbersome and does not guarantee an easy
identification of the sources of error in the model. For ex-
ample, each clustering phase could lead to a different set
of performance events, and can also differ from the findings
of the regression analysis. Finding the exact source of error
remains challenging in spite of this analysis. More importantly,
even after identifying modeling errors in the simulator, this
technique does not provide a systematic solution for how to
fix it. If there is a specification error in the model due to a
lack of disclosed information, this approach does not help find
the correct specification.

Other proposed validation strategies focus on embedded
processors. The methodology of Lattuada and Ferrandi [26]
identifies the timing errors of a simulator using a recursive
analysis of the application traces. They demonstrate their
approach for the TSIM simulator1 and the LEON3 processor,
and focus only on finding timing errors, rather than exploring
and proposing the best simulator configuration as this work
does. Jalle et al. [27] show a validation methodology tailored
for an NGMP embedded processor. However, while they
methodically describe every step for identifying timing errors,
the final configuration of the simulator is performed manually.

In contrast with all the previous approaches, we propose
a new validation methodology that automatically explores
all unknown parameter configurations to minimize simulation
error.

1https://www.gaisler.com/index.php/products/simulators/tsim



B. Sniper

Without loss of generality, we select the Sniper simula-
tor [11], [13] to showcase our validation methodology. We ob-
serve that although x86 and ARM ISA are widely recognized
as the two most popular ISAs, most modern simulators support
only the x86 ISA, see for example gem5 [2], MARSS [6],
Multi2Sim [7], Sniper [13], ZSim [12], PTLSim [4] and
MaxSim [28]. Apart from several functional simulators [8],
[10], including ARM Fast Models2, gem5 is the only widely-
used cycle-level timing simulator that supports the ARM
AArch64 ISA.

Sniper provides a unique speed versus accuracy trade-off
compared to other cycle-level simulators. It relies on detailed
timing models of the processor pipeline to perform accurate
cycle accounting, while eluding the need to simulate every
component in each cycle. This allows Sniper to perform fast
simulation of unmodified applications at the expense of a
minor degradation in accuracy relative to a cycle-by-cycle
simulator. Sniper’s high accuracy and high simulation speed
renders it appealing for performance analysis for academic
research and at early design stages in industry.

In this work, we augment Sniper with a brand-new front-
end to support the ARM AArch64 ISA. We develop the
necessary back-end timing contention models in Sniper to
provide modeling capability for both in-order and out-of-
order ARM cores. We use these core models to showcase the
effectiveness of our methodology at eliminating abstraction
and specification errors.

III. VALIDATION METHODOLOGY

We propose a systematic approach to hardware-validated
simulation. Our methodology includes both an automated part
and a human element that, similar to all validation work, is
required to inspect and contrast the peculiarities of the simu-
lator against real hardware. Our approach has two advantages
over prior work. First, it simplifies the validation task by ex-
ploiting targeted micro-benchmarks to isolate errors. Second,
it automates the process of selecting the best configuration
when identifying a problem in the model.

A. Overview

Figure 1 provides an overview of the proposed simulator
validation methodology. Steps #1 through #3 are non-iterative,
i.e., they are done only once at the beginning of the validation
task. Step #1 involves human intervention to gather all publicly
available information on the modeled processor from reliable
sources and plugging them into the timing model of the
simulator. We note that there exist other parameters that are
not necessarily provided as part of the technical reference
manuals or given just as approximate values, e.g., cache access
latencies. In step #2, we estimate the access time of the L1
data and instruction caches in addition to the L2 cache using
the lmbench micro-benchmarks [29], and plug them into the
timing models as well. In step #3, the remaining unknown

2https://developer.arm.com/products/system-design/fast-models

Fix error source 

Tune parameters with iRace 

Model based on publicly available information

Set latency parameters using micro-benchmarks

Approximate remaining unknown parameters

1

2

3

4

1

2

3

4

5 6

Generate tuned model 

Yes No

Fig. 1. Overview of the proposed simulator validation methodology.

configuration parameters are set into the timing model using
the best guess of the user.

Step #3 is the source of specification errors that validation
techniques try to minimize. Step #4 is a distinctive step in
our methodology that targets this particular issue. Instead of
guessing the best configuration, we prepare a list of all the
configuration parameters that require a best guess in step #3.
We pair each parameter in the list with all the candidate values
it could take. For example, a list may contain all the L2 cache
address hashing techniques (as implemented in the simulator),
the numerous data prefetchers that are possible at each cache
level, configuration parameters for each prefetcher, etc. The list
of unknown parameters grows with the model precision and
the complexity of the real processor. In step #4, we pass the
list to a parameter tuning tool that is responsible for selecting
the configuration that minimizes a pre-defined cost function.
The cost function in the case of hardware validation is the
performance prediction error of the simulation model.

Step #4 searches for the best configuration based on a set of
micro-benchmarks. We implement a framework that automates
this step. The framework automates collecting performance
measurements on real hardware for each micro-benchmark.
It also generates a trace of the same instructions used for
real-hardware measurement for each micro-benchmark. This
framework contains the necessary scripts to launch a simula-
tion for each trace using Sniper, collect the performance metric
of choice, compare it with the hardware-obtained results,
and return the estimated error for that particular simulation.
The configuration tuning tool uses this script to launch the
necessary simulation experiments for all the traces using
configurations derived from the list generated in step #3. The
tool finds the configuration that minimizes the simulator’s per-
formance prediction error. The algorithm stops after finishing
a pre-configured number of optimization rounds. We provide



further explanation on the choice of micro-benchmarks and
the parameter tuning algorithm in Sections III-B and III-C,
respectively.

Step #5 evaluates the error in simulation after the parameter
tuning process. Each of the micro-benchmarks we use in
step #4 stresses a particular component of the processor,
and can thus expose modeling errors related to that com-
ponent. Step #5 checks whether the modeling of certain
processor components, as suggested by high errors for their
respective micro-benchmarks, requires further optimization in
the simulator. As the complex interaction among processor
components determines its overall performance, it is possible
for step #4 to configure other components properly, resulting
in a low overall modeling error (when measured across all
micro-benchmarks) while masking the error in one specific
component. For example, we have seen scenarios where step
#4 manages to improve the overall modeling accuracy, while
a couple micro-benchmarks in step #5 reveal that there is still
room for improving the indirect branch model.

Step #5 recommends performing an extra optimization
round to focus on the modeling of a particular component.
This step emphasizes the importance of accurately modeling
all components and not relying only on a seemingly low error
in overall performance estimation [16], [17]. For optimizations
targeting a specific component, we recommend including met-
rics that are relevant to that component in the cost function of
the tuning algorithm. For example, instead of using the Cycles-
Per-Instruction (CPI) error only, a weighted cost function that
includes both the branch misprediction rate and the CPI can
be used. Fixing the model of a particular component may in-
volve development work as well, depending on how complete
the simulation framework is. For example, if the simulator
implements a simple stride data prefetcher, a problem in
modeling part of the memory subsystem may indicate that the
hardware is using a different prefetcher. Another prefetcher
should then be implemented in the simulator and provided as
a configuration choice to the user. The tuning algorithm can
then take that prefetcher and its possible configurations into
consideration as it identifies the most accurate model.

B. Targeted Micro-Benchmarks

Our approach differs from recent work by Walker et al. [17]
which relies on clustering techniques to group applications
with similar modeling error, and then clustering performance-
related events according to their impact on error. This is
followed by regression analysis in an attempt to establish
the relation between model error and a particular event, from
which a candidate reason (or few reasons) for the modeling
error can be identified. As mentioned earlier, our strategy is to
isolate the modeling error in each component by relying on a
suite of micro-benchmarks [30], each of which target a specific
processor component. By doing so, identifying the sources
of error in modeling becomes easier. For example, micro-
benchmarks that target the first cache level show whether the
L1 cache is modeled accurately or not. Similarly, benchmarks

that target direct and indirect branch behavior can expose
errors in the branch predictor model.

The micro-benchmark suite that we use for the tuning phase
contains a set of 40 micro-benchmarks that can be classified
into five categories: (1) control flow, (2) data-parallel and
floating-point operations, (3) execution with stress on inter-
instruction dependencies, (4) memory operations stressing
various levels of the hierarchy, and (5) store-intensive oper-
ations [30]. Table I provides a list of the micro-benchmarks
and the number of dynamically executed AArch64 instruc-
tions for the main loop. The control flow benchmarks stress
the branch unit in various scenarios such as easy-to-predict
branches, heavily biased branches, randomized flow, branches
with large flush penalty, indirect branches, etc. The data-
parallel benchmarks evaluate cases with data parallel loops
that involve double and float operations and conversions.
The complexity of the computations involved varies across
the benchmarks as well. The benchmarks focusing on the
execution units involve integer and floating-point operations
that vary in complexity. Each of these benchmarks involve
chains of dependencies of variable length. The benchmarks
that stress the memory hierarchy involve access to data sets
that reside at various levels of the hierarchy, access with plenty
of conflict misses, linked list traversal at different cache levels
or in memory, stressing instruction cache misses, and load-
store dependencies. In general, these benchmarks provide a
diverse substrate to comprehensively evaluate the accuracy of
the simulation model, and to increase the probability of finding
an accurate configuration using the proposed tuning algorithm.

In addition to their ability to isolate errors in individual
components of the processor, micro-benchmarks are an enabler
for the automatic validation and tuning process. Each round
of tuning involves thousands of simulation runs to make a
comprehensive test that touches all the benchmarks with a
statistically significant set of all the possible configuration
permutations. The relatively small number of instructions,
compared to SPEC or PARSEC, allows evaluating tens of
thousands of configurations within a span of a few hours.

C. Racing

We leverage algorithms used in machine learning to au-
tomatically validate a simulator against real hardware. More
specifically, we rely on irace [31] to tune the configuration
parameters to reduce the specification errors in simulation.
irace is an implementation of iterated racing [18] in the
widely used statistical software package R. The algorithm
takes the configurable parameters along with their candidate
values as its input. In most cases, evaluating all possible
permutations of configuration parameters is computationally
unfeasible. Therefore, the algorithm stops after a configurable
maximum number of trials. To make the most out of the
maximum number of trials, racing algorithms depend on fast
elimination of configurations that can be statistically proven
to be inferior to others.

The iterated sampling algorithm involves three main steps,
as demonstrated in Figure 2: (1) sampling new configurations



TABLE I
MICRO-BENCHMARKS USED IN OUR METHODOLOGY ALONG WITH THEIR NUMBER OF DYNAMICALLY EXECUTED AARCH64 INSTRUCTIONS.

Memory Hierarchy
MC MCS MD MI MIM MIM2 MIP ML2 ML2 BWld ML2 BWldst ML2 BWst ML2 st MM MM st M Dyn
1.8M 115K 33K 22M 5.25M 214K 66M 131K 3.15M 107K 8.4K 164K 1.05M 1.97M 1.5M

Control Flow
CCa CCe CCh CCh st CCl CCm CF1 CRd CRf CRm CS1 CS3
82K 657K 2.6M 157K 1.38M 656K 1.27M 599K 133K 399K 58K 34.5M

Data Parallel
DP1d DP1f DPcvt DPT DPTd
5.2M 5.2M 36.7M 542K 1.18M

Execution
164K 451K 5.24M 65K 328K

Store Intensive
STL2 STL2b STc

4K 1.12M 400K
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Fig. 2. An overview of the irace parameter tuning algorithm.

according to a specific distribution, (2) choosing the best
configurations out of the sampled ones via a racing technique,
and (3) updating the distributions to bias future configuration
sampling towards the best ones. The process repeats for a
maximum number of trials.

Each configuration parameter is associated with a sampling
distribution that determines the probability of selecting a
certain value for that parameter. Initial sampling assumes all
values have equal weights. As the algorithm starts finding win-
ning configurations, it updates the distributions associated with
each parameter. Updating the sampling distribution involves
biasing the weights to increase the probability of selecting the
right value for each parameter.

Once a set of new configurations is sampled in step #1,
step #2 finds the best configurations from the sampled ones.
In Figure 2, the set of sampled configurations is represented
by filled circles. The racing algorithm starts evaluating the
configurations on the set of micro-benchmarks in turn, shown
along the vertical axis in Figure 2. As the figure shows,
the whole set of configurations is evaluated against the first
few benchmarks; the algorithm then starts making statistical
tests to quickly eliminate the configurations that perform
worse than at least one other configuration. The algorithm
keeps evaluating survivor configurations against the micro-
benchmarks, while increasing the frequency of elimination.

The final set of survivor configurations are used to update
the parameter sampling distributions in step #3 and are also
propagated among the newly sampled configurations. The
process repeats until the maximum number of optimization
trials is reached.

In the context of our framework, irace takes the following
inputs: (1) a set of parameters and a list of possible values each
parameter can take, (2) a set of micro-benchmarks to simulate
in Sniper for performance assessment, (3) the performance
values measured on real hardware for each micro-benchmark,
and (4) a tool to calculate the desired error metric being
minimized, i.e., CPI error in our case. The list of parameters
include all the parameters that the user has to make a best-
effort estimate for due to lack of reliable disclosed information.
The user has to manually provide this list. The second input to
the tool comes in the form of instruction traces of every micro-
benchmark in the suite. The benchmark traces are generated on
the real hardware platform only once. Similarly, the third input
requires evaluating the performance of each micro-benchmark
on the real hardware platform only once. For example, if the
user tries to model the ARM Cortex-A72 core, the tuning
algorithm expects the performance results for each of the
benchmarks on a real Cortex-A72 processor. Once these inputs
are ready, irace launches several simulation experiments in
parallel by sampling the configurations and evaluating them
for each benchmark, as explained earlier in Figure 2. As
mentioned earlier, we implement a framework to facilitate
trace generation and performance number collection on real
hardware, in addition to scripts that help irace launch simula-
tions, extract performance measures from the simulations, and
calculate the error cost that irace uses to determine which
configurations to survive and which to eliminate. The final
output of the algorithm is the best candidate configurations
given the accuracy of the simulator model.

Several factors determine the turnaround time of irace. The
higher the number of configuration parameters and the number
of possible values per parameter, the longer it takes to find an
optimal configuration. However, because exploring all possible
permutations is computationally intractable, the user can define
criteria to terminate the tuning process, e.g., a minimum
number of remaining survivor configurations, a maximum
finite time, or a maximum number of iterations. In this work
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we instruct irace to search for an optimal configuration with a
maximum budget of 100 K trials. The length of the simulated
application also determines the duration of the simulation, and
consequently the tuning process time. We take this factor into
account by selecting a suite of micro-benchmarks that can be
simulated in subseconds. Fortunately, the experiments in irace
can be parallelized. Hence, the duration of the tuning algorithm
can be expedited using a high core count and processor
operating frequency to run irace iterations. For this work, we
run irace on a 12-core processor with hyper-threading (i.e.,
24 hardware contexts) running at 2 GHz. Budgets of 10 K and
100 K trials finish on this platform in about seven hours and
two days, respectively.

IV. SNIPER-ARM SIMULATOR

We demonstrate our simulator validation methodology by
implementing the necessary components to support the ARM
AArch64 ISA in Sniper, along with the timing models for in-
order and out-of-order processors. We use our methodology to
configure the in-order microarchitecture according to the ARM
Cortex-A53 processor [32] and the out-of-order microarchitec-
ture according to the Cortex-A72 processor [33].

A. Modifications to Sniper

Figure 3 depicts a high-level overview of the main compo-
nents of Sniper that need modification to (1) support the ARM
AArch64 ISA, and (2) model in-order and out-of-order ARM
core types.

The simulator front-end is responsible for instrumenting
the ARM code, decoding the instructions, and feeding the
timing model with a dynamic stream of instructions. This
component is necessary to simulate unmodified AArch64
code. Sniper was originally built around Pin [34], a dynamic
binary instrumentation tool for x86 processors. Sniper relies
on the X86 Encoder Decoder (XED) libraries to provide a
stream of micro-operations to the back-end of the pipeline.
To support AArch64, we replace the front-end interface with
DynamoRIO [35], which is a dynamic binary instrumentation
tool that provides similar functionality to Pin for the ARM

AArch64 ISA. We also replace the x86 decoder libraries with
Capstone [36].

Note that because DynamoRIO is a dynamic binary instru-
mentation tool and does not perform cross-ISA instrumen-
tation, we need to run the Sniper-ARM front-end on a real
ARM processor. However, we provide a solution that allows
porting the traced ARM code and simulate it on x86 server
machines. We integrate the DynamoRIO tool with Sniper’s
front-end to allow for recording instruction traces in the Sniper
Instruction Trace Format (SIFT), a format readable by Sniper’s
back-end. This way, a representative part of the benchmark
needs to be recorded only once, and can be re-used for all
future timing simulations as we evaluate different ARM core
microarchitecture configurations on x86 servers.

The second part that we modify is the contention model
in Sniper’s timing model. The contention model defines the
functional units in the processor and assigns every instruction
to its corresponding functional unit. The contention model is
responsible for ensuring that a functional unit is available when
issuing an instruction. A unit may be unavailable in a given
cycle if it is occupied by other instructions, another instruction
has precedence to use the unit if issued at the same cycle,
or if the issue slot for this unit is occupied. Moreover, the
contention model verifies that instructions issued in the same
cycle are compatible, or can be dual-issued. We model the
contention models for the in-order and out-of-order cores ac-
cording to the information disclosed in the technical reference
manuals for the Cortex-A53 and Cortex-A72 processor cores,
respectively.

Finally, the last part of the timing model that we modify in
Sniper is the core timing model. This part of the model defines
the general organization of the pipeline and its configuration
parameters, including the cache hierarchy (number of cache
levels, the respective sizes, etc.), the reservation stations and
their sizes, the ROB, processor frequency, etc. Where appro-
priate, we augment the existing models with more options to
mimic potential microarchitectural features that are usually not
disclosed. As an example, we implement mask-based, xor-
based, and Mersenne modulo [37] address hashing for cache
indexing. In addition to generic pipeline components, the core
timing model also includes specialized structures that are not
necessarily implemented in every processor. For example, the
branch prediction unit is a specialized component that can
be totally different across different processors. Similarly, data
prefetchers and their configurations at the various levels of
the hierarchy vary among different processors. Whereas few
generic pipeline configuration parameters may be disclosed,
the configuration of specialized components are usually not
disclosed at all. These components are ideal candidates for
automated tuning. For these components, we implement an
assortment of techniques, each of which is further parameter-
ized. We feed these components into the tuning algorithm to
automatically determine the component and configuration that
best matches the real hardware measurements.

Sniper features a couple hundred configuration parame-
ters. Several of these parameters are necessary to define the
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Fig. 4. CPI prediction errors for the microbenchmarks for the Cortex-A53 processor before and after tuning.

simulation environment, e.g., application scheduling, and are
not involved in the core timing model. We count about a
hundred parameters that define the simulated processor. Out
of these parameters, we identify 64 parameters that cannot
be accurately adjusted using publicly disclosed information or
via latency estimation using lmbench. These parameters are
passed to irace. The parameters vary in the number of values
they can possibly take. There are parameters that require a
binary true or false value such as whether to use a prefetcher
or not, or whether to prefetch after a prefetch hit. Other param-
eters can take on a relatively large number of possibilities. For
example, parameters that define the number of entries in the
load/store unit or the size of the active instruction window.
irace can take a range of values (e.g., 16 to 164) but to
avoid wasting irace’s budget, these parameters are given a
limited set of discrete values. Other parameters can assume a
discrete set of parameters to select a particular feature, e.g.,
which branch predictor to use. The list of Sniper parameters
we pass for tuning includes pipeline and cache hierarchy
configuration parameters. For example, we pass parameters
for the reservation station configuration, branch misprediction
penalty, window size, cache bandwidth configurations, victim
cache entries, serial and parallel tag and data access in cache,
among others. Other parameters tune system configurations,
e.g., the main memory organization, and access latency and
bandwidth modeling parameters.

B. Fine-Tuning the Timing Model

We now briefly highlight the added value of our proposed
validation methodology to improve the timing model in Sniper,
and, to our own surprise, uncover coding bugs in the decoder
libraries we use. The discussion we provide in this section
shows results for the in-order Cortex-A53 core validation
effort. Validating the out-of-order Cortex-A72 core model
proceeds similarly.

Our initial configuration of the in-order core uses all the
information we could gather regarding the Cortex-A53 from
the technical manual in addition to the cache latency parame-

ters derived using lmbench. This is equivalent to completing
step #3 in our proposed validation methodology, see Figure 1.
Figure 4 reports absolute CPI errors for the initial Cortex-A53
model for the complete set of micro-benchmarks: the average
error approaches 50% with errors reaching up to more than
5×, see for example the ED1 micro-benchmark.

At this point of the validation process, it is not clear whether
the errors are to be attributed to abstraction errors in the new
model, bugs in any of the used libraries, or specification errors
(inaccurate parameter settings). However, a round of parameter
tuning in step #4 of our validation methodology, alleviates
the impact of inaccurate parameter tuning. Indeed, after the
first tuning round (results not shown), the average error drops
significantly, to about 33% across all micro-benchmarks, and
the outlier errors in ED1 are trimmed to around 33% as well.

Beyond this point, we seek to improve the average error
even further. We observe after the first tuning round that sev-
eral micro-benchmarks still suffer from a high CPI prediction
error. A couple control-flow intensive benchmarks still indicate
high errors as in CS1, which simulates a case statement that
benefits from indirect branch support. A recent work acknowl-
edges a similar modeling issue [16]. We augment our model
with indirect branch support and provide further flexibility
of choice for the tuning algorithm to fine-tune the predictor
configuration. irace did not significantly improve the modeling
accuracy for the floating-point and data-parallel applications
due to errors in modeling the timing and contention of the
arithmetic instruction execution units. We also identify relevant
bugs in the Capstone decoder library that led to errors in
modeling dependencies across instructions. To alleviate the
impact of modeling errors in micro-benchmarks that stress
the memory subsystem, we provide the tuning algorithm with
further options to use address hashing techniques to place and
index blocks in caches, in addition to configurable prefetching
options including stride [38] and GHB [39] prefetching. We
also note that a couple memory-intensive micro-benchmarks
access an uninitialized array, most of which are considered
a cache miss by our model but are reported as hits on real



hardware. We conjecture that in hardware the first access to an
uninitialized OS page misses in the cache but further accesses
to that page are recognized and the cache behavior is optimized
to avoid the miss. Initializing the arrays prior to simulation
dwarfs the error for these micro-benchmarks.

Figure 4 also shows the absolute CPI prediction error after
fixing modeling errors and subjecting it to further rounds
of parameter tuning using irace. The average absolute CPI
prediction error is significantly reduced to around 10%. We
conclude that the Cortex-A53 model in Sniper accurately
models real hardware for the broad set of micro-benchmarks
that stress different components in the processor.

V. EXPERIMENTAL SETUP

We validate Sniper-ARM against the ARM Cortex-A72 and
Cortex-A53. We model and validate these processors relying
on the Firefly RK3399 development board, which is a platform
that features a six-core 64-bit heterogeneous processor (i.e.,
big.LITTLE) [40]. The processor features one cluster of two
‘big’ high-performance Cortex-A72 cores, and another cluster
with four ‘little’ low-power Cortex-A53 cores. Both cores
include a 32 KB L1 data cache. The Cortex-A53 features
a 32 KB L1 instruction cache, while the Cortex-A72 core
features a 48 KB L1 instruction cache. The L2 cache is shared
among the cores in each cluster and is coherent across the
clusters. The ‘big’ cluster has a 1 MB L2 cache, and the ‘little’
cluster has a 512 KB L2 cache. The Cortex-A72 is configured
to run at the maximum frequency of 1.99 GHz, while in the
Cortex-A53 is configured to run at 1.51 GHz. Additionally, the
board is equipped with 4 GB of DDR3 main memory. We use
the Linux 16.04 Xenial operating system for this work.

We use two different sets of benchmarks in this paper. We
rely on the complete set of micro-benchmarks proposed in
microbench [30] during the parameter tuning phase. We show
the accuracy of our approach at modeling the real hardware
using SPEC CPU2017 benchmarks [41]. We evaluate a mix
of both integer and floating-point benchmarks that are written
in C/C++ (not Fortran) as Sniper implements methods for
marking regions of interest in codes written in these languages.
For each benchmark, we mark the code before and after the
main loop of the benchmark. We compile the benchmarks on
the Firefly board using the GNU C compiler v5.4.0. For the
SPEC benchmarks, we compile and install the applications
using the respective commands from SPEC. For the tuning
process, we use Perf [42] on the board to gather all the
relevant performance statistics. The tuning process reported
in this work collects the number of dynamically executed
instructions as well as the total number of cycles to calculate
overall application CPI. We also generate instruction traces
using the same exact part of the code. The traces are fed to
Sniper’s timing model for simulation.

We generate a representative code section for the SPEC
benchmarks we use in this study. Contrasting between the CPI
on the real hardware with that using our simulator requires
using the same unit of work on both platforms. Due to
the difficulty of isolating the performance of representative

TABLE II
LIST OF BENCHMARKS AND THEIR DYNAMIC INSTRUCTION COUNT.

Benchmark File name Insn Count
mcf psimplex.c, line 331 12 Billion
povray povray.cpp, line 258 2.45 Billion
omnetpp simulator/cmdenv.cc, line 268 10.8 Billion
xalancbmk XalanExe.cpp, line 842 443 Million
deepsjeng epd.cpp, line 365 14.9 Billion
x264 x264 src/x264.c, line 173 14.8 Billion
nab nabmd.c, line 127 14.2 Billion
leela Leela.cpp, line 62 10.3 Billion
imagick wang/mogrify.cpp, line 168 13.4 Billion
gcc toplev.c, line 2461 9 Billion
xz spec xz.c, line 229 10.8 Billion

SimPoints [43] on hardware, we mark the main loops and we
measure their performance. Due to the prohibitively long time
it takes to simulate the SPEC CPU2017 benchmarks using
their reference inputs, we rely on the train inputs and simulate
few iterations up to the full execution of the application, reach-
ing billions of simulated instructions for most benchmarks.
Table II provides a lists of the applications and information
on the starting location for evaluating each application as well
as the total number of instructions evaluated. This information
applies to both the hardware and the simulation platforms.

VI. VALIDATION RESULTS

We show the accuracy of our hardware-validated simulation
model against both the Cortex-A53 and Cortex-A72 cores. We
further demonstrate how even best effort in tuning the model
can lead to severe modeling errors, further motivating the need
for an automated validation methodology as proposed in this
paper.

A. Model Accuracy

Figure 5 reports the per-benchmark absolute CPI predic-
tion errors for the in-order Cortex-A53 Sniper-ARM model
compared to real hardware. Our Cortex-A53 simulation model
follows the real hardware quite accurately. We report an
average absolute CPI prediction error of 7%, and at most 16%
for a single benchmark.

Similarly, Figure 6 shows the absolute CPI prediction error
for the out-of-order Cortex-A72 core. We report an average
absolute CPI prediction error of 15% with a couple outlier
applications reaching up to approximately 30%. Further anal-
ysis reveals that for povray and x264, more than half the
modeling error can be attributed to the prefetcher. For more
than half of the benchmarks, the modeling error is less than
10%.

B. Impact of Modeling Errors

Minor modeling mistakes that come from specification er-
rors can lead to significant errors in the estimated performance
despite the best estimates from users. To demonstrate how
significant the error can be in practice, we determine the worst
processor configuration in very close proximity to the true
optimum (as determined by our validation methodology). We
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Fig. 5. Absolute CPI prediction error for the in-order Cortex-A53 Sniper-
ARM simulation model compared to real hardware.
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Fig. 6. Absolute CPI prediction error for the out-of-order Cortex-A72 Sniper-
ARM simulation model compared to real hardware.

start from the optimum configuration and find the worst config-
uration that results from giving each configuration parameter
a value that differs by a single step from the optimal. For
example, if the possible values to configure the reservation
station are 32, 40, 50, 64, and 70 entries, and irace determines
that it should be 50 for minimum error, we evaluate the
deviation of this parameter only to the values of 40 and 64
entries, leaving the rest of the possible values. We exhaustively
search for the worst configuration that can be achieved with
such a small deviation (including the deviation of multiple
parameters simultaneously), and report the accuracy result for
both the Cortex-A53 and Cortex-A72 models.

Figure 7 reports the absolute CPI error for the inaccurate
Cortex-A53 model. The average error across all the bench-
marks grows significantly from 7% to 34%. Similarly, indi-
vidual applications yield errors that reach up to 67%. Relative
to the best configuration in Figure 5, both the average error and
highest error quadruple. Similarly, Figure 8 demonstrates the
noticeable increase in CPI error for the Cortex-A72 model. The
figure indicates that even with controlled deviation from an
optimum configuration the average error reaches about 45%,
i.e., the error increases by threefold compared to the average
error of the accurately-tuned configuration.

Note that these results serve to provide an indication on how
inaccurate parameter settings can lead to significant modeling
errors, even when all the configuration values are within close
proximity to the optimum. We expect worse modeling errors
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Fig. 7. Impact of close-to-optimum but inaccurate parameter settings on the
Cortex-A53 model. Significant errors in performance evaluation can be seen
even with reasonable parameter estimates.
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Fig. 8. Impact of close-to-optimum but inaccurate parameter settings on the
Cortex-A72 model. Significant errors in performance evaluation can be seen
even with reasonable parameter estimates.

when all possible parameter values are considered.

VII. CONCLUSIONS

Processor simulators are widely used in academia and in-
dustry for performance evaluation. Accurate assessment of the
performance of a particular processor depends on how accu-
rately the simulator models real hardware. However, validating
processor simulators is a demanding endeavour, especially
with the scarcity of publicly disclosed information on various
aspects of the processor design. In this paper, we propose
a validation methodology to alleviate the task of simulator
validation. Our methodology relies on automated parameter
tuning algorithms, based on iterated racing, to adjust the timing
model of the simulator such that the error in performance eval-
uation is minimized. This approach vastly lessens the impact
of specification errors resulting from lack of information on
the real processor, and helps uncover abstraction modeling
errors in the simulator. To demonstrate the effectiveness of
our approach, we overhaul the Sniper simulator to provide
support for the ARM AArch64 ISA, and we develop novel
timing models for in-order and out-of-order ARM cores. We
use our validation methodology to accurately model both an
ARM Cortex-A53 in-order processor and an ARM Cortex-A72
out-of-order processor, with an average error of 7% and 15%,
respectively, across a set of SPEC CPU2017 benchmarks.



ACKNOWLEDGEMENTS

We thank the reviewers for their constructive and insightful
feedback. This work was primarily supported by the European
Research Council (ERC) Proof-of-Concept Grant agreement
No. 713632. Additional support is provided by the European
Research Council (ERC) Advanced Grant agreement No.
741097, and the FWO projects G.0434.16N and G.0144.17N.

REFERENCES

[1] B. Black and J. P. Shen, “Calibration of microprocessor performance
models,” IEEE Computer, vol. 31, May 1998.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
Computer Architecture News, vol. 39, May 2011.

[3] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “SimFlex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, Jul. 2006.

[4] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in Proceedings of the International Symposium
on Performance Analysis of Systems and Software (ISPASS), Apr. 2007.

[5] D. C. Burger and T. M. Austin, “The SimpleScalar
Tool Set,” Computer Architecture News, 1997, see also
http://www.simplescalar.com for more information.

[6] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A full system
simulator for multicore x86 CPUs,” in Proceedings of the Design
Automation Conference (DAC), June 2011.

[7] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A
simulation framework for CPU-GPU computing,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sept 2012.

[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. H. nad F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system
simulation platform,” IEEE Computer, vol. 35, Feb. 2002.

[9] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using the
SimOS machine simulator to study complex computer systems,” ACM
Transactions on Modeling and Computer Simulation (TOMACS), vol. 7,
Jan. 1997.

[10] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference
(ATC), Jul. 2005.

[11] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC), Nov. 2011.

[12] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), Jun. 2013.

[13] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions
on Architecture and Code Optimization (TACO), Oct. 2014.

[14] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental
error in microprocessor simulation,” in Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), Jul. 2001.

[15] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Hein-
rich, “FLASH vs. (simulated) FLASH: Closing the simulation loop,”
in Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Nov. 2000.

[16] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Mar. 2014.

[17] M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, and B. Al-Hashimi,
“Hardware-validated CPU performance and energy modelling,” in Pro-
ceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), April 2018.
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