
Vector Runahead for Indirect Memory Accesses
Ajeya Naithani† Sam Ainsworth‡ Timothy M. Joneso Lieven Eeckhout†

†Ghent University ‡University of Edinburgh oUniversity of Cambridge

Abstract—Vector Runahead delivers extremely high memory-
level parallelism even for chains of dependent memory accesses
with complex intermediate address computation, which conven-
tional runahead techniques fundamentally cannot handle and
therefore have ignored.

I. INTRODUCTION

Many modern-day workloads are poorly served by current
out-of-order superscalar cores, since they feature sparse, indi-
rect memory accesses [3] characterized by high-latency cache
misses that are unpredictable by today’s stride prefetchers [6].
Despite large reorder-buffer and issue-queue resources, super-
scalar cores running these applications have run out of steam,
spending the majority of their time stalled since they cannot
capture the memory-level parallelism necessary to hide today’s
DRAM access latencies.

Vector Runahead rearchitects runahead execution to use a
new method of generating memory-level parallelism. Rather
than work-skipping [8], Vector Runahead extracts memory-
level parallelism as a speculative form of data-level par-
allelism: it groups together independent loads from many
different iterations of the same code, allowing them to all
follow different sequences of dependent loads independently.
It further improves throughput by running these newly grouped
sequences as vector operations: even when the workload itself
is not vectorizable, the prefetching effect from the runahead,
which need not be perfectly accurate, is likely to still exhibit
data-level parallelism.

On a variety of graph, database and HPC workloads, Vector
Runahead improves performance by 1.79× compared to a
baseline out-of-order processor with a stride prefetcher. Rel-
ative to the state-of-the-art IMP prefetcher [12] and Precise
Runahead Execution (PRE) [9], Vector Runahead improves
performance by 1.49× on average. The fundamental reason
for this significant performance improvement is illustrated in
Figure 1: PRE is unable to accurately prefetch the majority of
indirect memory accesses, unlike Vector Runahead.

II. EXISTING RUNAHEAD TECHNIQUES

While specialized accelerators are one solution, and pro-
grammable forms of prefetching another [1], the ideal solu-
tion would be a pure-microarchitectural technique that could
achieve the same benefits without the need for recompilation.
Hardware prefetchers can pick up a variety of memory access
patterns, but to achieve the instruction-level visibility neces-
sary to calculate the addresses of complex access patterns

Vector Runahead, A. Naithani, S. Ainsworth, T. M. Jones and L. Eeckhout,
In Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2021.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

O
o

O
P

R
E

V
R

Camel G5-s16 G5-s21 HJ2 HJ8 Kangar NAS-CG NAS-IS Rand Avg

C
yc

le
s 

Pe
r 

In
st

ru
ct

io
n

Base IQ full Stride Indirect Other

Fig. 1: CPI stacks for the baseline out-of-order (OoO) core,
Precise Runahead Execution (PRE) and Vector Runahead
(VR). The memory component is broken down and attributed
to striding loads and indirect dependent-chain loads. The pre-
vious state-of-the-art runahead cannot prefetch the majority
of indirect memory accesses, unlike Vector Runahead.

in today’s workloads [1], one must operate within the core,
instead of within the cache. Runahead execution [8, 9] is the
most promising technique to achieve this.

The promise of runahead execution is that the core can
continue to perform useful work even whilst stalled on a long-
latency cache miss, by calculating addresses and prefetching
data for future memory accesses. By speculatively issuing
multiple independent memory accesses, runahead execution
significantly increases memory-level parallelism (MLP), ulti-
mately improving overall application performance.

However, conventional runahead comes unstuck by the very
mechanism it uses to generate MLP. First, by skipping over
loads for which the data source is not yet ready, it is unsuitable
for today’s complex indirection patterns that consist of chains
of dependent load misses. Second, conventional runahead is
limited by both the processor’s front-end (fetch/decode/re-
name) width and available back-end resources (issue queue
slots and physical registers) [9]. What is needed is a technique
that can overcome the limitations of a processor’s resources
to generate massive amounts of memory-level parallelism and
follow chains of dependent loads to completion, prefetching all
data required for many memory accesses in the future. Vector
Runahead is that technique.

III. VECTOR RUNAHEAD

The key insight behind Vector Runahead is that many
indirect memory accesses occur within loops where each
iteration follows approximately the same control flow path,
and that this regularity can be exploited through parallel
execution of multiple iterations simultaneously. Speculative
vector execution of multiple future loop iterations is possible



for (int x=0; x<N; x++)
y += B[hash(A[x])]->value;

(a) Example code, with memory access by array indirection, with
intermediate address computation and pointer access.

(b) Precise Runahead Execution (PRE) [9] is able to prefetch array
elements from A. In contrast, the array elements to B cannot be
prefetched during runahead mode as they depend on A. Likewise,
the data values cannot be prefetched either because they depend on
B. Note that the elements in A are accessed serially as indicated. PRE
runahead mode is terminated before it can prefetch array elements
of B; furthermore, the number of back-end resources needed during
runahead mode limits the speculation depth.

(c) Vector Runahead vectorizes memory accesses along the memory
dependence chain during runahead mode. Multiple accesses to A
happen in parallel, followed by parallel accesses to B, followed by
parallel data value reads. Vector Runahead changes runahead mode’s
termination condition, i.e., instead of returning to normal mode once
the blocking load miss returns from main memory, Vector Runahead
continues runahead mode until all loads along the dependent load
chain have been issued. This delayed termination condition delivers
higher performance by extracting more MLP than an immediate
return to normal mode.

Fig. 2: Vector Runahead versus Precise Runahead Execu-
tion (PRE) [9] on an illustrative code example. The loads
highlighted in green can only be triggered by stalling on
loads highlighted in gray, and those in blue by stalling on
gray and green. Vector Runahead prefetches multiple memory
accesses in parallel along the memory dependence chain
during runahead mode.

and safe, even when the original workload is not vectorizable,
since the results will be discarded once Vector Runahead is
terminated and normal execution resumes.

Vector Runahead addresses the limitations described above
in three ways, as illustrated in Figure 2. First, it deliberately
waits for the results of currently unavailable loads, rather than
invalidating and skipping them, which enables Vector Runa-
head to prefetch entire load chains but causes the technique to
quickly exhaust its backend out-of-order resources and thus
stall on waiting for these intermediate results. Second, to
fix this, Vector Runahead vectorizes the runahead instruction
stream by reinterpreting scalar instructions as vector oper-
ations to generate many different cache misses at different
offsets. This means that despite executing many future iter-
ations of a loop at once, Vector Runahead only requires the

processor resources (both front-end and back-end instruction
slots) of a single iteration. In effect, this virtually increases
the effective fetch/decode bandwidth during runahead mode
by issuing independent operations both in quick succession
and merged together into single instructions. Third, it issues
multiple rounds of these vectorized instructions through our
schemes of vector unrolling and pipelining to speculate even
deeper and increase the effective runahead memory bandwidth
even further. This has the effect of installing huge numbers of
independent loads next to each other in the issue queue and
reorder buffer, avoiding the need for out-of-order structures
of unbounded size. Altogether, this means that, while vector
runahead must wait for dependent loads rather than skipping
them, it waits on a huge number of them at once, finally
allowing the achievement of extreme memory-level parallelism
even on complex workloads.

IV. MICROARCHITECTURE DETAILS

We now describe Vector Runahead’s required changes to
the processor pipeline, as illustrated in Figure 3.

A. Initiating Vector Runahead

The core enters runahead mode when either of the following
two conditions is satisfied after a load instruction blocks the
head of the ROB: (1) the ROB is filled with instructions;
or (2) the issue queue is filled to 80% of its full capacity.
Vector Runahead checkpoints the PC and the front-end register
allocation table (RAT). This marks the entry to runahead mode.
After entering runahead mode, the processor continues to
fetch, decode, and execute future instructions. We use a stride
detector [6] to find regular access patterns in the code that
can be used as ‘induction variables’ to produce speculative
vectorized copies of code. The detector also keeps track of
the last dependent load (known as ‘terminator’) on the striding
load. Entry to vector-runahead mode begins when we decode
a striding load. We vectorize the striding load, followed by
the sequence of instructions depending on it. We call the
dependent instructions between two dynamic instances of a
striding load as an indirect chain.

B. Detecting Indirect Chains
We use a taint vector (TV to detect the indirect chains

depending on a striding load. The TV features an entry for
each architectural integer register, and stores two flags: (1)
if the previous instruction to write to this register was a
vectorized operation (vectorize bit); and (2) if the previous
instruction to write to this register was invalid (invalid bit).
The TV is empty at the start of runahead, as it is cleared
whenever runahead terminates. Vectorize bits are initially
set for the destination architectural register of a discovered
striding load. Invalid bits are initially set based on the destina-
tions of unsupported operations, e.g., those that take floating-
point operations as input (which are always invalid and so
need no TV entry). Both bits are propagated using vector
taint tracking, a mechanism to propagate vectorization where
needed. Instructions with no bits set are issued as conventional
scalar runahead operations, and treated as loop-invariant with



Striding

Loads

RDQ

I-Cache
Dispatch

Fetch

Stride 

Detector

Issue Execute Commit
Register 

Read

Rename

(RAT)

I1 P5 0

I2 P3 1

I3 0

….

Decode

Taint Vector

Loads

New Structures

Modified Structures

Existing Structures

Normal Mode

Runahead Mode

Physical 

Register 

File

Vectorizer VRAT

AVX-512

Instructions

RDQ

Fig. 3: Processor pipeline for vector runahead execution.

respect to vectorized copies of the instruction sequence in the
current vector-runahead mode iteration. Instructions with the
invalid bit set are discarded, and instructions with only the
vectorize bit set are vectorized.

C. Vectorizing Instructions
A microprogrammed routine vectorizes the indirect chain.

For striding loads, the vectorizer generates their vectorized
versions by taking the current memory address accessed by the
striding load and its stride as inputs. The vectorizer generates
one 512-bit vector load instruction and injects the vector
instruction into the pipeline. Regardless of input bit width,
eight scalar operands are fit in this 512-bit vector, such that
we can operate on any size up to 64 bits. We assume that each
vector instruction uses 512-bit vector registers (similar to Intel
AVX-512) for its source and destination, and we reuse the mi-
croarchitecture’s physical vector registers, and the micro-ops
implemented by the microarchitecture’s vector units. Similarly,
we vectorize all arithmetic and load instructions (directly or
indirectly) depending on a striding load, and generate their
corresponding 512-bit vector versions.

The renamed instructions are dispatched to the processor
back-end where they are executed speculatively. The instruc-
tions executed in runahead mode are useful only in generating
memory accesses and their state is not maintained in the ROB.
Therefore, no ROB entries are allocated in runahead mode.
Instead, we use a simpler register deallocation queue [9] to
handle register availability.

D. Vector Unrolling and Pipelining

To cover more iterations of the indirect chain, we can alter-
natively generate more than one vector instructions for each
scalar instruction in the chain. Depending on the amount of
back-end resources available, the generated vector instructions
can be dispatched to the processor back-end in two ways.
First, through vector unrolling (Figure 4(b)), we can dispatch
vector instructions in multiple rounds. For example, we could
dispatch U × 8 copies of a loop by issuing the first eight in
a single vectorized copy of the instruction stream in round 1,
then repeating the process U − 1 times, where U is the unroll
depth. Second, through vector pipelining (Figure 4(c)), we can
dispatch all vector instructions for each scalar instruction be-
fore dispatching P , the pipeline width, vector instructions for
the next instruction in the indirect chain. When the amount of
back-end resources is limited, vector unrolling is the preferred
technique as the processor back-end does not stall due to lack
of available resources to process vector instructions. Vector

pipelining, on the other hand, delivers better performance
when the back-end has sufficient resources to simultaneously
process a large number of vector instructions. A processor
microarchitecture can be tuned to dynamically select one of
the two techniques for higher performance depending on the
availability of back-end resources.

Since we can generate multiple vector instructions for each
scalar instruction of the indirect chain, each scalar architectural
register first needs to be mapped to multiple vector architec-
tural registers, followed by mapping each vector architectural
register to a vector physical register. The complete process
of renaming from a scalar architectural register to a vector
physical register is accomplished with the help of the vector
register allocation table (VRAT), which maintains P , the vec-
tor pipelining width, entries per architectural integer register,
recording the P destination physical vector registers assigned
to the P pipelined copies of the instruction. When we look up
these P registers in the VRAT, each of the P copies of the
new vectorized instruction use one of the P entries as its own
input. This enables us to distinguish the inputs and outputs
of separate pipelined iterations within the vector pipelining
arrangement, which, from an instruction fetch point of view,
all alias to the same instruction.

E. Control Flow
All vector lanes follow the same pattern of control flow,

unless when there may be divergence between the lanes in
vector-runahead mode when they meet a branch instruction.
A micro-op converts scalar branches into a predicate mask
for the eight vector lanes. Since Vector Runahead need not
cover all code, we then use only the results of the first lane to
determine the direction of the branch, and mask off any lanes
that would have taken a different control flow path.

F. Terminating Runahead
Vector-runahead mode terminates when any of the following

four conditions is satisfied: (1) we encounter a dynamic
instance of the same striding load again; (2) we encounter, and
issue, the terminator: the PC identified by the stride detector
as the last dependent load in the sequence; (3) all vector
lanes have been marked as invalid; or (4) we time out (after
200 scalar-equivalent instructions have been executed in vec-
tor-runahead mode), in case of traveling down an unexpected
code path. When we dispatch multiple rounds of vectorized
instructions in vector unrolling, we re-enter vector-runahead
mode immediately, with the next striding load issuing vector
gathers again. This is repeated until we have issued all the
rounds and only then is normal execution resumed.



(a) Basic Vector Runahead. In this example, MLP is limited to a sin-
gle vector instruction, so only four outstanding memory accesses can
be prefetched at once, and few future memory accesses are covered
by the memory-parallel vector runahead, limiting performance gains
for future normal execution.

(b) Vector Unrolling. While the Vector Runahead operations are still
run in sequence, with a maximum MLP of 4, we cover significantly
more of the future memory accesses before returning to normal
execution, improving the latter’s observed performance gain.

(c) Vector Pipelining. We overlap the independent operations from
multiple unrolled iterations. This allows many misses to be handled
simultaneously: in this example, 1 and 2 can be executed in parallel,
doubling MLP to 8, as can 3 and 4, and 5 and 6.

Fig. 4: Vector Runahead uses two techniques, vector unrolling
and vector pipelining, to improve performance by increasing
the degree of runahead to allow wider vectors than supported
natively by the instruction-set architecture.

The benefit of vectorizing the entire indirect chain far
exceeds the additional duration the core is in runahead mode,
as Vector Runahead yields higher memory-level parallelism
than typical out-of-order execution.

Upon termination, we restore the front-end RAT to the point
of entry into runahead mode, and the TV, VRAT and RDQ
are cleared. The front-end is redirected to fetch from the next
instruction after the last dispatched instruction in the ROB.

G. Hardware Overhead

Vector Runahead requires only modest changes to the
processor pipeline, including the stride detector, taint vector,
and VRAT. The RDQ is already used by PRE [9]. When
put together, the total hardware overhead of Vector Runahead
relative to a baseline out-of-order core is limited to 1.3 KB,
versus 1.24 KB for PRE.

V. EVALUATION

We compare the following microarchitectural mechanisms,
all implemented in Sniper [5]:

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
am

el

G
5
-s
1
6

G
5
-s
2
1

H
J2

H
J8

K
an
ga
r

N
A
S-
C
G

N
A
S-
IS

R
an
d

H
-m

ea
n

Sp
ee
d
u
p

OoO IMP PRE VR

Fig. 5: Performance of Vector Runahead execution on a
baseline Intel Skylake-style out-of-order core implemented
in Sniper [5]. Vector Runahead yields a 1.79× and 1.49×
harmonic mean speedup compared to the baseline OoO core
and PRE (and IMP), respectively.

• Out-of-Order (OoO): Baseline out-of-order core based
on Intel Skylake, with hardware stride prefetcher.

• Precise Runahead Execution (PRE): The state-of-
the-art runahead execution technique, as proposed by
Naithani et al. [9]. We assume an ideal stalling-slice table;
therefore, there are no misses in the table.

• Indirect Memory Prefetcher (IMP): The indirect mem-
ory prefetcher, as proposed by Yu et al. [12]. IMP is
attached to the L1 D-cache; it detects indirect access
patterns starting from striding memory accesses.

• Vector Runahead (VR): The mechanism proposed in
this paper. Our representative vector runahead technique
with an unroll length U of 8 and pipeline depth P of 8.

We consider a variety of benchmarks featuring complex
memory and compute dependencies in their execution stream.
These benchmarks are memory latency bound on today’s sys-
tems, and are based on high-performance computing (HPC),
graph and database workloads evaluated in previous work
on programmer- and compiler-managed prefetching mecha-
nisms [1, 2]. The benchmarks represent a variety of differ-
ent complex memory-access patterns, with differing indirect
chains and compute requirements. We use compiler flag -ftree-
vectorize (via O3) in all comparisons, but we find that autovec-
torization does not alter performance because the code is not
vectorizable (despite being amenable to Vector Runahead). We
refer to the ISCA 2021 conference paper for details regarding
the experimental setup and various sensitivity analyses.

Figure 5 reports speedup for all the evaluated techniques.
Vector Runahead achieves a 1.79× harmonic mean speedup
across the benchmarks compared to our baseline OoO archi-
tecture. The achieved speedup is as high as 3.6× (Camel),
2.9× (HJ2), 2.7× (HJ8) and 2.7× (Kangaroo). PRE on the
other hand achieves a harmonic mean speedup of 1.20×
compared to the baseline — in other words, Vector Runahead
achieves a speedup of 1.49× relative to PRE. IMP cannot
detect complex address computation patterns and improves
speedup by only 1.19× relative to the baseline. In short, the
significant improvement in performance achieved by Vector
Runahead results from much higher memory-level parallelism,
while fetching in all loads within dependent sequences, and



0

4

8

12

16

20

24

C
am

el

G
5
-s
1
6

G
5
-s
2
1

H
J2

H
J8

K
an
ga
r

N
A
S-
C
G

N
A
S-
IS

R
an
d

H
-m

ea
n

M
LP

OoO PRE VR

Fig. 6: Memory-level parallelism measured in terms of MSHR
entries utilized per cycle if at least one is allocated. While
precise runahead improves MLP by 1.2×, vectorizing indirect
chains generates 2.3× more MLP than an OoO core.

without fetching irrelevant data.
Vector Runahead achieves higher performance by three

main mechanisms. The most important is the software-
pipelining effect that reordering of load instructions provides,
in that a large number of misses can be serviced simulta-
neously. This same reordering when implemented with 64
scalar micro-ops instead of 8 vector micro-ops is sufficient to
gain an average 1.47× speedup. The optimization of packing
these into fewer vector operations, due to their now-SIMD
layout, increases performance to 1.69× by virtue of improving
compute throughput and by requiring fewer issue queue slots
so that loads can issue earlier. Finally, altering the termination
condition, such that Vector Runahead completes the entire
chain of memory accesses before exiting, allows it to cover
longer chains of multiple main memory accesses rather than
just the ones it can achieve before the load instruction at the
head of the ROB returns, increasing performance to the full
1.79× shown in the graph.

Figure 6 shows why Vector Runahead is able to achieve
higher performance. Its pipelined vectors are able to issue
many gathers to memory at once, thus hiding the serialization
of dependent loads observed by the out-of-order core and PRE.
This also shows us why some workloads are sped up more than
others. Although our baseline OoO core features a relatively
big ROB, which enables it to achieve high MLP on the
simplest workloads, we note that Vector Runahead can extract
significantly more MLP. Perhaps unsurprisingly, Vector Runa-
head achieves the largest speedups when the out-of-order core
is comparatively weakest: for Camel, HJ2, HJ8 and Kangaroo,
there are many instructions (address-computing or otherwise)
executing along with the loads, which starve the out-of-order
core of reorder buffer and issue queue resources [2], limiting
its memory-reordering ability. By contrast, Vector Runahead
does not rely on the reorder buffer for high memory-level
parallelism, as it can achieve the same effect through its vector
gathers.

Some workloads, such as G5-s16 and G5-s21, start from a
low baseline and stay relatively low even with Vector Runa-
head: complex control flow limits the ability of Vector Runa-
head to cover enough of the application’s memory accesses, in
effect throttling the vector gathers issued, particularly for the

smaller s16 input, which frequently moves between variable-
length data-dependent inner- and outer-loops. Others, such as
CG and G5-s16, have small datasets that often hit in the
LLC, meaning their L1 cache misses are serviced quickly
with or without Vector Runahead. Finally, even though many
workloads end up MSHR-constrained within vector-runahead
mode, the average MLP is still typically lower than the number
of MSHRs available: this is because Vector Runahead cannot
run continuously, and only kicks in when the out-of-order
system runs out of resources.

VI. POTENTIAL FOR LONG-TERM IMPACT

Vector Runahead promises a transformational performance
improvement for some of today’s most important and chal-
lenging workloads, all in microarchitecture. At a time when
other methods for improving single-thread performance are
few and far between, we hope that this work will inspire
industry. While the performance improvements are significant,
the extra hardware is modest. This reinvention of runahead
execution, to be based on data-level (SIMD) parallelism rather
than work-skipping as its primary method for hiding memory
latency, could be a fundamental building block for many new
techniques both inside and outside the core.

Tomorrow’s processors will be able to natively support
extreme memory-level parallelism, even down complex chains.
The recent scaling up of other parts of the microarchitecture,
such as highly parallel page-table walkers, means that proces-
sors will be able to exploit these benefits to the fullest. In turn,
we expect processors to adapt their setups to accommodate
forms of extreme memory-level parallelism as a result: by
finally making sparse workloads bandwidth-bound instead of
latency-bound, we expect that conventional processors will
move to higher-latency, higher-bandwidth memory.

While Vector Runahead fundamentally exposes more
memory-level parallelism than out-of-order execution, it is
not fundamentally reliant upon out-of-order execution. At
a time when both out-of-order execution [7] and advanced
prefetchers [10] have both been exposed for their inadequacies
around security, Vector Runahead proposes a solution for the
indirect memory accesses these countermeasures restrict [11]
that is reliant on neither out-of-order execution nor out-of-core
prefetching. It can preserve secure control flow by being an
in-core technique and even despite being speculative itself. We
believe that this could finally make such countermeasures [11],
and even in-order cores, palatable without severe penalty.

Vector Runahead is a qualitative departure from prior solu-
tions. In particular, in contrast to software auto-vectorization,
Vector Runahead does not require the code to be vectorizable
to adequately prefetch data into the cache. In contrast to prior
runahead techniques, Vector Runahead presents a solution
for achieving memory-level parallelism down complex depen-
dent memory chains. In contrast to prior pre-execution and
helper thread techniques, Vector Runahead needs no separate
thread, no separate execution units, and neither programmer
nor compiler support. Moreover, Vector Runahead can follow
dependent chains, unlike pre-execution and helper threads. In



contrast to software prefetching, Vector Runahead is a pure
microarchitecture solution, requiring no changes to the binary
or source code, while being able to freely vectorize sequences
of instructions that would cause software prefetchers to fault.
In contrast to hardware prefetching, Vector Runahead operates
within-core, allowing it to cover arbitrary memory indirection
depths with complex address calculation, as needed in many
workloads [4]. In fact, as we have explored and demonstrated
in our ISCA 2021 paper, Vector Runahead provides significant
performance improvements for modern-day workloads with
complex indirect memory-access patterns from a wide variety
of application domains including graph analytics, database,
and high-performance computing.

VII. CONCLUSION

Vector Runahead delivers on what runahead techniques
were always designed for, but could really never provide:
true latency tolerance for CPUs without out-of-order resources
needing to scale to unbounded dimensions, even for emerg-
ing workloads with long and complex chains of dependent
memory accesses. We believe that Vector Runahead provides
an opportunity for transformative improvements in single-
thread performance, favoring processor designs optimized for
memory-level parallelism rather than being hampered by la-
tency.

REFERENCES
[1] S. Ainsworth and T. M. Jones. An event-triggered programmable

prefetcher for irregular workloads. In ASPLOS, 2018.
[2] S. Ainsworth and T. M. Jones. Software prefetching for indirect memory

accesses: A microarchitectural perspective. ACM TOCS, 2019.
[3] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,

D. Patterson, W. Plishker, J. Shalf, and S. Williams. The landscape of
parallel computing research: A view from Berkeley. 2006.

[4] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan. Classifying
memory access patterns for prefetching. In ASPLOS, 2020.

[5] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An
evaluation of high-level mechanistic core models. ACM TACO, 2014.

[6] T.-F. Chen and J.-L. Baer. Reducing memory latency via non-blocking
and prefetching caches. In ASPLOS, 1992.

[7] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution. In IEEE Symposium
on Security and Privacy (S&P), 2019.

[8] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An
alternative to very large instruction windows for out-of-order processors.
In HPCA, 2003.

[9] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout. Precise runahead
execution. In HPCA, 2020.

[10] J. R. S. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison,
D. Kohlbrenner, and C. W. Fletcher. Opening pandora’s box: A
systematic study of new ways microarchitecture can leak private data.
In ISCA, 2021.

[11] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher. Speculative taint tracking (STT): A comprehensive protection
for speculatively accessed data. In MICRO, 2019.

[12] X. Yu, C. J. Hughes, N. Satish, and S. Devadas. IMP: Indirect memory
prefetcher. In MICRO, 2015.


