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ABSTRACT

Java workloads are becoming increasingly prominent on var-
ious platforms ranging from embedded systems, over general-
purpose computers to high-end servers. Understanding the
implications of all the aspects involved when running Java
workloads, is thus extremely important during the design
of a system that will run such workloads. In other words,
understanding the interaction between the Java application,
its input and the virtual machine it runs on, is key to a suc-
cesful design. The goal of this paper is to study this complex
interaction at the microarchitectural level, e.g., by analyz-
ing the branch behavior, the cache behavior, etc. This is
done by measuring a large number of performance charac-
teristics using performance counters on an AMD K7 Duron
microprocessor. These performance characteristics are mea-
sured for seven virtual machine configurations, and a collec-
tion of Java benchmarks with corresponding inputs coming
from the SPECjvm98 benchmark suite, the SPECjbb2000
benchmark suite, the Java Grande Forum benchmark suite
and an open-source raytracer, called Raja with 19 scene de-
scriptions. This large amount of data is further analyzed
using statistical data analysis techniques, namely principal
components analysis and cluster analysis. These techniques
provide useful insights in an understandable way.

From our experiments, we conclude that (i) the behavior
observed at the microarchitectural level is primarily deter-
mined by the virtual machine for small input sets, e.g., the
SPECjvm98 sl input set; (ii) the behavior can be quite dif-
ferent for various input sets, e.g., short-running versus long-
running benchmarks; (iii) for long-running benchmarks with
few hot spots, the behavior can be primarily determined by
the Java program and not the virtual machine, i.e., all the
virtual machines optimize the hot spots to similarly behav-
ing native code; (iv) in general, the behavior of a Java appli-
cation running on one virtual machine can be significantly
different from running on another virtual machine. These
conclusions warn researchers working on Java workloads to
be careful when using a limited number of Java benchmarks
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or virtual machines since this might lead to biased conclu-
sions.
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C.4 [Performance of Systems]|: design studies, measure-
ment techniques, performance attributes
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Measurement, Performance, Experimentation
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1. INTRODUCTION

In the last few years, the Java programming language is
taking up a more prominent role in the software field. From
high-end application servers, to webservers, to desktop ap-
plications and finally to small applications on portable or
embedded devices, Java applications are used in virtually
every area of the computing sector. Not only Java applica-
tions are abundant, the advent of the language also intro-
duced various virtual machines capable of executing these
applications, each with their own merits and drawbacks.

We can distinguish three important aspects that possibly
have a large impact on the overall behavior of a Java work-
load: the virtual machine executing the Java bytecode, the
Java application itself and the input to the Java application.
For example, concerning the virtual machine, the choice of
interpretation versus Just-in-Time (JIT) compilation is a
very important one. Also, the mechanism implemented for
supporting Java threads as well as for supporting garbage
collection can have a large impact on the overall perfor-
mance. Secondly, the nature of the Java application itself
can have a large impact on the behavior observed by the mi-
croprocessor. For example, we can expect a database appli-
cation to behave differently from a game application. Third,
the input of the Java application can have a significant im-
pact on the behavior of a Java workload. For example, a
large input can cause a large number of objects being cre-
ated during the execution of the Java application stressing
the memory subsystem. Each of these three aspects can
thus have a large impact on the behavior as observed at the
microarchitectural level (in terms of branch behavior, cache
behavior, instruction-level parallelism, etc.). This close in-



teraction between virtual machine, Java application and in-
put is hard to understand due to the complex behavior of
Java workloads. Therefore, we need techniques to get better
insight in this interaction.

The main question we want to address in this paper is
thus the following: how much of the behavior as observed at
the microprocessor level is due to the virtual machine, the
Java application, and the input to the application? For ex-
ample, most virtual machines currently employ a JIT com-
pilation /optimization strategy. But how big is the impact of
the actual implementation of the JIT engine on the observed
behavior? Il.e., do virtual machines implementing more or
less the same strategy behave similarly? Secondly, how large
is the impact of the Java application? Is the behavior of a
Java workload primarily determined by the Java application
or by the virtual machine? And what is the impact of the
input to the Java application?

In the last few years, valuable research has been done on
characterizing Java workloads to get better insight in its be-
havior, see also the related work section at the end of the
paper. Previous work typically considered only one or two
virtual machines in their methodology as well as only one
benchmark suite, mostly SPECjvm98. In addition, some
studies use a small input set, e.g., sl for SPECjvm98, to
limit the simulation time in their study. As such, we can
raise the following questions in relation to previous work.
Is such a methodology reliable for Java workloads? What
happens if the behavior of a Java workload is highly de-
pendent on the chosen virtual machine? Can we translate
conclusions made for one virtual machine to another vir-
tual machine? Also, is SPECjvm98 representative for other
Java applications? l.e., are the conclusions taken based on
SPECjvm98 valid for other Java programs? And is using a
small input, e.g., SPECjvm98 sl, yielding a short-running
Java workload representative for a large input, e.g., s100,
yielding a long-running Java workload?

To answer these questions, we use the following method-
ology. First, we measure workload characteristics through
performance counters while running the Java workloads on
real hardware, in our case an AMD K7 Duron microproces-
sor. This is done for a large number of virtual machine con-
figurations (7 in total) as well as for a large number of Java
applications with corresponding inputs. The benchmarks
and their inputs are taken from the SPECjvm98 suite, the
SPEC;jbb2000 suite and the Java Grande Forum suite. In
addition, we also include a raytracer with 19 scene descrip-
tions. Second, a statistical analysis is done on these data
using principal components analysis (PCA) [17]. PCA is
a multivariate statistical data reduction technique capable
of increasing the understandability of the large amounts of
data. The basic idea of this statistical analysis is as follows.
Java workloads could be displayed in a n-dimensional space,
with n the number of performance characteristics measured
in the previous step. However, the dimension of this space n
is too large to be understandable, in our study n = 34. PCA
reduces this high dimensional space to a lower dimensional
and uncorrelated space, typically 4-D in our experiments
without loosing important information. This increases the
understandability for two reasons: (i) its lower dimension
and (ii) there is no correlation between the axes in this
space. In the third step of our methodology, we display the
Java workloads in this lower dimensional space obtained af-
ter PCA. In addition, we further analyze this reduced Java

workload space through cluster analysis (CA) [17]. This
methodology will allow us to address the questions raised in
this paper. Indeed, Java workloads that are far away from
each other in this space show dissimilar behavior whereas
Java workloads close to each other show similar behavior.
As such, if Java workloads are clustered per virtual machine,
i.e., all the Java applications running on one particular vir-
tual machine are close to each other, we can conclude that
the overall behavior is primarily determined by the virtual
machine and not the Java application. Likewise, if Java
workloads are clustered per Java application, we conclude
that the Java application has the largest impact and not
the virtual machine. Also, if a Java program running differ-
ent inputs results in clustered data points, we can conclude
that the input has a small impact on the overall behavior.

Answering the questions raised in this paper is of inter-
est for various research domains. First, Java application
developers can get insight in the behavior of the code they
are developing and how their code interacts with the virtual
machine and its input. For example, if the overall behavior
is primarily influenced by the virtual machine and not the
Java application, application developers will pay less atten-
tion to the performance of their code but will focus more
on its reusability or reliability. Second, virtual machine de-
velopers will get better insight in what sense the behavior
of a Java workload is influenced by the virtual machine im-
plementation and more in particular, how Java programs
interact with their virtual machine design. Using this in-
formation, virtual machine developers might design better
VMs. Third, microprocessor designers can get insight in
how Java workloads behave and how their microprocessors
should be designed to address specific issues posed by Java
workloads. Also, for microprocessor designers who heavily
rely on time-consuming simulations, it is extremely useful to
know whether small inputs result in similar behavior as large
inputs and can thus be used to reduce the total simulation
time without compromising the accuracy of their simulation
runs [13].

This paper is organized as follows. In the next section,
we present the experimental setup of this paper. We distin-
guish four components in our setup: (i) the Java workloads,
consisting of the virtual machine, the Java benchmarks and
if available, various inputs for each of these benchmarks; (ii)
the hardware platform, namely the AMD K7 Duron micro-
processor; (iii) the measurement technique, i.e., the use of
on-chip performance counters; and (iv) the workload char-
acteristics we use in our methodology. In section 3, we dis-
cuss the statistical data analysis techniques, namely princi-
pal components analysis (PCA) and cluster analysis (CA).
In section 4 we present the results we obtain through our
analysis and extensively discuss the conclusions that can be
taken from these. Section 5 discusses related work on char-
acterizing Java workloads. Finally, we conclude in section 6.

2. EXPERIMENTAL SETUP

2.1 Javaworkloads

This section discusses the virtual machines and the Java
applications that are used in this study.
2.1.1 \rtual machines

In our study, we have used seven virtual machine config-
urations which are tabulated in Table 1: SUN JRE 1.4.1,



Blackdown JRE 1.4.1 Beta, IBM JRE 1.4.1, JikesRVM,
JRockit and Kaffe.

Both the SUN JRE 1.4.1 and the Blackdown JRE 1.4.1
Beta virtual machines are based on the same SUN HotSpot
virtual machine core [26]. HotSpot uses a mixed scheme
of interpretation, Just-in-Time (JIT) compilation and opti-
mization to execute Java applications. The degree of opti-
mization can be specified by choosing either client mode or
server mode. In client mode, the virtual machine performs
fewer runtime optimizations resulting in a limited applica-
tion startup time and a reduced memory footprint. In server
mode, the virtual machine performs classic code optimiza-
tions as well as optimizations that are more specific to Java,
such as null-check and range-check elimination. It is also
interesting to note that HotSpot maps Java threads to na-
tive OS threads. The garbage collector uses a fully accurate,
generational copying scheme. New objects are allocated in
the ‘nursery’ and moved to the ‘old object’ space when the
‘nursery’ is collected. Objects in the ‘old object’ space are
reclaimed by a mark and sweep compacting strategy.

BEA Weblogic’s JRockit [6] is a virtual machine that
is targeted at server-side Java. JRockit compiles methods
upon their first invocation. At runtime, statistics are gath-
ered and hot methods are scheduled for optimization. The
optimized code replaces the old code while the virtual ma-
chine keeps running. This way, an adaptive optimization
scheme is realized. JRockit uses a mixed threading scheme,
called ThinThread, in which n Java threads are multiplexed
on m native threads. The virtual machine comes with four
possible garbage collection strategies. We have used the gen-
erational copying version in our experiments, which is the
default for heap sizes less than 128MiB.

Jikes [2, 3] is a Research Virtual Machine (RVM)—pre-
viously known as Jalapefio—that is targeted at server-side
Java applications. Jikes is written entirely in Java and uses
compilation throughout the entire execution (no interpre-
tation). It is possible to configure the JikesRVM in differ-
ent compiling modes: baseline compiler, optimizing compiler
and adaptive compiler. We have used the baseline and adap-
tive modes in our experiments. The threading system multi-
plexes n Java threads to m native threads. There is a range
of garbage collection strategies available for this virtual ma-
chine. Among them are copying, mark-and-sweep and gen-
erational collectors as well as combinations of these strate-
gies. We have used the non-generational copying scheme
(SemiSpace).

Kaffe! is an open source virtual machine. We have used
version 1.0.7 in our experiments. Kaffe uses interpretation
as well as JIT compilation. In addition, native threads can
be used.

The IBM JRE 1.4.0% [25] also uses a mixed strategy by
employing IBM’s JI'T compiler as well as IBM’s Mixed Mode
Interpreter (MMI).

Note that the choice of the garbage collector is not con-
sistent over the virtual machine configurations. We have
chosen the default garbage collector for each virtual ma-
chine. This leads to different garbage collector mechanisms
for different virtual machines as can be seen from Table 1.
In section 4.4, we will evaluate the impact of the garbage
collector on overall workload behavior. This evaluation will

Thttp://www.kaffe.org
Zhttp:/ /www.ibm.com

show that the choice of the garbage collector has a minor
impact on the results of this paper and does not change the
overall conclusions.

2.1.2 Javaapplications and their inputs

There are numerous Java applications available both in
the public and the commercial domain. However, most of
these are (highly) interactive. Using such applications for
our purposes is unsuitable since the measurements would
not be reproducable. As such, we used non-interactive Java
programs with command line inputs. The applications we
have used are taken from several sources, see also Table 2:
SPECjvm98, SPECjbb2000, the Java Grande Forum suite,
and Raja.

SPECjvm98?® is a client-side Java benchmark suite consist-
ing of seven benchmarks. For each of these, SPECjvm98 pro-
vides three inputs: sl, s10 and s100. Contradictory to what
the input set names suggest, the size of the input set does
not increase linearly. For some benchmarks, a larger input
indeed increases the problem size. For other benchmarks,
a larger input executes a smaller input multiple times. In
the evaluation section, we will discuss the impact of the var-
ious input sets on the behavior of the Java programs and
their virtual machines. SPECjvm98 was designed to eval-
uate combined hardware (CPU, caches, memory, etc.) and
software aspects (virtual machine, kernel activity, etc.) of a
Java environment. However, they do not include graphics,
networking or AWT (window management).

SPECjbb2000 (Java Business Benchmark)?® is a server-
side benchmark suite focussing on the middle-tier, the busi-
ness logic, of a three-tier system. We have run the SPEC-
jbb2000 benchmark with different numbers of warehouses:
2, 4 and 8 warehouses.

The Java Grande Forum (JGF) benchmark suite® [9] is
intended to study the performance of Java in the context
of so-called Grande applications, i.e., applications requir-
ing large amounts of memory, bandwidth and/or processing
power. Examples include computational science and engi-
neering codes, large scale database applications as well as
business and financial models. For this paper, we have cho-
sen four large scale applications from the sequential suite
which are suitable for uniprocessor performance evaluation.
For each of these benchmarks, we have used the two avail-
able problem sizes, small and large.

Rajab is a raytracer in Java. We included this raytracer
in our analysis since its distribution comes with 19 scene
descriptions. As such we will be able to quantify the impact
of the input on the behavior of the raytracer. Unfortunately,
we were unable to execute this benchmark on the Jikes and
Kaffe virtual machines.

We ran all the benchmarks with a standard 64MiB virtual
machine heap size. For SPECjbb2000, we used a heap size
of 256 MiB.

2.2 Hardwareused

We have done all our experiments on a x86-compatible
platform, namely a 1GHz AMD Duron (model 7). The mi-
croarchitecture of the AMD Duron is identical to the AMD
Athlon’s microarchitecture except for the reduced size of the

3http://www.spec.org/jvm98
“http://www.spec.org/jbb2000
®http://www.javagrande.org
Shttp://raja.sourceforge.net



Virtual machine

Configuration used

SUN JRE 1.4.1
Blackdown JRE 1.4.1
JikesRVM base
JikesRVM adpt
JRockit

Kaffe

IBM JRE 1.4.1

HotSpot client, generational non-incremental garbage collection
HotSpot client, generational non-incremental garbage collection
baseline compiler with copying garbage collection

adaptive compiler with copying garbage collection

adaptive optimizing compiler, generational copying collector
interpretation and JIT compilation, non-generational garbage collection
interpretation and JIT compilation

Table 1: The virtual machine configurations we have used to perform our measurements.

SPECjvm98

201_compress

202_jess

209_db

213_javac

222_mpegaudio

227 _mtrt

228_jack

A compression program, using a LZW method ported from 129.compress
in the SPECCPU95 suite. Unlike 129.compress, it processes real data from
several files. The various inputs are obtained by performing a different number
of iterations through various input files. It requires a heap size of 20MiB and
allocates 334MiB of objects.

An expert shell system, adapted from the CLIPS system. The various inputs
consist of a set of puzzles to be solved, with varying degrees of difficulty. The
benchmark requires a heap size of 2MiB while allocating 748MiB of objects.
The benchmark performs a set of database requests on a memory resident
database of 1MiB. The various inputs are obtained by varying the number
of requests to the database. It requires a heap size of 16MiB and allocates
224MiB of objects.

This is the JDK 1.0.2 source code compiler. The various inputs are obtained
by making multiple copies of the same input files. It requires a heap size of
12MiB, and allocates 518MiB of objects.

A commercial application decompressing MPEG Layer-3 audio files. The
input consists of about 4MiB of audio data. The number of objects that are
allocated is negligible.

A raytracer using two threads to render a scene. The various inputs are
determined by the problem size. The benchmark requires a heap size of
16MiB and allocates 355MiB of objects.

An early version of JavaCC which is a Java parser generator. The various
inputs make several passes through the same data. Execution requires a heap
size of 2MiB while 481MiB of objects are allocated.

SPECjbb2000

A three-tier transaction system, where the user interaction is simulated by
random input selection and the third tier, the database, is represented by a
set of binary trees. The benchmark focuses on the business logic found in
the middle tier. It is loosely based on the IBM pBOB benchmark [5]. About
256MiB of heap space is required to run the benchmark.

Java Grande Forum

search

euler

moldyn

raytracer

A program solving a connect-4 game, using an alpha-beta pruning technique.
The problem size is determined by the starting position from which the game
is solved. The heap size should be at least 6MiB for both inputs.

Solution for a set of time-dependent Euler equations modeling a channel with
a bumped wall, using a fourth order Runge-Kutta scheme. The model is
evaluated for 200 timesteps. The problem size is determined by the size of
the mesh on which the solution is computed. The heap size that is required
is 8MiB for the small input and 15MiB for the large input.

Evaluation of an N-body model for particles interacting under a Lennard-
Jones potential in a cubic space. The problem size is determined by the
number of particles. Both inputs need a heap size of 1 MiB.

A raytracer rendering a scene containing 64 spheres. The problem size is
determined by the resolution of the rendered image. Both inputs require a
heap size of 1 MiB.

Raja

A Raytracer. We used the latest 0.4.0-pre4 version. Input variation is ob-
tained by using a set of 19 scene descriptions.

Table 2: The benchmarks we used in our measurements.




component subcomponent description
memory hierarchy L1 I-cache 64KB two-way set-associative, 64-byte lines, LRU replacement
with next line prefetching
L1 D-cache 64KB two-way set-associative, 8 banks with 8-byte lines, LRU
write-allocate, write-back, two access ports 64 bits each
L2 cache 64KB two-way set-associative, unified, on-chip, exclusive
L1 I-TLB 24 entries, fully associative
L2 I-TLB 256 entries, four-way set-associative
L1 D-TLB 32 entries, fully associative
L2 D-TLB 256 entries, four-way set-associative
branch prediction BTB branch target buffer, two-way set-associative, 2048 entries

RAS return address stack, 12 entries
taken/not-taken | gshare 2048-entry branch predictor with 2-bit counters

system design bus 200MHz, 1.6GiB per second
pipeline stages integer 10 cycles
floating-point 15 cycles
integer pipeline pipeline 1 integer execution unit and address generation unit
also allows integer multiply
pipeline 2 integer execution unit and address generation unit
pipeline 3 idem
floating-point pipeline | pipeline 1 3DNow! add, MMX ALU /shifter and floating-point add
pipleine 2 3DNow!/MMX multiply /reciproce, MMX ALU and
floating-point multiply /divide/square root
pipeline 3 floating-point constant loads and stores

Table 3: The AMD K7 Duron microprocessor summary.

L2 cache (64KB instead of 256KB). As such, the Duron as
well as the Athlon belong to the same AMD K7 proces-
sor family [1, 12]. For more details on the AMD Duron
that is used in this study we refer to Table 3. The AMD
K7 is a superscalar microprocessor implementing the IA-32
instruction set architecture (ISA). It has a pipelined mi-
croarchitecture in which up to three x86 instructions can be
fetched. These instructions are fetched from a large prede-
coded 64KB L1 instruction cache (I-cache). For dealing with
the branches in the instruction stream, branch prediction is
done using a global history (gshare) based taken/not-taken
branch predictor, a branch target buffer (BTB) and a return
address stack (RAS). Once fetched, each (variable-length)
x86 instruction is decoded into a number of simpler (and
fixed-length) macro-ops. Up to three x86 instructions can
be translated per cycle.

These macro-ops are then passed to the next stage in
the pipeline, the instruction control unit (ICU) which ba-
sically consists of a 72-entry reorder buffer. From this re-
order buffer, macro-ops are scheduled into an 18-entry in-
teger scheduler and a 36-entry floating-point scheduler for
integer and floating-point operations, respectively. The 18-
entry integer scheduler is organized as a collection of three
6-entry deep reservation stations, each reservation station
serving an integer execution unit and an address generation
unit. The 36-entry floating-point scheduler (FPU: floating-
point unit) serves three floating-point pipelines executing
x87, MMX and 3DNow! operations. In the schedulers, the
macro-ops are broken down to ops which can execute out-
of-order. Next to these schedulers, the AMD K7 microarchi-
tecture also has a 44-entry load-store unit. The load-store
unit consists of two queues, a 12-entry queue for L1 D-cache
load and store accesses and a 32-entry queue for L2 cache
and memory load and store accesses—requests that missed

in the L1 D-cache. The L1 D-cache is organized as an eight-
bank cache having two 64-bit access ports.

Another interesting aspect of the AMD K7 microarchi-
tecture is the fact that the L2 unified cache is an exclusive
cache. This means that cache blocks that were previously
held by the L1 caches but had to be evicted from L1, are
held in L2. If the newer cache block that is to be stored in
L1 previously resided in L2, that cache block will be evicted
from L2 to make room for the L1 block, i.e., a swap oper-
ation is done between L1 and L2. If the newer cache block
that is to be stored in L1 did not previously reside in L2, a
cache block will need to be evicted from L2 to memory.

2.3 Performance counters

The AMD K7 Duron has a set of microprocessor-specific
registers. These registers can be used to obtain informa-
tion about the processor’s usage during the execution of
a computer program. This kind of information is held in
so called performance counter registers. We have used the
performance counter registers available in the AMD Duron
to measure several characteristics of benchmark executions.
Performance counters have several important benefits over
alternative characterization methods. First, characteristics
are obtained very fast since we run computer programs on
native hardware. Alternative options are significantly less
efficient. For example, measuring characteristics using in-
strumented binaries inevitably results in a serious slowdown.
Measuring characteristics through simulation is even worse
since detailed simulation is approximately a factor 100,000
slower than native execution. The second advantage of us-
ing performance counters is that setting up the infrastruc-
ture for doing these experiments is extremely simple: no
simulators, nor instrumentation routines have to be writ-
ten. Third, measuring kernel activity using performance



counters comes for free. Instrumentation or simulation on
the other hand, require either instrumenting kernel code or
employing a full system simulator. The fourth advantage of
performance counters is that characteristics are measured on
real hardware instead of a software model. The latter can
lead to inaccuracies due to its higher abstraction level [11].

Unfortunately, performance counters also come with their
disadvantages. First, measuring an event of two executions
of the same computer program can lead to slightly different
results. One reason for this is cache contention due to mul-
titasking, interrupts, etc. To cope with this problem, each
event can be measured multiple times and an average num-
ber of these measurements can be used throughout the anal-
ysis. For this study, we have measured each event four times
and the arithmetic average is used in the analysis. A second
problem with performance counters is that only a limited
number of events can be measured per program execution,
e.g., four events for the AMD K7. As such, to measure the 34
events as listed in Table 4 we had to run each program nine
times. Note that these two slowdown factors result in the
fact that each program needs to be run 36 times, i.e., 4 times
for making the average over four program runs multiplied by
9 times for measuring all events (4 events per program run).
As such, using the approach of performance counters, al-
though running on native hardware, yields a slowdown of
a factor 36 over one single native program execution. Note
that this is still much faster than through instrumentation
(slowdown factor heavily depending on the instrumentation
routines, typically more than 1,000) or simulation (slowdown
factor of 50,000 up to 300,000 [4, 7]). A third disadvantage of
performance counters is that the sensitivity to performance
of a microarchitectural parameter cannot be measured since
the microarchitecture is fixed. This disadvantage could be
remedied by measuring characteristics on multiple platforms
having different microprocessors.

In our environment, reading the contents of the perfor-
mance counter registers is done using the perfctr version
2.4.0 package” which provides a patch to the most com-
mon Linux/x86 kernels. Our Linux/x86 evironment is Red-
Hat 7.3 with kernel 2.4.19-11. The perfctr package keeps
track of the contents of the performance counter registers
on a per-process basis. This means that the contents of
the performance counters are saved on a context switch and
restored after the context switch. This allows precise per-
process measurements on a multi-tasking operating system
such as Linux. In order to use this package for our purpose
we had to extend the perfctr package to deal with multi-
threaded Java. The original perfctr package v2.4.0 is only
capable of measuring the performance counter values for a
single-threaded process. However, in most modern virtual
machines running Java applications, all the Java threads are
actually run as native threads or (under Linux) separate pro-
cesses. Other VMs multiplex their n Java threads on a set
of m native threads, for example JRockit [6] and Jikes [2,
3]. Yet other VMs map all Java threads to a single native
thread. In this case, the Java threads are often called green
threads. To be able to measure the characteristics for all
the threads running in a virtual machine that uses multiple
native threads, we extended the perfctr package. This way,
all the Java threads that are created during the execution
of a Java application are profiled.

"http://user.it.uu.se/~mikpe/linux/perfctr/

2.4 Workload characteristics

The processor events that were measured for this study on
the AMD Duron are tabulated in Table 4. These 34 work-
load characteristics can be roughly divided in six groups:

e General characteristics. This group of events con-
tains the number of clock cycles needed to execute the
application; the number of retired x86 instructions;
the number of retired operations—recall that x86 in-
structions are broken down to fixed-length and much
simpler operations; the number of retired branches,
etc.

e Processor frontend. Here we have grouped charac-
teristics that are related to the processor frontend, i.e.,
the I-cache and the fetch unit: the number of fetches
from the L1 I-cache, the number of L1 I-cache misses,
the number of instruction fetches from the L2 instruc-
tion cache and the number of instruction fetches from
main memory. Next to these characteristics, we also
measure the L1 [-TLB misses that hit the L2 TLB, as
well as the L1 I-TLB misses that also miss the L2 I-
TLB. In addition, we also measure the number of fetch
unit stall cycles.

e Branch prediction. This group measures the perfor-
mance of the branch prediction hardware: the number
of branch taken/not-taken mispredictions, the number
of branch target mispredictions, the performance of
the return address stack (RAS), etc.

e Processor core. The performance counters that deal
with the processor core basically measure stall cycles,
i.e., cycles in which no new instructions can be further
pushed down the pipeline due to data, control or struc-
tural hazards, for example, due to a read-after-write
dependency, an unavailable functional unit, an unre-
solved D-cache miss, a branch misprediction, etc. In
this group we make a distinction between the following
events: an integer control unit (ICU) full stall, a reser-
vation station full stall, a floating-point unit (FPU) full
stall, load-store unit queue full stalls, and a dispatch
stall which can be the result of a number of combined
stall events.

e Data cache. We distinguish the following character-
istics related to the data cache: the number of L1 D-
cache accesses, the number of L1 D-cache misses, the
number of refills from L2, the number of refills from
main memory and the number of writebacks. We also
measure the L1 D-TLB misses that hit the L2 D-TLB
and the L1 D-TLB misses that also miss the L2 D-
TLB.

e Bus unit. We monitor the number of requests to the
main memory, as seen on the bus.

The performance characteristics that are actually used in
the statistical analysis, are all divided by the number of clock
cycles. By doing so, the events are actually measured per
unit of time. For example, one particular performance char-
acteristic will be the number of L1 D-cache misses per unit
of time, in casu, per clock cycle. Note that this performance
measure is more appropriate than the L1 D-cache miss rate,
often used in other studies, since it is more directly related



component abbrev. decription
general cycles number of clock cycles
instr number of retired x86 instructions
ops number of retired operations
br number of retired branches
br_taken number of retired taken branches
far_ctrl number of retired far control instructions

ret number of retired near return instructions

ic_fetch
ic_miss
ic_L2_fetch
ic_mem
itlb_LL1_miss
itlb_L2_miss
fetch_stall

processor frontend

number of L1 I-cache fetches

number of L1 I-cache misses

number of L2 instruction fetches

number of instruction fetches from memory
number of L1 I-TLB misses, but L2 I-TLB hits
number of LL1 and L2 I-TLB misses

number of fetch unit stall cycles

dtlb_L1_miss
dtlb_L2_miss

branch prediction | br_mpred number of retired mispredicted branches
br_taken_mpred | number of retired mispredicted taken branches
ret_mpred number of retired mispredicted near return instructions
target_mpred number of mispredicted branches due to address miscompare
ras_hits number of return address stack hits
ras_oflow number of return address stack overflows
processor core dispatch_stall number of dispatch stall cycles (combined stall events)
icu_full number of integer control unit (ICU) full stall cycles
res_stat_full number of reservation station full stall cycles
fpu_full number of floating-point unit (FPU) full stall cycles
Isu_full number of load-store unit (LSU) full stall cycles
concerning the L1 D-cache access queue
lsu_L2_full number of load-store unit (LSU) full stall cycles
concerning the L2 and memory access queue
data cache dc_access number of L1 data cache accesses
equals number of load-store operations
dc_miss number of L1 data cache misses
dc_L2 number of refills from the L2 cache
dc_mem number of refills from main memory
dc_wb number of writebacks

number of L1 D-TLB misses, but L2 D-TLB hits
number of L1 and L2 D-TLB misses

system bus mem_requests

number of memory requests as seen on the bus

Table 4: The 34 workload characteristics obtained from the performance counters on the AMD Duron.

to actual performance. Indeed, a high D-cache miss rate
can still result in a low number of D-cache misses per unit
of time if the number of D-cache accesses is low.

As stated in the previous section, performance counters
can be measured for both kernel and user activity. Since it
is well known from previous work [19] that Java programs
spend a significant amount of time in kernel activity, we
have measured both.

3. STATISTICAL ANALYSIS

From the previous sections it becomes clear that the a-
mount of data that is obtained from our measurements is
huge. Indeed, each performance counter event is measured
for each benchmark, for each virtual machine and for each
input. As such, the total amount of data is too large to
be analyzed understandably. In addition, there exists cor-
relation between the various events which makes the inter-
pretation of the data even more difficult for the purpose
of this paper. Therefore, we use a methodology [13, 14]
that is based on statistical data analysis, namely principal

components analysis (PCA) and cluster analysis (CA) [17],
to present a different view on the measured data. Applying
these statistical analysis techniques was done using the com-
mercial software package STATISTICA [24]. We will discuss
PCA and CA in the following two subsections.

3.1 Principal components analysis

The basic idea of our approach is that a Java workload—
a Java workload is determined by the Java application, its
input and the virtual machine—could be viewed as a point
in the multidimensional space built up by the performance
counter events. Before applying any statistical analysis tech-
nique, we first normalize the data, i.e., mean and variance
of each event is zero and one, respectively. Subsequently,
we apply principal components analysis (PCA) which trans-
forms the data into uncorrelated data. This is beneficial for
our purpose of measuring (dis)similarity between Java work-
loads. Measuring (dis)similarity between two Java work-
loads based on the original non-normalized and correlated
events on the other hand, would give a distorted view. In-



deed, the Euclidean distance between two Java workloads in
the original space is not a reliable measure for two reasons.
First, non-normalized data gives a higher weight to events
with a higher variance. Through normalization, all events
get equal weights. Second, the Euclidean distance in a cor-
related space gives a higher weight to correlated variables.
Since correlated variables in essence measure the same un-
derlying program characteristic, we propose to remove that
correlation through PCA.

PCA computes new variables, called principal components,
which are linear combinations of the original variables, such
that all principal components are uncorrelated. PCA tran-
forms the p variables X, Xo,..., X, into p principal com-
ponents Z1,Z2, ..., Z, with Z; = E?:l a;;X;. This trans-
formation has the properties (i) Var[Z1] > Var[Z2] > ... >
Var[Z,] which means that Z; contains the most informa-
tion and Z, the least; and (ii) Cov[Z;,Z;] = 0,Vi # j
which means that there is no information overlap between
the principal components. Note that the total variance in
the data remains the same before and after the transforma-
tion, namely Y *_, Var[X;] =Y F_, Var[Z].

As stated in the first property in the previous paragraph,
some of the principal components will have a high variance
while others will have a small variance. By removing the
components with the lowest variance from the analysis, we
can reduce the number of program characteristics while con-
trolling the amount of information that is thrown away. We
retain ¢ principal components which is a significant infor-
mation reduction since ¢ < p in most cases, for example
q = 4. To measure the fraction of information retained
in this g-dimensional space, we use the amount of variance
L, Var[Zi])/(32)_, Var[X:]) accounted for by these g
principal components. Typically 85% to 90% of the total
variance should be explained by the retained principal com-
ponents.

In this study the p original variables are the events mea-
sured through the performance counters, see section 2.4.
By examining the most important g principal components,
which are linear combinations of the original performance
events (Z; = 30_, ai;X;,i = 1,...,q), meaningful inter-
pretations can be given to these principal components in
terms of the original program characteristics. A coefficient
a;; that is close to +1 or -1 implies a strong impact of the
original characteristic X; on the principal component Z;. A
coefficient a;; that is close to 0 on the other hand, implies
no impact.

The next step in the analysis is to display the various
Java workloads as points in the ¢-dimensional space built
up by the ¢ principal components. As such, a view can
be given on the Java workload space. Note again that the
projection on the g-dimensional space will be much easier to
understand than a view on the original p-dimensional space
for two reasons: (i) ¢ is much smaller than p: ¢ < p, and
(ii) the g-dimensional space is uncorrelated.

3.2 Cluster analysis

Cluster analysis (CA) [17] is another data analysis tech-
nique that is aimed at clustering the Java workloads into
groups that exhibit similar behavior. This is done based on
a number of variables, in our case the principal components
obtained from PCA. A commonly used algorithm for doing
cluster analysis is linkage clustering which starts with a ma-
trix of distances between the Java workloads. As a starting

point for the algorithm, each Java workload is considered as
a group. In each iteration of the algorithm, the two groups
that are most close to each other (with the smallest distance,
also called the linkage distance) will be combined to form
a new group. As such, close groups are gradually merged
until finally all cases will be in a single group. This can
be represented in a so called dendrogram, which graphically
represents the linkage distance for each group merge in each
iteration of the algorithm. Having obtained a dendrogram,
it is up to the user to decide how many clusters to consider.
This decision can be made based on the linkage distance. In-
deed, small linkage distances imply strong clustering while
large linkage distances imply weak clustering. Their exist
several methods for calculating the distance between two
groups. In this paper, we have used the pair-group average
strategy. This means that the distance between two groups
is defined as the average distance between all the members
of each group.

The reason why we chose to first perform PCA and subse-
quently cluster analysis instead of applying cluster analysis
on the initial data is as follows. The original variables are
highly correlated which implies that an Euclidean distance
in this space is unreliable due to this correlation as explained
previously. First performing PCA alleviates this problem.
In addition, PCA gives us the opportunity to visualize and
understand why two Java workloads are different from each
other.

4. EVALUATION RESULTS

In this evaluation section, we present and extensively dis-
cuss the results that were obtained from our analysis. First,
we present the results for the sl and s100 input sets of the
SPECjvm98 benchmark suite. Second, we analyze the be-
havior of the Java Grande Forum workloads. And finally,
we present the complete picture with all the Java work-
loads considered in this study. We present the results for the
SPECjvm98 benchmark and the Java Grande Forum before
presenting the complete picture for several reasons. First,
it makes the results obtained in this paper more compara-
ble to previous work mostly done on SPECjvm98. Second,
it makes the understanding easier by building up the com-
plexity of the data. Third, it allows us to demonstrate the
relativity of this methodology. In other words, the results
obtained from PCA or CA quantify the (dis)similarity be-
tween the Java workloads included in the analysis, but say
nothing about the behavior of these workloads in compari-
son to other Java workloads not included in the analysis.

4.1 SPECjvm98

The SPECjvm98 benchmark suite offers three input sets,
commonly referred to as the s1, s10 and s100 input set. All
these benchmarks are executed using the virtual machines
summarized in Table 1, with a maximal heap size of 64MiB.
We first discuss the results of the sl input set after which
we discuss the results for s100.

4.1.1 Analysisof the sl input set

For the data with the sl input set, we retain four prin-
cipal components that account for 86.5% of the observed
variance in the measurements of the 49 Java workloads (7
SPECjvm98 benchmarks times 7 VM configurations). The
factor loadings obtained for the principal components are
given in Figure 1. These factor loadings account for 46.1%,
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Figure 1: Factor loading for SPECjvm98

22.2%, 11.1% and 7.2% of the total variance, respectively.
When we take a closer look to the factor loadings a;; of the
retained principal components, it is obvious that the first
component is by far the most important one. The contri-
butions of the measured characteristics to the second, the
third and fourth component are relatively smaller. In the
following enumeration, we discuss the contributions made
by each of the performance characteristics to each principal
component:

e The main positive influence on the first principal com-
ponent (PC1) is caused by the branch prediction char-
acteristics and processor frontend characteristics, with
except for the amount of fetch stalls, see Table 4. The
first principal component is negatively influenced by
several stall events, i.e., the amount of fetch stalls,
dispatch stalls, ICU full stalls and L2/memory LSU
full stalls. In addition, PC is also negatively affected
by the number of data cache misses, data cache write-
backs and data cache refills from L2 and from mem-
ory. Finally, PC, is also negatively influenced by the
amount of memory requests seen on the bus.

e The second principal component (PC2) is positively
influenced by the number of x86 instructions retired
per clock cycle and the number of retired operations
per cycle, the amount of retired near return instruc-
tions, the number of stalls caused by a full L1 LSU
unit, and the amount of data cache accesses. This
component is negatively influenced by the number of
instruction fetches from memory, by the number of L2
I-TLB misses, by the branch prediction accuracy and
by the number of stalls caused by full reservation sta-
tions. It is also negatively influenced by the number
of L1 D-TLB misses.

with the sl input set.

e For the third principal component (PC3), we see that
the amount of (taken) branches as well as the number
of stalls caused by full reservation stations deliver the
major positive contributions. PC3 is negatively influ-
enced by the amount of retired far control instructions,
the amount of L1 I-TLB misses that hit the L2 I-TLB,
and the amount of L2 D-TLB misses.

e The fourth principal component (PCy) is the posi-
tively dominated by the amount of L1 D-TLB misses
that hit in the L2 D-TLB, and negatively dominated
by the amount of branches and the amount of L2 D-
TLB misses.

The factor loadings also give an indication of the corre-
lated characteristics for this set of Java workloads. For ex-
ample, from these results we can conclude that (along the
first principal component) the branch characteristics corre-
late well with the frontend characteristics. Moreover, this
correlation is a positive correlation since both characteristics
have a positive contribution to the first principal component.
Also, the frontend characteristics correlate negatively with
the amount of fetch stalls. In other words, this implies for
example that a high number of I-cache fetches per unit of
time correlates well with a low number of fetch stalls per
unit of time which can be understood intuitively.

We can now display these Java workloads in the 4-dimen-
sional space built up by the four principal components. This
is shown in Figures 2 and 3 for the first versus the second
principal component and the third versus the fourth prin-
cipal component, respectively. Since we are dealing with a
four-dimensional space, it is important to consider these two
plots simultaneously to get a clear picture of the four dimen-
sions. Note that in Figures 2 and 3, different SPECjvm98
benchmarks running on the same virtual machine are all
represented by the same symbol. These graphs should be
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interpreted as follows. A Java workload having a high coef-
ficient along the first principal component shows a behavior
that can be characterized by, see also Figure 1, high numbers
for the branch characteristics and the frontend characteris-
tics. In addition, low numbers will be observed for several
stall characteristics (fetch, dispatch, ICU and L2/memory
LSU), the number of data cache misses, the number of data
refills from L2 and memory, the number of data writebacks,
and the number of memory requests from the bus.

The graphs in Figures 2 and 3 clearly show that the data
points are more or less clustered per virtual machine. In-
deed, we observe tight clusters for JRockit, the baseline ver-
sion of Jikes, the adaptive version of Jikes and the IBM 1.4.1
VM. The clusters corresponding to the SUN 1.4.1 VM and
the Blackdown 1.4.1 VM, are clustered less tightly. Notice
also that these two clusters are quite close to each other.
This is obviously due to the fact that both virtual machines
are built around the same HotSpot virtual machine core.
This graph also reveals that Kaffe exhibits the least tightly
clustered behavior. From these results we can conclude that
for the sl input set, the virtual machine has a larger im-
pact on the overall behavior than the Java application. In
other words, a virtual machine running a Java application
with a small input will exhibit similar behavior irrespective
of the Java application it is running. This can be under-
stood intuitively since the sl input set results in very short
running benchmarks (in the order of seconds) for which the
startup time of the virtual machine (initializing and loading
significant parts of the JDK library) is the highest factor
contributing to the overall behavior. From these data we
can also conclude that using the sl input set of SPECjum98
in a performance analysis might not be a good method unless
one s primarily interested in measuring startup times, not
just long-running performance.

It is also interesting to note that the data points corre-
sponding to the 201_compress benchmark are not part of
the clusters discussed in the previous paragraph. In other
words, for this Java benchmark, the interaction between the
application and the virtual machine has a large impact on its
overall behavior at the microarchitectural level since the var-
ious virtual machines for 201_compress are spread over the
Java workload space. A close inspection of 201_compress re-
veals that it has a small code size, while processing a fairly
large amount of data, even in case of the sl input set. Profil-
ing shows that for this benchmark, the top 10 methods that
are called, account for 98% of all method calls. Clearly,
201_compress has a small number of hot methods, much
smaller than the other SPECjvm98 benchmarks. This leads
to a small working set and allows fairly aggressive optimiza-
tions by the virtual machine’s native code generator. Since
each virtual machine implements its run-time optimizer in
a different way, this can result in a behavior that is quite
different for each virtual machine. Note however that the
SUN 1.4.1 VM, the Blackdown 1.4.1 VM and the IBM 1.4.1
VM yield quite similar behavior for 201_compress.

Another way of visualizing the (dis)similarity in this trans-
formed space after PCA can be obtained through cluster
analysis (CA). A dendrogram can be displayed which graph-
ically represents the linkage distance during CA. This den-
drogram is shown in Figure 4. In a dendrogram, data points
connected through small linkage distances are clustered in
early iterations of the algorithm and thus exhibit similar be-
havior. In our case, Java workloads exhibiting similar behav-

ior will thus be connected through small linkage distances.
Based on Figure 4, we can make the same conclusions as
we made based on the visualization of the reduced space
obtained after PCA, see Figures 2 and 3. For example, we
clearly observe the four tight clusters per virtual machine:
(i) the baseline Jikes virtual machine, (ii) the adaptive Jikes
virtual machine, (iii) the JRockit virtual machine, and (iv)
the IBM 1.4.1 virtual machine. Also, we clearly observe that
the SUN 1.4.1 and the Blackdown 1.4.1 VMs are loosely
clustered. In addition, the Kaffe virtual machine results in
the least tight cluster. Finally, concerning 201_compress, we
observe that the Java workloads are linked through large
linkage distances, and that a tight cluster is observed for
the SUN 1.4.1 VM, the IBM 1.4.1 VM and the Blackdown
1.4.1 VM running 201_compress.

4.1.2 Analysisof the s100 input set

For the s100 input set, we retain six principal components
after PCA that account for 87.3% of the observed variance
in the measurements. These six principal components ac-
count for 48.4%, 16.3%, 8.1%, 6.5%, 4.3% and 3.7% of the
total variance, respectively. Note that the first four compo-
nents account for 79.2% of the variance which is less than
the variance explained by the four principal components for
sl. This indicates that the data for s100 are not as much
correlated as for s1. The factor loadings have the following
contibutions from the various characteristics.

e For the first principal component (PC1), there are pos-
itive contributions, mainly from the number of retired
x86 instructions per cycle, the number of L1 and L2 I-
cache fetches, the branch prediction accuracy, and the
number of D-cache accesses. Negative contributions
come from the number of fetch stalls and dispatch
stalls, the number of D-cache misses, the number of
D-cache writebacks and the number of requests made
to memory as seen on the bus.

e For the second principal component (PC3), positive
contributions are made by the number of FPU full
stalls, the amount of D-cache accesses, and the num-
ber of x86 retired instructions per cycle; while negative
contributions are made by the branch prediction accu-
racy and the number of LL1 D-cache misses.

e For the third principal component (PC3), there is a
single important positive contribution made by the
number of branches. A negative contribution is made
by the number of return address stack (RAS) overflows
and the number of L1 LSU full stalls.

e The fourth component is positively influenced by the
number of L1 D-TLB misses and the number of retired
far control transfers. It is negatively influenced by the
number of mispredicted indirect branches, the number
of mispredicted near returns and the number of RAS
overflows.

e The fifth component is positively dominated by the
number of instruction fetches from memory and nega-
tively dominated by the number of ICU full stalls.

e The sixth and last retained principal component is
positively influenced by the number of I-fetches from
the L2 cache and the number of L1 I-cache misses.
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The component in negatively influenced, mainly by the
number of retired taken branches, the number of re-
tired near returns, and the number of RAS hits.

Although the reduced 6-dimensional space obtained after
PCA is significantly smaller than the original 34-dimensional
space, displaying a 6-dimensional space in an understand-
able way is impractical, if not impossible. Therefore, we only
display the dendrogram obtained after CA and not the Java
workload space as a function of its principal components.
This dendrogram is shown in Figure 5. A first interesting
observation that can be made from this figure is that the
clusters that are formed for the s100 input set are not the
same as for s1, compare Figure 5 to Figure 4. Moreover, the
clusters that are formed for s100 are not necessarily formed
around virtual machines as it was the case for the sl input
set.

For the s100 input set, we observe benchmark clusters—
the same benchmark being run on different VMs, or small
impact of VM on overall behavior—as well as wvirtual ma-
chine clusters—the same virtual machine running different
Java applications, or large impact of VM on overall behavior.
In Figure 5, we observe three tight benchmark clusters: (i) a
cluster corresponding to 201_compress, (ii) a cluster corre-
sponding to 222_mpegaudio, and (iii) a cluster correspond-
ing to 209_db. The first two clusters contain all the virtual
machines except for the baseline version of Jikes. The last
cluster around 209_db contains five virtual machines, all but
Kaffe and the baseline version of Jikes. Interestingly, Shuf
et al. [23] labeled these SPECjvm98 benchmarks as ‘simple’
benchmarks. The fact that the virtual machines running
these ‘simple’ benchmarks result in clustered data points is
probably (and surprisingly) due to the fact that all the vir-
tual machines have optimized these simple benchmarks to
nearly the same native code during the long-running time of
these benchmarks. Note that in contrast to the widespread
behavior of 201_compress for the sl input, the s100 input
results in a tight cluster.

In addition to these three ‘benchmark clusters’, we ob-
serve two tight virtual machine clusters: (iv) the baseline
version of the Jikes virtual machine, and (v) the JRockit
virtual machine. The cluster around the baseline Jikes VM
contains all the SPECjvm98 benchmarks. The fact that the
various Java programs that are run on baseline Jikes exhibit
similar behavior can be explained as follows. The baseline
configuration of Jikes compiles each method just-in-time but
the number of (dynamic) optimizations performed is limited.
As such, we can expect that more or less the same code se-
quences will be generated for different Java programs yield-
ing similar behavior. The cluster around JRockit contains
all the SPECjvm98 benchmarks except for 201_compress,
209_db and 222_mpegaudio. Interestingly, these benchmarks
are part of the ‘benchmark clusters’ (i), (ii) and (iii).

From a close inspection of the results in Figure 5, we also
observed that the SUN 1.4.1 VM and the Blackdown 1.4.1
VM yield similar behavior. Note however, in contrast to the
results of s1, that this is only true on a per benchmark basis.

4.2 Java Grande Forum

For the Java Grande Forum (JGF) benchmark suite, which
includes four benchmarks each having two problem sizes
see also Table 2, we retain six principal components during
PCA. These six principal components explain 82.5% of the
total variance. The dendrogram obtained from cluster anal-

ysis on this 6-dimensional space is shown in Figure 6. From
this figure, we can conclude that (i) the Java workloads as-
sociated with Kaffe as well as the Java workloads associated
with the baseline configuration of Jikes form tight clusters,
respectively; (ii) a tight cluster is observed for search: all
the virtual machines running search are in the same cluster
except for Kaffe and the baseline version of Jikes; (iii) the
SUN 1.4.1 VM and the Blackdown 1.4.1 VM also show simi-
lar behavior per benchmark, e.g., both virtual machines are
close to each other for the euler benchmark; (iv) the small
and large problem sizes generally yield the same behavior
except for moldyn.

4.3 All the Java workloads

For the analysis discussed in this section, as much as 227
Java workloads are included by varying the virtual machine,
the Java application and their input sets. Next to the vir-
tual machine configurations mentioned in Table 1, we added
the server mode of the SUN 1.4.1 VM as well as the server
mode of the Blackdown 1.4.1 VM. Based on the results of
the principal components analysis we retain seven princi-
pal components accounting for 82.2% of the total variance.
The dendrogram obtained from the cluster analysis done on
this 7-dimensional space is shown in Figure 7. Interesting
observations can be made from this figure.

e First, a number of virtual machine clusters are ob-
served that contain various Java applications on the
same virtual machine, (i) the IBM 1.4.1 VM running
the Raja benchmark, (ii) the Jikes baseline configura-
tion, (iii) Kaffe, running several Java Grande Forum
benchmarks and some SPECjvm98 benchmarks for the
s100 input set, (iv) the adaptive configuration of Jikes,
and (v) minor clusters for JRockit and the IBM VM.
Note that the SUN 1.4.1 VM and the Blackdown 1.4.1
VM form a single cluster for the Raja benchmark as
well as for SPECjbb2000, indicating strong similari-
ties in the behavior of both virtual machines for these
benchmarks. For SPECjbb2000, although the client
and server modes of the SUN and Blackdown virtual
machines are quite close to each other in the global
picture (linkage distance smaller than 1.2), we can ob-
serve a clear distinction between both. In addition, we
also noticed that for SPECjbb2000, the server mode
Blackdown 1.4.1 VM shows more similarities with the
IBM 1.4.1 VM than with the server mode SUN 1.4.1
VM.

e Second, we observe a number of benchmark clusters
containing various virtual machines running the same
Java benchmark, e.g, the Java Grande Forum bench-
marks (search, moldyn, euler and raytracer), SPEC-
jvm98’s 201_compress, SPECjvm98’s 209_db with the
s100 input and SPECjbb2000.

e Third, we observe two clusters formed around several
of the SPECjvm98 benchmarks with the sl input set,
showing once more that these workloads exhibit dis-
similar behavior from the other Java workloads.

How these results should be interpreted and used by re-
searchers in the object oriented programming community
depends on their research goals. Virtual machine develop-
ers benchmarking their own wvirtual machine should select
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Figure 8: Measuring the impact of the garbage col-
lector on Java workload behavior.

a number of benchmarks that cover a sufficiently large be-
havioral spectrum for their virtual machine. The collec-
tion of benchmarks will thus be different for different vir-
tual machines. For example, for JRockit we recommend
SPECjbb2000, 201_compress, 222_mpegaudio, 228_jack,
213_javac, 209_db and the four JGF benchmarks. For the
baseline configuration of Jikes on the other hand, we rec-
ommend only two SPECjvm98 benchmarks and one JGF
benchmark. Java application developers benchmarking their
own Java program are recommended to use a sufficiently
large number of virtual machines. However, our results sug-
gest that it is a waste of effort to consider the SUN VM as
well as the Blackdown VM.

4.4 Comments on the garbage collector

As noted in section 2.1.1, the choice of the garbage col-
lector was not consistent, i.e., different virtual machine con-
figurations have different garbage collectors. This was due
to the fact that we have chosen the default garbage col-
lector for each virtual machine. To quantify the impact of
the choice of the garbage collector on the overall results of
this paper, we have set up the following experiment. We
considered the SPECjvm98 benchmarks with the s100 in-
put set for the various virtual machine configurations in Ta-
ble 1. For the JRockit VM we considered three additional
garbage collectors next to the generational copying garbage
collector, namely single spaced concurrent, generational con-
current and parallel garbage collection. The dendrogram
that is obtained after PCA and CA is shown in Figure 8.
The four JRockit garbage collectors are highlighted for each
SPECjvm98 benchmark. This graph shows that for most
benchmarks the various garbage collectors are tightly clus-
tered, except for the parallel garbage collector for 213_javac
and 228_jack. As such, we conclude that the choice of the

garbage collector in this paper has a minor influence on the
overall conclusions of this paper.

5. RELATED WORK

This section discusses related work on understanding and
characterizing Java workloads.

Bowers and Kaeli [8] characterize the SPECjvm98 bench-
marks at the bytecode level. They conclude that Java ap-
plications have a large number of loads in their dynamic
bytecode stream.

Hsieh et al. [15] compare the performance of the SUN JDK
1.0.2 Java interpreter, a bytecode to native code translator
called Caffeine [16] and a compiled C/C++ version of the
code. This is done based on simulations. They conclude that
the interpreter exhibits poor branch target buffer (BTB)
performance, poor I-cache behavior and poor D-cache be-
havior compared to the other approaches.

Chow et al. [10] compare Java workloads with non-Java
workloads (e.g., SPEC CPU95, SPEC CINT95, etc.) using
principal components analysis. In this study, the authors
focus on the branch behavior, i.e., the number of conditional
jumps, direct calls, indirect calls, indirect jumps, returns,
etc. Based on simulation results, they conclude that Java
workloads appear to have more indirect branches than non-
Java workloads. However, the number of indirect branch
targets can be small. I.e., when considering the number of
indirect target changes, Java workloads are no worse than
some SPEC CINT95 benchmarks. The study presented in
this paper is different from the work done by Chow et al.
for three reasons. First, although Chow et al. use a large
number of workloads, the number of virtual machines used in
their study is limited to two. Second, Chow et al. limit their
study to the branching characteristics of Java workloads.
Third, the goal of the paper by Chow et al. was the compare
Java workloads versus non-Java workloads which is different
from the goal of this paper, namely getting insight in the
interaction between VMs, Java programs and their inputs.

Radhakrishnan et al. [20, 21] analyze the behavior of the
SPECjvm98 benchmarks by instrumenting the virtual ma-
chines and by simulating execution traces. They used two
virtual machines: the Sun JDK 1.1.6 and Kaffe 0.9.2. They
conclude that (i) 45 out of the 255 bytecodes constitute 90%
of the dynamic bytecode stream, (ii) an oracle translation
scheme (optimal translation selection) in case of a JIT com-
piler can only improve performance by 10% to 15%, (iii) the
I-cache and D-cache performance is better for Java applica-
tions than for C/C++ applications, except for the D-cache
in JIT mode, (iv) write misses due to installing JIT compiler
output have a significant impact on the D-cache performance
in JIT mode, and (v) the amount of ILP is higher under JIT
mode than under interpreter mode.

Li et al. [19] characterize the behavior of SPECjvm98 Java
benchmarks through complete system simulation. This was
done by using the Sun JDK 1.1.2 virtual machine and the
SimOS complete system simulator [22]. They conclude that
the SPECjvm98 applications (on s100) spend on average
10% of their time in system (kernel) activity compared to
only 2% for the four SPEC CINT95 benchmarks studied.
Generally, the amount of time in kernel activity is higher for
the JIT compiler mode than for the interpreter mode. The
kernel activity is mainly due to TLB miss handler invoca-
tions. Also, they conclude that the SPECjvm98 benchmarks
have inherently poor instruction-level parallelism (ILP) com-



pared to other classes of benchmarks.

In [18], Li et al. analyze the impact of kernel activity
on the branch behavior of Java workloads. They conclude
that branches in OS code exhibit a different biased behavior
which increases the branch misprediction rate significantly.
As such, they propose OS-aware branch prediction schemes
which outperform conventional branch predictors.

Shuf et al. [23] characterize the memory behavior of Java
workloads. They conclude that some SPECjvm98 bench-
marks are not truly object-oriented and are thus not rep-
resentative for real Java workloads. As such, they propose
to use the server-oriented pBOB benchmark [5] in studies
on Java workloads in addition to some SPECjvm98 bench-
marks. In our experiments, we used the SPECjbb2000 bench-
mark suite which is based on pBOB. The results presented in
this paper indeed confirm that the behavior that is observed
for SPECjbb2000 is dissimilar from SPECjvm98. Secondly,
they conclude that the number of hot spots is small for most
Java programs. Consequently, expensive algorithms are jus-
tified for run-time optimizations. Third, they conclude that
the D-cache behavior of Java workloads is poor resulting in
high D-cache miss rates—even fairly large L2 caches do not
increase performance significantly. In addition, they con-
clude that the TLB as well as the cache behavior is worse
for Java workloads than for technical benchmarks, but com-
parable to commercial workloads.

6. CONCLUSIONS

This paper studied how much of the behavior of a Java
workload as seen at the microarchitectural level is due to
the virtual machine, the Java application itself and the in-
put to the Java application. In other words, we addressed
the question whether the behavior of a Java workload is
primarily determined by the virtual machine, the Java ap-
plication or its input. In the experimental setup of this
paper, we used seven virtual machine configurations and a
collection of Java benchmarks taken from SPECjvm98 (with
varying input sets s1, s10 and s100), SPECjbb2000, the Java
Grande Forum as well as an open-source raytracer called
Raja with a large number of scene descriptions. For each
of these workloads, a number of performance characteristics
were measured through hardware performance counters on
an AMD K7 Duron microprocessor. This large amount of
data was subsequently analyzed using two statistical data
analysis techniques, namely principal components analysis
and cluster analysis. These data reduction techniques gave
us an excellent opportunity to answer the questions raised
in this paper.

From this paper, we conclude that:

e for the sl input set of SPECjum98, the behavior as
observed at the microarchitectural level is mainly de-
termined by the virtual machine. This is due to the
fact that the sl input set leads to short-running bench-
marks. This causes the startup of the virtual machine
to be the largest contributor to the overall behavior.
As such, this suggests that using the sl input set in a
Java system performance analysis might not be good
practice (unless one is mainly interested in measuring
startup time) since the results that are obtained from
such an analysis can be highly biased by the virtual
machine that is used.

o using the short-running sl input set as a representative

for the long-running s100 input set of SPECjvm98 is
clearly not good practice, since the behavior that is ob-
served at the microarchitectural level can be quite dif-
ferent for both input sets. One reason obviously is the
fact that a virtual machine has more opportunities for
run-time optimizations for long-running benchmarks
than for short-running benchmarks.

o for the Java Grande Forum benchmark suite on the
other hand, the problem size seems to have a minor
impact on the overall behavior in most cases. As such,
the smallest problem size can be used with confidence.

e for the SPECjvm98 s100 input set, ‘virtual machine
clusters’ are observed containing various virtual ma-
chines running the same Java program as well as ‘bench-
mark clusters’ containing various Java benchmarks run-
ning on the same virtual machine. This implies that
for the ‘virtual machine clusters’ the impact of the Java
application is higher than the impact of the virtual ma-
chine. Interestingly, these virtual machine clusters are
observed for previously reported ‘simple’ benchmarks,
namely 201_compress, 209_db and 222_mpegaudio. A-
nalogeously, for the ‘benchmark clusters’ the impact
of the virtual machine is higher than the impact of the
Java program. An example of a ‘benchmark cluster’ is
the baseline configuration of the Jikes virtual machine.

e for the SPECjbb2000 benchmark run on aggressive run-
time optimizing virtual machines, we observe a behav-
ior that is very dissimilar to other Java workloads. As
such, including a server-oriented Java workload is im-
portant to obtain a representative Java workload.

e in general, researchers should be careful when report-
ing results using only one or two virtual machines. The
results presented in this paper clearly show that the be-
havior that is observed at the microarchitectural level
18 highly dependent on the virtual machine. As such,
results obtained for one virtual machine might not be
applicable for another virtual machine and vice versa.

Again, we want to emphasize the importance of the re-
sults and the conclusions presented in this paper for the ob-
ject oriented programming community. This paper clearly
showed that the selection of representative Java workloads
can be done based on scientific arguments. Indeed, principal
components analysis and cluster analysis provide researchers
valuable information to reason about the quality of their
Java workloads in a reliable way. This will allow them to
draw conclusions from their studies with more confidence.
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