
Architectural Support for Probabilistic Branches
Almutaz Adileh
Ghent University
Ghent, Belgium

almutaz.adileh@ugent.be

David J. Lilja
University of Minnesota
Minneapolis, MN, USA

lilja@umn.edu

Lieven Eeckhout
Ghent University
Ghent, Belgium

lieven.eeckhout@ugent.be

Abstract—A plethora of research efforts have focused on fine-
tuning branch predictors to increasingly higher levels of accuracy.
However, several important optimization, financial, and statistical
data analysis algorithms rely on probabilistic computation. These
applications draw random values from a distribution and steer
control flow based on those values. Such probabilistic branches
are challenging to predict because of their inherent probabilistic
nature. As a result, probabilistic codes significantly suffer from
branch mispredictions.

This paper proposes Probabilistic Branch Support (PBS), a
hardware/software cooperative technique that leverages the ob-
servation that the outcome of probabilistic branches needs to be
correct only in a statistical sense. PBS stores the outcome and
the probabilistic values that lead to the outcome of the current
execution to direct the next execution of the probabilistic branch,
thereby completely removing the penalty for mispredicted prob-
abilistic branches. PBS relies on marking probabilistic branches
in software for hardware to exploit. Our evaluation shows that
PBS improves MPKI by 45% on average (and up to 99%)
and IPC by 6.7% (up to 17%) over the TAGE-SC-L predictor.
PBS requires 193 bytes of hardware overhead and introduces
statistically negligible algorithmic inaccuracy.

I. INTRODUCTION

Branch prediction is fundamental to modern-day superscalar
processors to keep the pipeline full with useful instructions.
When fetching a branch instruction, the processor predicts the
outcome of the branch and speculatively fetches and executes
instructions along the predicted path. When the branch turns out
to be mispredicted, the processor needs to squash the wrong-
path instructions and re-direct fetch along the correct path,
which results in a significant performance penalty. Branch
prediction accuracy is more critical for pipelines that are
deeper and wider. Since the introduction of dynamic branch
prediction [1], a large body of work has been devoted to
improve branch prediction accuracy, see for example [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11].

Even though modern-day branch predictors are highly
accurate, we observe that a number of branches depend
on probabilistic values, i.e., the direction of the branch is
determined based on a random value drawn from some
distribution. These branches are inherently difficult to predict
because of their probabilistic nature. We therefore call them
probabilistic branches. We find that various algorithms in
emerging application domains such as machine learning,
statistical data analysis and financial optimization rely on
probabilistic control flow. One typical example of a probabilistic
branch appears in evolutionary optimization algorithms where

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Probabilistic Regular

B
r
e
a
k
d
o
w
n

Dynamic branches
Tournament mispredictions
TAGE-SC-L mispredictions

Fig. 1. Breaking down probabilistic versus regular branches: left bar
shows relative execution frequency; middle and right bars show fraction
of mispredictions. In spite of their relatively small occurrence, probabilistic
branches lead to a disproportionally large fraction of mispredictions.

a random value is generated between 0 and 1, and if the
value is larger than a particular threshold, a new solution is
generated (e.g., through mutation or crossover) to explore the
large solution space.

We find probabilistic branches to have significant impact, as
shown in Figure 1. Although probabilistic branches are less
frequent compared to regular (non-probabilistic) branches, see
the leftmost bars, they lead to a disproportionally large number
of mispredictions, see the middle and rightmost bars for a 1 KB
tournament predictor [12] and 8 KB TAGE-SC-L predictor [13].
(Details about the setup are provided in Section VI.) For exam-
ple, for DOP, probabilistic branches account for approximately
2% of the dynamically executed branches, however, this leads to
19% and 23% of the branch mispredictions for the tournament
and TAGE-SC-L predictors, respectively. Note also that the
misprediction rate for the probabilistic branches tends to be
higher for the more sophisticated TAGE-SC-L predictor. This
suggests that as modern predictors improve the prediction
accuracy for regular branches, probabilistic branches become
even more critical.

In this paper, we propose Probabilistic Branch Support
(PBS), a cooperative hardware/software approach to completely
eliminate mispredicted probabilistic branches. PBS leverages a
unique characteristic of probabilistic branches: unlike regular
branches, the outcome of probabilistic branches needs to be
correct only in a statistical sense. Whether the outcome of
a particular execution of a probabilistic branch is taken or
not is irrelevant, as long as the probabilistic characteristics
of the branch (and the algorithm as a whole) are respected.
This property enables relaxing what is considered a correct

prediction of the probabilistic branch, i.e., any outcome of
the probabilistic branch is correct, as long as we maintain the
statistical properties of the branch across the entire execution
of the workload.

PBS does not predict the outcome of probabilistic branches
and does not speculatively fetch and execute instructions
along the predicted path, as is done for regular branches.
Instead, PBS stores the outcome of a particular execution
of a probabilistic branch to then direct the next execution.
This completely eliminates the need to predict the outcome of
the probabilistic branch. Since the outcome is known at fetch
time, we always fetch correct-path instructions. To guarantee
correctness of execution, we need to store and retrieve the
probabilistic values that are used in the control-dependent
execution path. To this end, PBS stores the probabilistic values
and the respective branch outcome in a special hardware table
upon the first (few) execution(s) of a probabilistic branch.
Subsequent executions are then steered using the stored branch
decision(s). The probabilistic values generated in the code that
precede the probabilistic branch are replaced with the old ones,
and so is the branch direction. The probabilistic values that
precede the current execution as well as the branch outcome
are stored for the next execution. Because the time at which
the probabilistic values and branch outcome are known may
happen out of sync with the fetch stage, a careful design is
needed to seamlessly integrate the proposed modifications in
an out-of-order processor pipeline.

PBS involves software/hardware cooperation, i.e., the soft-
ware marks probabilistic branches for the hardware to exploit.
Marking probabilistic branches is done by either the compiler
or the programmer. At the ISA level, we propose two new
probabilistic compare and jump instructions, which can be
added to the ISA or can be encoded by leveraging unused bits
in existing ISAs, thereby guaranteeing backward compatibility.
We augment the hardware with new tables to store probabilistic
values and branch outcomes for future reference. The hardware
overhead is limited to 193 bytes.

We evaluate PBS through execution-driven simulation across
a set of probabilistic applications. Our experimental results
report that PBS reduces the number of mispredicted branches
per 1K instructions (MPKI) by 45% on average, and up to
99%, for an 8 KB TAGE-SC-L branch predictor. This leads to
an average performance (IPC) improvement of 6.7%, and up
to 17%, for a 4-wide out-of-order processor.

Because PBS involves a bootstrap phase in which the first
few executions of a probabilistic branch are recorded to direct
subsequent instances, the final result of the algorithm may
deviate from the original code. This will not lead to a program
crash because the probabilistic algorithms, by construction, are
developed to be robust to variations in the generated random
numbers. It is expected that the inaccuracy is (very) small
though, because PBS only affects the first few executions of a
probabilistic branch. We experimentally verify that the output
is in most cases identical to the original code or falls within
acceptable bounds.

II. MOTIVATION

We first survey how several types of algorithms rely on
probabilistic values in their branch conditions. We subsequently
show how previously proposed techniques fail as a general
solution for probabilistic branches.

A. Probabilistic Algorithms

There exist quite a few algorithms that rely on probabilistic
values. These applications span numerous important domains,
e.g., scientific, engineering, biological, financial and learning
applications. What follows is not an exhaustive enumeration,
but a coverage of applications from these important and
emerging application domains.

1) Evolutionary Optimization: Evolutionary algorithms are
inspired by nature in their approach to reach an optimization
objective. These algorithms typically represent the problem as
a stream of bits (similar to a chromosome in biological terms).
The algorithms rely on a couple key functions, such as mutate
and crossover in a genetic algorithm [14], to keep modifying the
sequence of bits until it converges to the optimum solution. The
functionality of the mutate and crossover functions relies on
probabilistic values typically drawn from a uniform distribution.
For example, to decide whether to mutate (or flip) a certain bit
in the chromosome, a uniformly distributed random number
is generated and compared against a predefined mutation rate.
This probabilistic branch is not easy to predict. The code
snippet below shows an example for the mutate function:
void mutate(string &bits){

for (int i=0; i<bits.length(); i++)
if (RANDOM_NUM < MUTATION_RATE)

if (bits.at(i) == ’1’)
bits.at(i) = ’0’;

else bits.at(i) = ’1’;

2) Financial Optimization: Several financial applications
rely on stochastic computation, as shown in the following code
example (an excerpt from the Greeks application [15]):
double monte_carlo_call_price(args){
double S_adjust = S * exp(T*(r-0.5*v*v));
double S_cur = 0.0, payoff_sum = 0.0;
for (int i=0; i<num_sims; i++)

double gauss_bm = gaussian_box_muller();
S_cur=S_adjust*exp(sqrt(v*v*T)*gauss_bm);
if (S_cur - K > 0)

payoff_sum += (S_cur - K);

A random number gauss_bm is drawn from a Gaussian distri-
bution using the Box-Muller transform, which gets manipulated
and determines whether the probabilistic if-statement is taken.
The probabilistic value S_cur that controls the probabilistic
if-statement is derived from the random number. Note that
S_cur is later used in the control-dependent code past the
probabilistic branch to update the payoff_sum variable.

3) Learning Algorithms: Algorithms in the field of reinforce-
ment learning train agents such that their strategies to reach an
optimization goal converge towards the optimum. Along the
way of maximizing a certain reward function, a large space
of available options is being explored, balancing between an
action that is known to be good versus exploring other actions

that may lead to an even higher reward. An example of a well-
known strategy to balance the exploration/exploitation tradeoff
is the epsilon-greedy policy:
def epsilonGreedyAction(state: State) = {
if (Random.float() < epsilon)
randomAction(state)

else
maxQAction(state)

Based on a uniformly distributed random variable, it decides
with an ‘epsilon’ probability to explore other solutions or to
continue exploring an existing direction.

4) Physical System Modeling: The study of physical and
engineering systems heavily relies on simulation models that
describe the system under study. For example, stochastic
approaches to simulate the propagation of light through tissues
and other materials has several applications in bio-medical
imaging. A beam of photons is simulated as it propagates
through the substance, and probabilistic models rule the
interaction of each photon with the atoms in the substance.
The snippet below from [16] illustrates this.
double s = -log(drand48()) / sigma_t;
double distToBoundary = 0;
if (muz > 0) distToBoundary = (d - z) / muz;
else if (muz < 0) distToBoundary = -z / muz;
if (s > distToBoundary)

// calculate values
if (muz > 0) Tt += w; else Rd += w;
...

// otherwise update location

5) Monte Carlo Simulation: Stochastic approaches are
frequently used to compute the surface of an odd shape, or the
area below a curve that is hard, if at all possible, to integrate
through analytical methods. These Monte Carlo approaches
rely on sampling random points and checking whether these
points belong to the shape or appear underneath the curve.
for (i=0; i<NUM_ITER; i++) {

dx = drand48();
dy = drand48();
if ((dx*dx + dy*dy) < 1)

hits++;

Probabilistic models, for example Bayesian networks, are
frequently used to describe statistical inference problems. These
models can be expressed as probabilistic programs [17] for
which the outcome is typically an answer to a statistical query.
For most practical cases, enumerating the whole solution space
to answer the query is practically impossible. Sampling through
random selection is typically employed for finding the solution.

B. Existing Solutions

Probabilistic branches pose a clear challenge for branch
predictors because of their inherent randomness. Unfortunately,
existing techniques such as predication and control-flow de-
coupling (CFD) [18] fail as a general solution for probabilistic
branches, as summarized in Table I. The key take-away is
that predication and CFD cannot be applied to all probabilistic
codes.

1) Predication: Predication removes hard-to-predict
branches through if-conversion. Instead of computing a

TABLE I
SUMMARY OF WHETHER PREDICATION AND CFD CAN BE APPLIED.

Predication and CFD cannot be applied to all probabilistic codes.

Benchmark Predication CFD
DOP
Greeks ×
Swaptions × ×
Genetic ×
Photon × ×
MC-integ
PI
Bandit × ×

branch condition, a predicate is computed which then guards
the computation, i.e., control dependences are converted to
data dependences. Predication fits well the hard-to-predict
probabilistic branches and can be easily applied to small
probabilistic code sequences (e.g., small if-statements),
however, the compiler may fail to if-convert more complex
code sequences. For this reason, the GNU C compiler fails
to if-convert the probabilistic branches for five of the eight
benchmarks considered in this study.

2) Control-Flow Decoupling: Control-Flow Decoupling
(CFD) [18] tackles so-called separable branches within loops.
A separable branch is a branch whose control-dependent code
is (almost) totally independent from the code leading to the
branch. CFD splits a loop that contains a separable branch
into two loops: the first loop executes the code leading up
to the branch and stores predicates (and possibly data values)
in a queue; the second loop in each iteration pops an entry
from the queue to decide whether or not to execute the control-
dependent part. By doing so, CFD eliminates the mispredictions
for the separable branches. CFD is not a general solution for
probabilistic branches, because not all probabilistic branches are
separable. In particular, Photon contains a hard-to-split loop-
carried dependence. The probabilistic branches in Swaptions
and Bandit are reached through a function call from within a
loop. The compiler is unable to inline the function, and hence
CFD cannot split the loop. For the benchmarks where CFD is
applicable, CFD incurs overhead compared to PBS because of
increased loop overhead (two or more loops instead of one big
loop), and additional push and pop operations to the queue to
transfer the branch outcomes (and possibly data values) from
the first to the second loop.

III. PROBABILISTIC BRANCH SUPPORT

Probabilistic Branch Support (PBS) is the solution proposed
in this paper to eliminate mispredictions for probabilistic
branches. In this section, we first categorize probabilistic
branches, and then provide a high-level description of PBS.

A. Probabilistic Branch Categories

By analyzing several codes with probabilistic branches, we
classify them into two broad categories based on the usage of
the probabilistic values.
Category-1: The probabilistic value is not used after the
branch. In this category, a random value is generated and is
used only to determine whether the probabilistic branch is taken

0.1 NT

1
1.3 T

loop(cond) {

 Gen rand
 If rand > 0.5
 Action 1
 Else
 Action 2

}

2

4

5

Prev Vals.

Curr Vals.

3

Fig. 2. Illustrating PBS operation: The probabilistic value and branch outcome
in the current iteration are stored for re-directing the next iteration.

or not. The code following the branch is not data-dependent
on the probabilistic value or any of its derivatives. Despite its
simplicity, the majority of code cases we came across fall into
this category. The code snippet from the genetic algorithm in
Section II-A1 illustrates this.

Category-2: The probabilistic value is used after the
branch. In this category, the probabilistic value is used to
determine the branch outcome. The code that follows the
branch is data-dependent on the probabilistic value or its
derivatives. The code snippet from the financial application
shown in Section II-A2 shows an example of this behavior.

B. PBS: Key Idea

The key idea of PBS is to store and retrieve probabilistic
values and branch outcomes across subsequent executions
of a probabilistic branch. More specifically, when fetching
a probabilistic branch, we do not predict its outcome. Instead,
the decision whether to take the branch or not is made based on
the previous execution. As the branch instruction propagates
through the pipeline, the instructions leading to the branch
generate new probabilistic values. When the branch executes
on a functional unit, we store its outcome (taken/not-taken) as
well as the probabilistic values that may be needed after the
branch. We then replace the probabilistic values with the old
values from the previous execution of the probabilistic branch,
which correspond with the direction followed by the branch at
the fetch stage.

Figure 2 illustrates the approach taken by PBS for the
loop example shown on the left. In step 1 , when the fetch
unit encounters a probabilistic branch, it makes a decision
based on the previous execution of the branch (‘taken’ in this
example). In step 2 , the processor executes the instructions that
precede the probabilistic branch. These instructions generate the
probabilistic value (rand = 0.1) to be used by the probabilistic
branch. In step 3 , the branch is executed and the branch
decision is known (‘not-taken’); this branch outcome along
with the probabilistic value are stored for future reference in
step 4 . In step 5 , the current probabilistic value is replaced
with the value that was generated in the previous iteration
(rand = 1.3).

PBS requires an initialization phase to bootstrap the above
mechanism on a processor pipeline where multiple instances
of the same probabilistic branch can be outstanding at the
same time. PBS therefore treats the first few executions of a
probabilistic branch as a normal branch to record their outcomes
and the corresponding probabilistic values. Once the first
instance of a probabilistic branch has passed the execution stage,
PBS then follows the recorded outcome and probabilistic values.
From this point onwards, there are no more mispredictions for
the probabilistic branch. Note that the first execution, or first
few executions, of the probabilistic branch will follow the same
direction. This pragmatic initialization mechanism does not
lead to a program crash — probabilistic algorithms are designed
to be robust to variations in the generated random numbers
— however, it may lead to (minor) deviations in accuracy
compared to the original algorithm, which we experimentally
quantify in Section VII.

It is worth noting that PBS follows a deterministic approach.
This is important for debugging purposes, i.e., one can fix the
random seed and then deterministically replay the algorithm.
In other words, PBS replays the same stream of data values
when given the same initial random seed.

IV. PBS CORRECTNESS

PBS can be widely deployed. In fact, for all the benchmarks
considered in this study, we were able to implement PBS
as just described. We identify one necessary and sufficient
condition for semantically-correct operation. PBS can be used
in algorithms where the probabilistic value gets compared
to a value that does not change within a single probabilistic
branch context. A probabilistic branch context is defined
as the loop body that contains probabilistic branch instruc-
tions or reaches them through a function call. Intuitively,
if the comparison condition does not change across iterations,
a probabilistic value that evaluates to taken in one iteration,
evaluates to taken in any iteration. A context is considered the
entire execution of a loop. In particular, when a loop starts
with a probabilistic branch that gets compared to some value
x, PBS correctness requires x to remain constant during the
entire execution of the loop. Once the loop terminates, the
context is considered done. Any later execution of the same
loop is considered a new context. This new context is correct
according to the PBS correctness rule even if the probabilistic
value is now compared to a new value y (y 6= x) as long as
y does not change during its context execution. According to
this definition, a case of two disjoint loops are considered two
separate contexts. Similarly, two nested loops are considered
two distinct contexts. PBS can be used in both cases as long as
each context in either respective case maintains the correctness
rule.

The correctness condition ensures that the semantics of the
algorithm are always respected, i.e., a probabilistic value that
evaluates to taken leads to the execution of the taken code path,
and a probabilistic value that evaluates to not-taken leads to the
execution of the not-taken code path. Despite this correctness
condition, we recommend programmers to be cautious as they

apply PBS. In particular, the following example scenarios
execute properly with PBS, but may slightly deviate from an
execution without PBS support. Offline analysis is advised
in such cases to assess whether this deviation is acceptable.
Moreover, compilers can employ a safety mechanism to
determine when it is recommended not to invoke PBS, as
we will further discuss in Section V-B.

PBS starts its operation with an initialization phase during
which it records few probabilistic values along with their
corresponding branch decisions, as previously described in Sec-
tion III. Reusing these values right after the initialization phase
has a negligible impact on the code output and the probabilistic
characteristics of the algorithm if the loop containing the branch
executes a sufficiently large number of iterations (e.g., at least
a couple thousand iterations). Our experimental results indeed
demonstrate that this is the case for the probabilistic workloads
considered in this study. However, if the loop consists of a
relatively small number of iterations, as the following code
listing shows, caution must be taken when using PBS.

for (int i=0; i<40; i++) {
x = RAND;
if (x < threshold)

do_action_1;
else

do_action_2;
}

This particular loop consists of 40 iterations. Assuming PBS
requires an initialization of 4 probabilistic values, 4 values
out of 40 get used twice. We recommend performing offline
analysis to determine whether using PBS significantly affects
the probabilistic distribution seen by the algorithm or the
outcome of the execution.

Another scenario where caution is advised includes proba-
bilistic codes for which the value to which the probabilistic
value is compared against is not constant within a context. Al-
though this scenario goes against the correctness condition, PBS
may still be applied, with care, if the value varies slowly. This
is for example the case in simulated annealing, an evolutionary
optimization algorithm in which a decreasing ‘temperature’
determines the likelihood of evaluating a radically different
solution; the ‘temperature’ is a slowly varying parameter to
which a randomly generated variable is compared. In such cases,
PBS can still be applied at the cost of a (minor) deviation from
the expected program behavior. Similarly, an offline analysis
can help determine whether this deviation is acceptable.

It is important to mention that alternative proposals such as
control-flow decoupling (CFD), discussed in Section II-B, do
not face correctness issues, if they can be applied. CFD is a
general solution for separable branches, that are not necessarily
probabilistic; PBS on the other hand, specifically targets
probabilistic branches. CFD splits the loop into two loops
and depends on extra push and pop instructions to propagate
branch decisions and any necessary data values from one split
loop to the other. PBS does not incur extra instruction overhead,
and can be applied to code cases that are not covered by CFD
as explained in Section II-B. However, due to the initialization

phase required by PBS, the order by which probabilistic values
get consumed by the algorithm slightly differs. CFD does
not cause such a change, leaving the semantics of the code
unchanged. In other words, compared to CFD, PBS provides
a new trade-off that is specifically optimized for probabilistic
branches (i.e., simpler code transformations avoiding extra
instruction overhead), but requiring more careful use. For both
techniques, CFD and PBS, programmers and compiler designers
have to identify candidate branches for optimization. To gain
the benefits of PBS, programmers and compiler writers have
to be cautious for cases as the ones described earlier.

V. PBS IMPLEMENTATION DETAILS

We now describe the implementation details for PBS, which
requires support from the ISA, software and hardware.

A. ISA Support

Software needs to mark probabilistic instructions so they
get executed by our proposed PBS hardware unit rather than
relying on the traditional branch predictor. To further support
Category-2 probabilistic branches, software needs to provide
the hardware with register names holding the probabilistic
values that need to be replaced with values that suit the fetched
code path.

A branch is traditionally implemented using two instructions,
a compare instruction followed by a jump. To support both
categories of probabilistic code sequences, both the compare
and jump operations have to be extended with a probabilistic
mode of operation. For that purpose, we propose two different
alternatives for extending the ISA. The first is to explicitly
add two new instructions to the ISA; the second is to modify
the encoding of existing instructions, such that an unused
bit represents the probabilistic nature of the branch. In either
case, the ISA extensions enable replacing traditional branch
instructions with probabilistic branches.

1) New ISA Instructions: We propose the following two
instructions to implement PBS:
Probabilistic compare
PROB_CMP optype, Prob_Reg1, Reg2
The mnemonic PROB_CMP indicates a probabilistic compare
instruction: optype is the comparison operation (e.g., less
than, greater than, etc.); Prob_Reg1 is the register containing
the probabilistic value that is compared against the value in
register Reg2. Once the comparison is done, the value in
Prob_Reg1 is stored in a specialized hardware unit for future
reference (details provided in Section V-C). The execution unit
replaces the value in this register with the probabilistic value
that matches the direction that was already chosen at the fetch
stage.
Probabilistic jump
PROB_JMP Prob_Reg2, Immediate
The mnemonic PROB_JMP indicates a probabilistic jump
instruction; Prob_Reg2 is the register containing an optional
probabilistic value. When the instruction gets executed on a
functional unit, the direction of the branch along with the
probabilistic value in Prob_Reg2 are stored by the PBS

Source Code
x = rand (0,1)
y = 5 + x;
if (x < 0.5)
 x = x*2;
r = x * y;

Traditional ISA
Rx = rand (0,1)
add Ry,Rx,5
mov R1,0.5
cmp Rx,R1
jge dest
mul Rx,Rx,2
dest: mul Rr,Rx,Ry

PBS
Rx = rand (0,1)
add Ry,Rx,5
mov R1,0.5
PROB_CMP ge,Rx,R1
PROB_JMP Ry,dest
mul Rx,Rx,2
dest: mul Rr,Rx,Ry

Fig. 3. Code example illustrating PBS instructions. The compare and jump
instructions in the traditional code get replaced by probabilistic counterparts,
and the registers holding probabilistic values are communicated to hardware.

hardware. Instead of redirecting the fetch stage, the hardware
unit replaces the value in Prob_Reg2 with a value previously
stored in the specialized hardware unit from the previous
execution of the probabilistic branch; this value suits the branch
direction and execution path taken by the fetch stage. Finally,
Immediate is provided for target address calculation. If no
probabilistic value needs replacement — this is the case for
Category-1 branches — the Prob_Reg2 register field is set
to zero. If more than two values need replacement, additional
PROB_JMP instructions are inserted, with Immediate set to
zero for all but the last PROB_JMP instructions.

2) Leveraging Existing ISA Instructions: In contrast to
introducing new ISA instructions, leveraging unused bits in the
ISA allows flexible design decisions without losing backward
compatibility. Legacy software will not have a problem running
on new machines, and similarly, machines that lack PBS support
can still execute software that contains probabilistic branches
by treating probabilistic branches as normal branches.

To provide a general format for encoding instructions with
similar characteristics, the encoding reserves specific fields
in the instruction for clearly defined purposes that apply
to all instructions in the particular category. However, this
generalization results in fields that are used for specific
instructions only, and are not being used for others. For
example, a combination of comparison (e.g., SLT) and a
branch in the MIPS ISA [19] provides the desired requirements
for our ISA support for probabilistic branches. The SLT
instruction falls into the R-class of instructions which has
the shamt field unused except for the shift instructions.
Similarly, most of the branch categories fall into the I-class of
instructions which has the second register field unused (used
for arithmetic/logic operations), and could therefore be used
to mark our probabilistic instructions.

3) Code Example: Figure 3 illustrates a PBS code example
with two probabilistic values, x and y. If the predictor decides
to jump while the value in Rx is less than 0.5, the traditional
code would require flushing the pipeline. PBS on the other
hand takes the direction as previously recorded and replaces
the values in Rx and Ry with values that match the taken code
path (obtained from the previous execution of the probabilistic
branch), while storing the newly generated random values for
future use.

Note that because of out-of-order execution, instructions that
follow the PROB_JMP instructions in program order may be ex-
ecuted before it. PBS guarantees that any instruction that reads
a probabilistic value after PROB_JMP in the instruction stream
gets the proper value after replacement. Both PROB_CMP

and PROB_JMP specify probabilistic registers as destination
registers to preserve the read-after-write dependency.

B. Software Support

The minimum software support for probabilistic branches
is to simply mark them. There are several options to do so.
The first option relies on the compiler to automatically decide
when it is appropriate to use probabilistic instructions. The idea
is to let the compiler track the location(s) in the code where
random numbers are generated. By tracing the instructions that
depend on the random value, the compiler checks whether any
of the probabilistic derivatives control a branch instruction,
and, if appropriate, encode the instruction accordingly as a
probabilistic branch.

Other approaches require the programmer to pass the
knowledge to the compiler. One way is to mark control
flow statements as candidate cases for probabilistic branches.
For example, in C/C++ this could be done using #pragma
preprocessor directives. Alternatively, the programmer or library
developer can create optimized custom libraries and invoke
them in places of probabilistic control flow statements. In this
paper, we manually convert traditional branches to probabilistic
branches whenever appropriate.

The compiler could potentially implement further optimiza-
tions in support of PBS. The compiler could for example help
to enforce correctness. After identifying candidate probabilistic
branches, a compiler can provide a first safety net against
inappropriate contexts for PBS. In particular, the compiler could
determine through static analysis whether any of the identified
probabilistic branches indeed compares against a constant value
within a single context as described in Section IV.

In addition, the compiler may decide to not use PBS in
case the number of probabilistic values that need replacement
for Category-2 cases is too high, or when it cannot insert all
the instructions that are necessary to perform the replacement.
Heuristics can be used to determine whether the overhead of
replacing all the values dwarfs the benefit of PBS.

C. Hardware Support

The hardware to support probabilistic branches requires
extensions to the fetch and execute stages in an out-of-order
pipeline, as shown in Figure 4. To support Category-1 branches,
only the white areas are required. The shaded areas indicate
the extensions needed for Category-2 branches.

PBS includes a new structure that resembles the branch
target buffer (BTB), called the Prob-BTB, shown on the left
in Figure 4. At the fetch stage, the Prob-BTB is indexed by
the program counter (PC) of the PROB_JMP instruction. A tag
match indicates that a probabilistic branch has been fetched,
and the target address field points to the location to fetch
from in the next cycle if the branch is taken. Unlike regular
branches, the branch predictor is not probed to decide whether
to take the branch; the T/NT field makes this decision for
probabilistic branches.

When fetching a probabilistic jump instruction, PBS simply
follows the direction stored in the T/NT field, i.e., the fetch

PC+4

M
U
X

Prob-BTB

V PC+context Target PC T/NT Pr_Phy P-BTB index Pr-Phy

SwapTable

V

Back-end

T
P-BTB index Pr-Phy

Prob-in-Flight

VT/N

Swap content Store Reg#

Pull Reg &
Branch Decisions

Prob Reg
(Phys. Destination)

Prob Reg
(Phys. Source)

Front-end

Const-Val

Fig. 4. Hardware support for PBS. The Prob-BTB directs the execution of the next probabilistic branch, and along with the SwapTable, keeps track of the
physical registers holding the corresponding probabilistic values. The Prob-in-Flight table keeps track of in-flight probabilistic branches.

unit fetches either the following instruction or the one at the
target address in the next cycle. This also triggers to pull in
a recorded branch direction from the Prob-in-Flight table
into the Prob-BTB. The Prob-in-Flight table holds the
branch outcomes of in-flight instances of the probabilistic
branch — we will discuss support for multiple in-flight
probabilistic branches later.

The Pr-Phy field in the Prob-BTB contains a pointer to
the (physical) register that holds a probabilistic value that cor-
responds to the direction taken by the PROB_JMP instruction,
or the last PROB_JMP instruction in case there are multiple.
Because the PROB_CMP and intermediate PROB_JMP instruc-
tions encode registers with probabilistic values, we use an
extension to the Prob-BTB, called the SwapTable, to hold
pointers to those (physical) registers. Both the PROB_CMP
and PROB_JMP instructions replace the currently computed
probabilistic values with these old values (which correspond
with the branch direction) at the execution unit.

PBS relies on replacing newly generated values with old
ones to provide dependent instructions fetched after the branch
with proper probabilistic values. Therefore, the architectural
registers encoded in both the PROB_CMP and PROB_JMP
instructions serve a dual purpose. First, the architectural register
is used as a source operand that holds the new probabilistic
value. This value is compared against the branch condition
during the execution of the PROB_CMP instruction and then
saved for future use. Second, the same architectural register
is a destination operand that holds the proper probabilistic
value once they get swapped in during the execution of the
PROB_CMP and PROB_JMP instructions.

PBS leverages register renaming to transparently replace
values. Register renaming is applied to all the register operands
of the PROB_CMP and PROB_JMP instructions, as would
happen for regular instructions. Because the architectural
register holding a probabilistic value is a source operand,
it reads the physical register holding the latest copy of the
architectural register. Moreover, the same architectural register
is allocated a free physical register during renaming because
it is a destination to be written to at execution time. The
dependent instructions following the branch mark this physical
register as a source operand. Both physical registers are

passed to the execution stage. In addition, the execution unit
receives the value of the physical registers provided by the
Prob-BTB or the SwapTable — these physical registers
hold the probabilistic values that led to the current branch
outcome.

When the probabilistic instruction reaches the execution
stage, we record the branch outcome and the source phys-
ical register holding the current probabilistic value in the
Prob-in-Flight table. At the same time, the old value
passed to the execution unit gets stored in the destination
physical register, and the physical register holding it is freed.
Dependent instructions wait for their source operands to be
ready before they get issued to their execution units. Therefore,
these instructions are guaranteed to read the proper probabilistic
values after the swap operation is completed.

We set a limit to the maximum number of probabilistic
branches that are in-flight between the fetch and execution
stages. This number is fixed at design time. We propose the
Prob-In-Flight table to hold up to that number of entries,
as shown on the right-hand side of Figure 4. This table holds the
physical registers of the newly generated probabilistic values
along with the corresponding outcome of the probabilistic
branch. Upon the execution of a probabilistic branch, a free
entry is located in the Prob-in-Flight table and the
physical registers holding the probabilistic values as well as
the branch outcome are stored. An entry is removed from
the Prob-in-Flight table when a new instance of the
probabilistic branch gets fetched, i.e., upon fetching a proba-
bilistic jump instruction, the physical register names and branch
outcome are pulled from the Prob-in-Flight table into the
Prob-BTB after which the entry in the Prob-in-Flight
table is cleared. To facilitate the data movement to the
Prob-BTB and SwapTable, the index of the corresponding
Prob-BTB entry is stored in the Prob-in-Flight table.

When a new probabilistic branch gets fetched, it does not
have any entries in the Prob-BTB. Hence, the fetch unit does
not recognize the instruction as a probabilistic branch. The
instruction will be executed as if it were a regular branch. As
the probabilistic compare and jump finish their execution on the
functional unit, an entry is allocated in the Prob-in-Flight
table. Once the entry is complete (the branch outcome is known

Context-Table
Loop-PC Last-PC

Context

0
1

Function-PC Counter

Fig. 5. Calling context support. A context is constructed by the function call
PC of the inner most loop.

and the physical registers are recorded), it is pushed into the
Prob-BTB and SwapTable. The push only succeeds if there
is no entry allocated in the Prob-BTB for that probabilistic
branch. Subsequent executions of the probabilistic branch will
then detect the entry in the Prob-BTB for special treatment.

1) Calling Context Support: PBS ensures correctness as
defined in Section IV. When executing a probabilistic branch
for the first time, the value used in the comparison is registered
in the Const-Val field in Prob-BTB. When executing
the same branch at a following iteration, the execution unit
compares Const-Val with the condition value of the compare
instruction being executed. Non-matching values indicate a
change in the condition, thus PBS may be risky to use. The
entries corresponding to the branch in the probabilistic tables
are flushed and the branch is treated as a regular branch.

Identifying probabilistic branches and tracking them in PBS
hardware using their program counter (PCprob) information
alone is sufficient for most code scenarios. However, PBS tracks
context information for correct execution in code cases where
context matters. For example, issues may arise when the same
probabilistic branch is reachable from multiple distinct paths
in the code, e.g., through different function calls that are not
inlined by the compiler. If the probabilistic values are treated
differently depending on the calling context, PBS without
context support considers (both in hardware and software) this
a risky operation and treats it as a regular branch. Moreover,
PBS needs to respect context start and finish boundaries to
avoid conflicts resulting from two different executions of the
same context (loop).

Tracking all function calls and loop contexts cannot be done
in limited hardware tables. We observe that the most frequent
and performance impacting branches are those executed in inner
loops. Therefore, we limit our context information tracking in
hardware to the two innermost loops only, and the function
calls made at a depth of one inside these loops. We concatenate
the PC of the function call plus a 1-bit index to the active loop
with PCprob and use them to index Prob-BTB. Thus, different
paths leading to the same branch have separate entries in the
probabilistic tables and do not conflict with each other. Once a
loop terminates, all the entries associated with it in all the tables
are cleared. This erases any possibility for incorrect behavior
due to conflicts in the contexts leading to a probabilistic branch.
Rebuilding history has negligible impact on PBS performance
benefits, especially for frequently executed branches.

Figure 5 shows the additional information PBS needs
to provide context support. PBS uses a table, called the
Context-Table, to hold loop and function call information.
The table has two entries, each tracking one loop information,

for a total of two levels of nesting (i.e., two innermost). The
first two fields per entry hold loop-related information, while
the third and fourth fields hold function call information. A
two-entry Context-Table suffices to achieve most of the
performance benefit of PBS. Tracking a higher level of function
and loop nesting is possible. However, we expect the impact of
a branch on performance to be lower when executed relatively
infrequently at outer loop nesting levels. Moreover, compilers
that optimize for performance (vs. compactness) inline function
calls whenever possible. Thus, supporting deeper function calls
becomes unnecessary. The impact of a deep branch on overall
performance is expected to fade as the number of function
call increases. The overhead of the function calls shadows the
negative impact of the branch mispredictions, leaving a lower
chance for performance improvement.

We use the address of the first instruction of a loop as a
representative of that loop. PBS dynamically detects a loop by
tracking backward branch instructions to the beginning of the
loop. When PBS encounters a backward branch whose loop
address is identified for the first time, it allocates an entry for
that loop in the Context-Table. The Loop-PC field stores
the PC of the first instruction of the loop, while the Last-PC
field stores the address of the backward branch instruction
causing the loop. Upon encountering a backward branch to a
loop that was previously detected, the Last-PC field of that
loop is updated if the current branch instruction has a higher
address. Maintaining Loop-PC and Last-PC allows proper
estimation of loop boundaries, which is used to detect nested
loops and the termination of a loop. A not-taken backward
branch whose address is greater than or equal to the Last-PC
indicates the termination of the loop. Our technique is inspired
by a previously proposed general strategy for detecting loops
with multiple levels of nesting [20].

As the processor encounters a new loop, it allocates an entry
for it in the Context-Table. If both entries are occupied,
the oldest one is removed. When a probabilistic branch is
encountered during execution, it is associated with the latest
loop pushed into the table. Therefore, the context information
of this branch includes an index to the active loop within which
the branch is reached. Because we decide to track only the
two innermost levels of nesting, and thus use a table with
only two entries, a single bit is sufficient to provide the loop
context. Whenever a loop terminates, its corresponding entry
is removed from the array, and all the branches associated
with it are cleared from the probabilistic tables. The clearing
process searches all the entries in the table for a matching
context number, regardless of PCprob, and negates their valid
bit. Clearing table entries also leads to reclaiming all physical
registers that hold probabilistic values, that are pointed to by
the relevant table entries. If the older loop terminates before
the newer one, both loops are erased.

To eliminate conflicts on a probabilistic branch reachable
through multiple distinct function calls, we simply track
the function call PC in the Function-PC field in the
Context-Table. This field is initialized to a value of zero.
When a function call is made within the loop body, the address

of the instruction calling the function is recorded in this field.
When a function returns, its respective field is zeroed. Upon
reaching a probabilistic branch in the code, PBS uses the bit
indexing the active (most recent) loop and the address of the
function call made within that loop to provide the full context
information required to segregate the probabilistic branch.

PBS only supports probabilistic branches reachable within a
single function call from the active loop. If another function
is called inside the first function, no probabilistic branches
are supported (i.e., PBS treats all branches as regular ones)
until all the inner functions return or another inner loop is
encountered within one of the functions. Context-Table
keeps a three-bit field, called Counter, to track the depth of
function calls. A call to a function increments the counter of
the active loop, while a return decrements that counter. PBS
tracks the branches when this counter is set to zero (directly in
the loop) or one (inside a function called from the loop body).
Any time a loop is encountered, regardless of the function call
depth, a new entry is allocated in the Context-Table. This
newly allocated entry is similar to any randomly encountered
loop and is dealt with as described earlier.

2) Hardware Cost and Scalability: The hardware cost
associated with PBS is limited. To support one probabilistic
branch, the hardware needs to provision for one entry in
the Prob-BTB and a few entries in the SwapTable and
Prob-in-Flight table. More specifically, to support one
probabilistic branch with two probabilistic values and four in-
flight copies of the branch, we need 51 bytes in the Prob-BTB,
SwapTable, and Prob-in-Flight. These include extra
context bits as explained earlier.

The context information per entry in the Prob-BTB is
comprised of one bit for the loop information and a 48-bit PC
for the function call. Additionally, there are 48 bits for the
branch PC, 48 bits for the target PC, eight bits as an index
to the physical register, a valid and T/NT bits, and a 64 bit
for value comparison. An entry in the SwapTable consists
of a 48-bit PC, three bits indexing the related entry in the
Prob-BTB, eight bits to index a physical register, and one
valid bit.

Assuming four probabilistic branches, this amounts to about
140 bytes. Each entry in the Prob-in-Flight table requires
2 bytes, so supporting four outstanding branches (with entries
for both the compare and jump) leads to an additional hardware
cost of 16 bytes. We observe one to three probabilistic branches
in the applications that we studied. It is reasonable to assume
that the number of probabilistic branches in an algorithm
remains limited to a few branches. Assuming four probabilistic
branches and accounting for the two entries in the context table
each holding three 48-bit addresses and two three-bit counters,
the total hardware cost amounts to 193 bytes.

Distinguishing probabilistic branches on a loop basis can
significantly improve PBS’ scalability. PBS relies on three
hardware structures whose size is fixed at design time. In
general, we expect a limited number of probabilistic branches
per application. Therefore, we can provision PBS with sufficient
table entries for most applications. As the processor traverses

TABLE II
BENCHMARKS AND THEIR CHARACTERISTICS.

Benchmark No. prob. branch Category Simulated Insns
DOP 2/47 1 2.6 Billion
Greeks 3/50 2 2.9 Billion
Swaptions 3/309 2 17 Billion
Genetic 2/182 1 2.3 Billion
Photon 2/104 2 6.2 Billion
MC-integ 1/39 1 3.2 Billion
PI 1/45 1 1.3 Billion
Bandit 1/864 1 2.8 Billion

the application loops, entries occupying the probabilistic
tables are promptly cleared leaving a chance to support new
probabilistic branches that are scattered across the application.

In cases where the number of probabilistic branches in the
loop exceeds the provisioned structures, the hardware has to
select which probabilistic branches to support and which to
treat as a normal branch. This could be done using heuristics.
For example, it may clear branches from outer loop levels
first, and favor branches with a higher number of misses per
instruction, or hinder branches with more than two probabilistic
values to replace. We do not further evaluate these scenarios
because all the applications we came across do not require
replacing more than two values and/or do not have a large
number of probabilistic branches to warrant such a study.

Upon a context switch, we recommend storing the 193 bytes
of state information maintained by PBS and retrieving it when
the context resumes. By doing so, PBS resumes its execution
without incurring an additional initialization phase. In general,
we expect that the number of probabilistic branches executed
between two context switches to be significant enough such
that even an additional initialization phase would not lead to a
change in the probabilistic characteristics of the algorithm.

VI. EXPERIMENTAL SETUP

Before evaluating PBS, we first describe our benchmarks
and simulation infrastructure.

A. Benchmarks

We evaluate PBS using eight benchmarks selected from
different application domains. Table II enumerates their charac-
teristics, including the ratio of probabilistic to regular (static)
branches, the category the probabilistic branches below to, and
the total number of dynamically executed instructions.

Many financial applications rely on Monte Carlo simulation
to carry out estimations that are challenging to obtain ana-
lytically. The digital option pricing (DOP) benchmark (taken
from [21]) simulates call and put operations using probabilistic
values drawn from a Gaussian distribution. This application has
a single Category-1 probabilistic branch. Another interesting
Monte Carlo simulation case calculates the Greeks which is
a measure for the sensitivity of an option to the factors that
affect it. Greeks has three Category-2 branches that depend
upon each other. Swaptions from PARSEC [22] includes three
Category-2 branches. We evaluate the full application run using
the simsmall input set.

We use a Genetic algorithm to represent evolutionary
optimization algorithms. Our benchmark is derived from the
one available at [14] and includes two independent Category-1
branches. For this application, a variation in the seed of the
random number generator results in a significant variation in the
paths followed by the algorithm. To get reliable performance
measurementss, we consider 8 different seeds over which we
compute the average and 95% confidence interval.

We also consider Photon, a stochastic simulation for the
transportation of light in a thin translucent slab. We use the
application taken from [16], which features two independent
Category-2 branches. We include two kernel benchmarks to
represent stochastic computation. The first one is the famous
estimation of the value PI [23]. The second one, MC-integ,
integrates a curve under a predefined function similar to [24].
Both benchmarks feature a single Category-1 branch.

Finally, Bandit is a multi-armed bandit application to repre-
sent learning algorithms. The code relies on an epsilon-greedy
policy to determine whether to exploit current knowledge or
to explore other arms towards maximizing the sum of reward
from pulling arms. The code is adopted from [25] and contains
a single Category-1 branch.

We use the GNU C compiler v4.6.3 to compile the bench-
marks with optimization flag -O3.

B. Simulation Infrastructure

We use Sniper 6.0 [26] to perform experiments in this paper.
We assume an aggressive four-wide out-of-order core with a
168-entry reorder buffer configured after Intel’s Sandy Bridge.
The memory hierarchy consists of two levels: a split L1 cache
with 32 KB for each of the I- and D-caches, and a unified 2 MB
L2 cache. The branch misprediction penalty is set to 10 cycles
to re-fill the front-end pipeline after the branch is executed. We
consider two branch predictors: (i) a 1 KB tournament predictor
modeled after the Pentium-M [12], consisting of a global
branch predictor, a bimodal branch predictor and a loop branch
predictor; and (ii) an 8 KB TAGE-SC-L predictor taken from
the 2016 Branch Prediction Championship [13]. Experiments
were conducted assuming PBS hardware support (188 bytes)
for four distinct probabilistic branches, with four outstanding
branches in flight, which is sufficient for our benchmarks.

VII. EVALUATION

We now evaluate PBS. We quantify branch predictor perfor-
mance as well as processor performance, and we evaluate how
PBS reduces negative branch predictor interference. Finally,
we evaluate the correctness of the output under PBS and
evaluate the impact of PBS on the observed randomness of the
probabilistic values.

A. Branch Predictor Performance

We use mispredictions per 1K instructions (MPKI) to
quantify the improvement in branch predictor performance.
Because PBS completely eliminates mispredictions for the
probabilistic branches, we expect PBS to significantly reduce
the number of mispredicted branches per instruction. Figure 6

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Tournament TAGE-SC-L

M
P
K
I
re
d
u
c
ti
o
n

Fig. 6. MPKI reduction through PBS. PBS significantly reduces the number
of misses; higher reductions achieved for the more advanced TAGE-SC-L.

0.9

1

1.1

1.2

1.3

Tournament TAGE-SC-L Tournament+PBS TAGE-SC-L+PBS

n
o
rm
a
li
z
e
d

IP
C

Fig. 7. Normalized IPC for a 4-wide superscalar processor. Performance
improves significantly with PBS support.

reports the reduction in MPKI through PBS for the tournament
and TAGE-SC-L predictors.

PBS reduces MPKI by 29.9% average for the tournament
predictor, and up to 99%. We achieve even higher reductions
in MPKI for the TAGE-SC-L predictor, by 44.8% on average.
(A reduction by 99% is achieved for the benchmarks for which
the mispredictions are dominated by probabilistic branches,
see Figure 1.) Because the higher accuracy for the TAGE-SC-
L predictor comes from more accurately predicting regular
branches, the fraction of mispredictions due to probabilistic
branches increases, hence the higher reduction in MPKI through
PBS for the TAGE-SC-L predictor.

B. Processor Performance

Figure 7 reports normalized performance (IPC) for the (i)
baseline tournament predictor, (ii) TAGE-SC-L, (iii) tournament
predictor with PBS, and (iv) TAGE-SC-L with PBS. PBS
yields a significant performance improvement. In particular,
performance improves by 9% on average (up to 26%) and
by 6.7% on average (up to 17%) when augmenting the
tournament and TAGE-SC-L predictors with PBS, respectively.
It is interesting to note that the tournament branch predictor
with PBS outperforms the TAGE-SC-L predictor. This is a
significant return on investment given the small hardware cost
for implementing PBS.

0.9

1

1.1

1.2

1.3
Tournament TAGE-SC-L Tournament+PBS TAGE-SC-L+PBS

n
o
rm
a
li
z
e
d

IP
C

Fig. 8. Normalized IPC for an 8-wide superscalar processor. Even higher
performance improvements are achieved for a wider processor pipeline.

%

1%

2%

3%

4%

5%

6%

7%

M
P
K
I
in
c
re
a
s
e

Fig. 9. Increase in MPKI for the tournament predictor due to probabilistic
branches incurring negative interference with regular branches. Eliminating
probabilistic branches from accessing the branch predictor leads to less
negative interference.

Even higher improvements are obtained for a wider processor
pipeline, see Figure 8 for an 8-wide superscalar processor with
a 256-entry ROB. PBS improves performance by 13.8% (up to
25%) for the tournament predictor, and by 10.8% on average
(up to 19%) for TAGE-SC-L predictor.

C. Branch Predictor Interference

The reduction in MPKI through PBS primarily comes from
eliminating the mispredictions due to probabilistic branches.
However, there is also a secondary effect that comes into play.
Because we do not access the branch predictor for probabilistic
branches, PBS may lead to less negative interference in the
branch predictor. We set up the following experiment to quantify
this effect: we first run a simulation in which we let all
(regular and probabilistic) branches access and update the
branch predictor; in our second simulation, we only access and
update the branch predictor for the regular branches, i.e., we
filter out the probabilistic branches. The delta in misprediction
rate then is a measure for the negative interference due to
probabilistic branches.

Figure 9 reports the increase in MPKI because of negative
interference due to probabilistic branches for the tournament
branch predictor. (We report the maximum increase in MPKI
across 7 experiments with different random seeds per bench-
mark.) The impact is evident, reaching up to 5.8% and a

TABLE III
RANDOMNESS TEST RESULTS: 95% CONFIDENCE INTERVALS ACROSS 114
DIEHARDER TEST CASES IN THE ORIGINAL CODE VERSUS AFTER PBS. PBS
does not significantly affect the randomness of the random number sequence.

Original PBS
PASS WEAK FAIL PASS WEAK FAIL

Swaptions 48-40 11-6 64-58 50-40 12-7 63-57
Genetic 16-13 4-1 98-96 15-13 5-2 97-96
Photon 42-32 27-13 64-50 57-31 29-8 58-45
MC-integ 27-24 2-0 88-87 27-25 1-0 88-87
PI 27-24 3-0 88-87 26-24 2-1 88-87
Bandit 25-18 25-18 76-68 26-20 27-19 72-64

couple of percents on average. For the TAGE-SC-L predictor
(not shown in the graph), we observe that negative interference
is negligible, which makes intuitive sense because of its larger
size and more sophisticated organization.

D. Correctness of the Output

As mentioned earlier, PBS may lead to (slight) inaccuracies
compared to the original algorithms because of the initialization
bootstrap phase when previously unseen probabilistic branches
get executed. We now quantify these inaccuracies. Probabilistic
algorithms are designed to deal with variations in the random
numbers being generated. In other words, there is inherent non-
determinism, and as a result, the output is approximate, not
exact. Hence we need to resort to application-specific metrics
to quantify the impact of PBS on accuracy, similar what is
done in AxBench [27].

For DOP, Greeks, Swaptions, MC-integ and PI, we
compute the relative error between the output of the original
run versus the run with PBS; we use the same random seed
for both runs. We observe that the error is zero for these
applications under PBS.

For Genetic, we consider the success rate of the trials to
find a particular the problem. The original code achieves an
average success rate (successful trials divided by the total
number of trials) of 0.2 and a 95% confidence interval of
[0.18, 0.22]. The average success rate under PBS equals 0.206
with a 95% confidence interval of [0.18, 0.23]. Because the
confidence intervals overlap, we can state that there is no
statistical evidence that PBS differs from the original run.

For Photon, we compare the output images using the
Average Root-Mean-Square error. The observed variation is
small (3.9%) and falls within the acceptable range [28], [29].
For Bandit, we compare the reward and regret values the
algorithm reaches at the end of the run. The observed error is
zero under PBS.

E. Impact on Randomness

PBS alters the original sequence of random values as part
of the bootstrap phase. One valid question is whether this
affects the randomness and distribution of sequence of random
numbers effectively perceived by the algorithm.

To verify this in more detail, we perform DieHarder
randomness tests [30], using version 3.31.1. This can only
be done for the benchmarks whose probabilistic branches are
controlled by a value derived from a uniform distribution. (DOP

and Greeks use values derived from a Gaussian variable.) For
each benchmark, we run the DieHarder tests seven times, each
time using a different seed to initialize the random number
generator. For each seed, we create two files of random values,
the first one contains the values as they are generated by the
original code, and the second one contains the values in the
order as they get processed under PBS. DieHarder includes
114 test cases for which the outcome could be PASS, WEAK
or FAIL. For each application, we report the 95% confidence
interval for the possible outcomes of the tests.

As shown in Table III, we find that the random numbers
generated directly by the original code pass for several tests and
fail for others. For most results, the 95% confidence intervals
achieved by PBS and the original code overlap significantly.
In general, the failed tests are consistently similar for most
of the benchmarks. PBS even shows a slight potential for
improvement in some cases, such as Swaptions, Bandit and
Photon. Similarly, the WEAK and PASS results of PBS and the
original code significantly overlap for almost all benchmarks.
The classification for a few tests may become WEAK instead
of PASS or vice versa. For example, in Genetic the intervals
are almost identical, but there is a possibility that the number
of tests classified as WEAK increase by one and the number
of test classified as PASS decrease by one. The same increase
in the number of WEAK tests may also be attributed to the
decrease in FAIL tests. For all the other benchmarks, including
PI, MC-integ, Bandit and Photon, the classification suggests
a potential improvement by PBS. In general, the results of
PBS and the original code significantly overlap, indicating that
the two techniques are statistically identical. The bottom line
is that PBS does not significantly affect the randomness and
distribution of the random number sequence.

VIII. RELATED WORK

We have seen a significant body of work on branch prediction
over the past few decades, see [3], [7], [8], [9], [10], [2] to name
a few. Other proposals include neural branch prediction [4],
[5], [6], O-GEHL [31] and TAGE [11]. Recent innovations
include augmenting the main predictor with side predictors that
target specific branch patterns, as in TAGE-SC-L [32], [13].
In this paper, we propose PBS to eliminate mispredictions for
the specific class of probabilistic branches.

Several techniques have been proposed to reduce the branch
misprediction penalty by fetching and executing along multiple
control flow paths [33], [34], [35]. PBS does not require
to execute along multiple paths to eliminate the branch
misprediction penalty.

Several papers have proposed techniques for branch pre-
execution [36], [37], [38], [39], [40]. These techniques rely on
executing the instructions leading to the branch on dedicated
hardware resources in an attempt to resolve the branch earlier.
PBS effectively pre-executes probabilistic branches without a
dedicated hardware context.

Branch Vanguard [41] decomposes the branch into prediction
and resolution operations to help the compiler tailor a schedule
for in-order cores. It targets highly-predictable, unbiased

branches on in-order cores. PBS targets highly unpredictable
probabilistic branches on out-of-order processors.

To avoid flushing instructions upon a misprediction, several
techniques have been proposed to identify control and data-
independent instructions [42], [43], [44]. Such techniques
require significant hardware overhead to identify reconvergence
points, track data dependences and re-execute instructions.

Wish branches [45] strike a sweet spot between predication
and branch prediction. A wish branch resorts to predicated
execution when the branch is hard to predict, avoiding the
misprediction overhead. The wish branch is predicted, if it
is easy to predict, thereby avoiding predication overhead.
PBS does not resort to predication nor branch prediction for
probabilistic branches.

Branch-on-random [46] is a new branch instruction that
specifies the probability at which the branch should be taken,
unlike regular branches which specify the condition upon which
the branch should be taken. Branch-on-random was conceived
to reduce the overhead of program instrumentation compared
to a software-only solution. PBS is more generally applicable
to other probabilistic codes, including Category-2 branches and
generalized probabilistic distributions.

PBS also bears some similarity with approximate com-
puting [47], [48], [49] because of the inherent tolerance to
variations in execution for probabilistic codes. However, while
approximate computing focuses on leveraging approximation
in data streams, PBS leverages approximation in control flow.

IX. CONCLUSIONS

In this paper we observe that several important categories
of applications rely on probabilistic branch behavior which is
inherently difficult to predict, even for state-of-the-art branch
predictors. We present Probabilistic Branch Support (PBS),
a hardware/software cooperative solution in which software
identifies probabilistic branches to hardware through two
novel probabilistic compare and jump instructions that can
be transparently implemented in the ISA. PBS records and
retrieves probabilistic values and branch outcomes across subse-
quent executions of a probabilistic branch, thereby completely
eliminating the misprediction penalty. With minimal hardware
overhead of 193 bytes, PBS improves MPKI by 45% on average
(up to 99%) and IPC by 6.7% on average (up to 17%) for
a 4-wide superscalar processor with a state-of-the-art TAGE-
SC-L branch predictor, while incurring negligible algorithmic
inaccuracy.

ACKNOWLEDGEMENTS

We thank the reviewers for their valuable suggestions. This
work was supported by the European Research Council (ERC)
Advanced Grant agreement No. 741097, and the FWO projects
G.0434.16N and G.0144.17N. This work was further supported
by U.S. National Science Foundation grant no. CCF-1438286.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of
the 8th annual symposium on Computer Architecture (ISCA), 1981.

[2] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction,”
in Proceedings of the Annual International Symposium on Microarchi-
tecture (MICRO), 1991.

[3] A. N. Eden and T. Mudge, “The YAGS branch prediction scheme,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 1998.

[4] D. A. Jiménez, “Piecewise linear branch prediction,” in Proceedings of
the International Symposium on Computer Architecture (ISCA), 2005.

[5] D. A. Jiménez, “Multiperspective perceptron predictor,” in 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), 2016.

[6] D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), 2001.

[7] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge, “The bi-mode branch predic-
tor,” in Proceedings of the International Symposium on Microarchitecture
(MICRO), 1997.

[8] S. McFarling, “Combining branch predictors,” Technical Report TN-36,
Digital Western Research Laboratory, Tech. Rep., 1993.

[9] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict and capacity alias-
ing in conditional branch predictors,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 1997.

[10] S.-T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of
dynamic branch prediction using branch correlation,” in Proceedings
of International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1992.

[11] A. Seznec and P. Michaud, “A case for (partially) TAgged GEometric
history length branch prediction,” Journal of Instruction-Level Parallelism,
vol. 8, 2006.

[12] V. Uzelac and A. Milenkovic, “Experiment flows and microbenchmarks
for reverse engineering of branch predictor structures,” in Proceedings of
International Symposium on Performance Analysis and System Software
(ISPASS), 2009.

[13] A. Seznec, “TAGE-SC-L branch predictors again,” in 5th JILP Workshop
on Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), 2016.

[14] M. Buckland, “Genetic algorithm example,” 2013. [Online].
Available: http://www.codemiles.com/c-examples/genetic-algorithm-
example-t7548.html

[15] M. Halls-Moore, “Calculating the Greeks with Finite Difference
and Monte Carlo Methods in C++,” 2013. [Online].
Available: https://www.quantstart.com/articles/Calculating-the-Greeks-
with-Finite-Difference-and-Monte-Carlo-Methods-in-C

[16] Scratchapixel, “Monte Carlo methods in practice,” 2015. [Online].
Available: https://www.scratchapixel.com/code.php?id=31&origin=
/lessons/mathematics-physics-for-computer-graphics/monte-carlo-
methods-in-practice

[17] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani, “Prob-
abilistic programming,” in Proceedings of the International Conference
on Software Engineering (ICSE): Future of Software Engineering, 2014.

[18] R. Sheikh, J. Tuck, and E. Rotenberg, “Control-flow decoupling,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2012.

[19] J. Heinrich et al., MIPS R4000 Microprocessor User’s Manual. MIPS
technologies, 1994.

[20] J. Tubella and A. Gonzalez, “Control speculation in multithreaded
processors through dynamic loop detection,” in Proceedings of the
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 1998.

[21] M. Halls-Moore, “Digital option pricing with C++ via Monte Carlo
methods,” 2013. [Online]. Available: https://www.quantstart.com/articles/
Digital-option-pricing-with-C-via-Monte-Carlo-methods

[22] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[23] J. Wynne III, “Serial to parallel: Monte Carlo operation,” 2013. [Online].
Available: https://www.olcf.ornl.gov/tutorials/monte-carlo-pi/

[24] C. P. Robert, Monte Carlo Methods. Wiley Online Library, 2004.
[25] J. Komiyama, “BanditLib: A simple multi-armed bandit library,” 2015.

[Online]. Available: https://github.com/jkomiyama/banditlib
[26] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An

evaluation of high-level mechanistic core models,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 11, 2014.

[27] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“AxBench: A multiplatform benchmark suite for approximate computing,”
IEEE Design & Test, vol. 34, 2017.

[28] J. Park, E. Amaro, D. Mahajan, B. Thwaites, and H. Esmaeilzadeh,
“AxGames: Towards crowdsourcing quality target determination in
approximate computing,” Proceedings of International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016.

[29] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh,
“Towards statistical guarantees in controlling quality tradeoffs for
approximate acceleration,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), 2016.

[30] R. G. Brown, “DieHarder: A random number test suite,” 2011. [Online].
Available: http://www.phy.duke.edu/∼rgb/General/dieharder.php

[31] A. Seznec, “Analysis of the o-geometric history length branch predictor,”
in Proceedings of the International Symposium on Computer Architecture
(ISCA), 2005.

[32] A. Seznec, “A new case for the TAGE branch predictor,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), 2011.

[33] T. H. Heil and J. E. Smith, “Selective dual path execution,” Technical
report, University of Wisconsin-Madison, Tech. Rep., 1996.

[34] A. Klauser, A. Paithankar, and D. Grunwald, “Selective eager execution
on the polypath architecture,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 1998.

[35] E. M. Riseman and C. C. Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, vol. 100, 1972.

[36] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt,
“Simultaneous subordinate microthreading (SSMT),” in Proceedings of
the International Symposium on Computer Architecture (ISCA), 1999.

[37] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt, “Difficult-path
branch prediction using subordinate microthreads,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2002.

[38] A. Farcy, O. Temam, R. Espasa, and T. Juan, “Dataflow analysis of branch
mispredictions and its application to early resolution of branch outcomes,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 1998.

[39] A. Roth and G. S. Sohi, “Speculative data-driven multithreading,” in
Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), 2001.

[40] C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2001.

[41] D. S. McFarlin and C. Zilles, “Branch vanguard: decomposing branch
functionality into prediction and resolution instructions,” in ACM
SIGARCH Computer Architecture News, vol. 43, no. 3. ACM, 2015.

[42] C.-Y. Cher and T. Vijaykumar, “Skipper: a microarchitecture for
exploiting control-flow independence,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2001.

[43] Y. Chou, J. Fung, and J. P. Shen, “Reducing branch misprediction
penalties via dynamic control independence detection,” in Proceedings
of the International Conference on Supercomputing (ICS), 1999.

[44] E. Rotenberg, Q. Jacobson, and J. Smith, “A study of control indepen-
dence in superscalar processors,” in Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), 1999.

[45] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt, “Wish branches: Combining
conditional branching and predication for adaptive predicated execution,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2005.

[46] E. Lee and C. Zilles, “Branch-on-random,” in Proceedings of the
International Symposium on Code Generation and Optimization (CGO),
2008.

[47] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in Proceedings of
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[48] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), 2012.

[49] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in Proceedings of International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

http://www.codemiles.com/c-examples/genetic-algorithm-example-t7548.html
http://www.codemiles.com/c-examples/genetic-algorithm-example-t7548.html
https://www.quantstart.com/articles/Calculating-the-Greeks-with-Finite-Difference-and-Monte-Carlo-Methods-in-C
https://www.quantstart.com/articles/Calculating-the-Greeks-with-Finite-Difference-and-Monte-Carlo-Methods-in-C
https://www.scratchapixel.com/code.php?id=31&origin=/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
https://www.scratchapixel.com/code.php?id=31&origin=/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
https://www.scratchapixel.com/code.php?id=31&origin=/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
https://www.quantstart.com/articles/Digital-option-pricing-with-C-via-Monte-Carlo-methods
https://www.quantstart.com/articles/Digital-option-pricing-with-C-via-Monte-Carlo-methods
https://www.olcf.ornl.gov/tutorials/monte-carlo-pi/
https://github.com/jkomiyama/banditlib
http://www.phy.duke.edu/~rgb/General/dieharder.php

