
Application Clustering Policies to
Address System Fairness with

Intel’s Cache Allocation Technology

Vicent Selfa∗, Julio Sahuquillo∗, Lieven Eeckhout†, Salvador Petit∗ and Marı́a E. Gómez∗

∗ Dept. of Computer Engineering

Universitat Politècnica de València, Spain

† Dept. of Electronics and Information Systems

Ghent University, Belgium

Abstract—Achieving system fairness is a major design con-
cern in current multicore processors. Unfairness arises due to
contention in the shared resources of the system, such as the
LLC and main memory. To address this problem, many research
works have proposed novel cache partitioning policies aimed
at addressing system fairness without harming performance.
Unfortunately, existing proposals targeting fairness require extra
hardware which makes them impractical in commercial proces-
sors.

Recent Intel Xeon processors feature Cache Allocation Tech-
nology (CAT), a hardware cache partitioning mechanism that can
be controlled from userspace software and that allows to create
partitions in the LLC and assign different groups of applications
to them.

In this paper we propose a family of clustering-based cache
partitioning policies to address fairness in systems that feature
Intel’s CAT. The proposal acts at two levels: applications showing
similar amount of core stalls due to LLC accesses are first
grouped into clusters, after which each cluster is given a number
of ways using a simple mathematical model. To the best of our
knowledge, this is the first attempt to address system fairness
using the cache partitioning hardware in a real product. Results
show that our best performing policy reduces system unfairness
by up to 80% (39% on average) for 8-application workloads and
by up to 45% (25% on average) for 12-application workloads
compared to a non-partitioning approach.

I. INTRODUCTION

Current multicore processors typically implement huge last-

level caches (LLC) to hide the large main memory access

latencies. The size of these caches ranges from several tens

of MBs to hundreds of MBs in recent processors like the

IBM Power8 or the Intel Xeon Phi Knights Landing. Be-

cause of their large storage capabilities, as well as their

high associativity (e.g., more than 16 ways), these caches

are typically shared among all the cores in the processor. By

default, all the running applications compete among each other

for LLC space, which is governed by a single replacement

policy. As a consequence, the applications replace blocks that

belong to other applications, which can seriously degrade their

performance. Moreover, it is difficult to predict the effect

of these inter-application interactions, since depending on

their characteristics, some applications are affected more than

others. That is, while the performance of some applications

can be highly degraded, other applications may be unaffected,

creating a fairness problem in the system.

Much research has focused on cache sharing over the past

decade. Some of these works concentrate on performance [2],

[26], [34], [37]; others target LLC cache fairness [9]; and

yet others focus on providing system fairness [14], [43], [45].

The latter works consider system components other than the

LLC (e.g., the memory controller). The vast majority of these

works, however, present four main drawbacks that render their

conclusions either invalid or inapplicable to recent processor

generations. First, most of these works consider the L2 cache

as the LLC, mainly because their research is performed in

simulators, in which filling up a huge LLC of tens of MBs

would require a prohibitive amount of simulation time. That

means that since neither the cache geometry nor the data

locality match, results cannot be easily extrapolated to recent

commercial machines. Second, most of these works do not

take into account the impact of hardware prefetchers or do

not model the prefetchers employed in commercial machines,

often not well documented. Third, these works either do not

model the memory controller or model a simplified version.

Fourth, some of these approaches require the use of extra

hardware to obtain their inputs (e.g., the number of cache

misses specifically caused by other co-runners). Since any

runtime approach that deals with fairness has to estimate the

slowdown the applications are suffering, most of previous

research targeting fairness has this problem. Notable examples

are the Per-Thread Cycle Accounting Architecture [7], [12]

and the Application Slowdown Model [41]. Both approaches

require extra hardware that is not readily available in any

commercial processor.

The results of the discussed research regarding cache parti-

tioning, however, were so promising that some processor man-

ufacturers have implemented cache partitioning capabilities in

their products. This is the case for recent Intel processors

that feature the Cache Allocation Technology (CAT), which

provides primitives to limit the amount of cache space a

hardware thread can occupy in the LLC.

More precisely, CAT allows for a given number of ways to

be assigned to a specific set of processes, a Class of Service

2017 26th International Conference on Parallel Architectures and Compilation Techniques

978-1-5090-6764-0/17 $31.00 © 2017 IEEE

DOI 10.1109/PACT.2017.19

194

or CLOS in Intel terminology. As there can be much more

processes than classes of service, processes must be mapped to

classes following a given policy. Therefore, a policy providing

a limited number of cache ways to each application as done in

previous works [34], [41] is unsuitable, since it would require

a different CLOS for each application. While this problem

could be solved by assigning multiple applications to the same

CLOS, we have characterized the slowdown each application

experiences over isolated execution varying the number of

LLC ways, and the results of this study show that assigning an

exclusive subset of ways to each CLOS significantly reduces

both system throughput and fairness compared to allowing

different classes of service to share LLC ways.

This work proposes a family of clustering based cache

partitioning policies that leverage the capabilities of Intel’s

Cache Allocation Technology to deal with system fairness.

Although the proposal has been evaluated on an Intel Xeon

E5 2658A v3, it is straightforward to port to any processor

supporting CAT. It works by applying clustering techniques

to group applications suffering from similar core stall cycles

due to L2 misses into the same CLOS, and giving each CLOS

an adequate number of LLC ways.

In this paper we make the following key contributions:

• We propose a family of cache partitioning policies based

on application clustering to improve system fairness on

recent real machines.

• To the best of our knowledge, our proposal is the first to

leverage state-of-the-art cache partitioning technologies,

i.e., Intel’s Cache Allocation Technology (CAT), to im-

prove system fairness.

• We comprehensively evaluate the devised policies against

the original system with no cache partitioning, and

demonstrate improvements in system fairness by up to

80% (39% on average) for 8-application workloads and

by up to 45% (25% on average) for 12-application work-

loads for a range of multiprogram workloads on modern

hardware. This is done without significantly affecting the

performance for 8-application workloads and improving

it for 12-application workloads.

II. PROGRESS, SLOWDOWN AND UNFAIRNESS

Before diving into the specifics of Intel’s CAT, we first

introduce a number of important performance metrics. This

paper makes extensive use of the metrics progress, slowdown
and unfairness for evaluation purposes. The progress of an

application is computed [11], [13], [16], [43] as the ratio of its

execution time while running with other applications, relative

to its execution time in isolation1:

Progress =
ExecCyclesalone

ExecCycles
(1)

Progress is, therefore, a value between 0 and 1. Slowdown

is the inverse of progress; thus, it is a value always equal to

1Note that progress is considered on a per-application basis, regardless of
the application type, i.e., single-threaded or multi-threaded.

or larger than 1. Both metrics are used to measure how in-

terference between applications degrades performance. When

progress and slowdown are equal to 1, the performance of the

application is not affected by the other competing applications.

After measuring the interference with these metrics, we can

define a system as completely fair when all the tasks in the

system experience the same progress or slowdown [2], [9],

[16], [33].

Based on this definition, some works [6] propose the ratio

between the progress of the application that progresses the

most and the application that progresses the least as a way

to quantify unfairness. However, this metric only considers

extreme values, so to overcome this limitation in this work

we employ an alternative metric proposed in [43], which uses

the coefficient of variation (CoV) [10] of the slowdowns of

the running applications with respect to the mean to measure

how unfair the system is, as shown in Equation 2, where σ
refers to the standard deviation and μ to the mean slowdown:

Unfairness =
σSlowdown

μSlowdown
(2)

For measuring system performance, we use System

Throughput (STP, Equation 3) and Average Normalized

Turnaround Time (ANTT, Equation 4), two well-defined met-

rics that are extensively used in the literature [11], [13], which

compute the aggregated progress and the average slowdown,

respectively:

STP =
∑

t∈Tasks

Progresst (3)

ANTT = μSlowdown (4)

Both metrics quantify different aspects of multiprogram per-

formance (overall system performance versus per-application

performance), so when evaluating a system we need to con-

sider both.

III. CACHE ALLOCATION TECHNOLOGY

This work leverages Intel’s Cache Allocation Technology

(CAT) to improve system fairness. CAT provides primitives to

limit the amount of LLC space a hardware thread can occupy.

It is available in a limited set of processors of the Xeon E5

2600 v3 family and all the processors of the Xeon E5 v4

family.

Machines with Intel’s CAT have a predefined amount of

classes of service (CLOS), 4 in Haswell EP machines like

those in the Intel’s Xeon E5 2600 v3 family and 16 in

Broadwell EP machines from the Xeon E5 2600 v4 family.

Each CLOS has a capacity bitmask (CBM) that controls the

accessibility of cache resources with cache way granularity,

where each bit in the mask grants write access to one way

in the cache. Additionally, a CLOS has a list of thread IDs

that belong to the CLOS, which are the ones that have write

access to the ways set in the CBM. CBMs can overlap, which

means that some ways can be shared by different classes of

service. One of the main limitations of CAT is that all the

195

...
L1

L2

LLC ways capacity bitmasks

Core 0 Core 1 Core 2 Core n-3 Core n-2 Core n-1
T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1

I D I D I D I D I DI D

CLOS #0
CLOS #1
CLOS #2
CLOS #3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 1. Cache Allocation Technology example.

bits set in a CBM must be consecutive. That is, a CLOS uses

consecutive cache ways in the cache. For instance, a CBM

like 1111-0000-1111-0000 would not be valid.

One can configure CAT by directly writing to machine

specific registers (MSR), but a better option is to use a library

developed by Intel [23] or the interface provided by the Linux

kernel starting from version 4.10. By default, CAT has no

effect, since all applications are mapped to CLOS #0, which,

if not modified, has a CBM that allows full access to all the

LLC ways.

Figure 1 shows an example of a possible cache partitioning

scheme in a processor of the Xeon E5 2600 v3 family. Each

of the four possible classes of service (CLOS #0 – CLOS #3)

has assigned a subset of the 20 ways of the LLC, and each

thread is assigned to a CLOS. Each CLOS is identified by

a color/pattern which marks both the threads that belong to

the CLOS and the ways they can write. For instance, thread

0 of core n − 3 is assigned to CLOS #2 and thread 1 to

CLOS #0. Note that all the CBMs are contiguous and that

CLOS #3 shares some of its assigned ways with CLOS #1

and CLOS #2.

IV. PROGRESS CHARACTERIZATION AND ESTIMATION

The main aim of the cache partitioning scheme proposed

in this paper is to balance the progress among applications to

improve system fairness. In concurrent execution, the cache

interference caused by other applications reduces the effective
number of cache ways a given application can use. To explore

the sensitiveness of individual applications to the number of

available cache ways, we conduct several experiments in which

we use CAT to adjust the number of ways available to the

application from 2 to 20 (i.e., the total cache space). Using

CAT, we prevent the application under study from using non-

allocated ways. This approach allows modeling the reduction

in the available cache space for a given application due to

the cache interference induced by co-runners. This provides

a reproducible way to study how progress is affected by co-

runners competing for cache space.

Figure 2 shows the progress results for different applica-

tions of the SPEC CPU2006 benchmark suite. As observed,

for a given number of assigned cache ways, applications

achieve different progress levels. That is, the progress of each

application exhibits a distinct sensitiveness to the available

cache space. There are highly cache sensitive applications,

Fig. 2. Effect of the number of cache ways on progress.

Fig. 3. Slowdown when varying the available ways with respect to a 20-way
cache.

like xalancbmk, soplex or omnetpp, whose progress is

significantly harmed when the number of assigned ways drops

below 6. In contrast, some applications are not affected at all;

that is, they achieve 100% progress with only 2 cache ways.

The rest of the applications fall somewhere in between, with

different degrees of cache space sensitiveness. Note that each

way represents 1.5MB of the total cache space (i.e., 30MB), so

two ways are equivalent to 3 MB of LLC cache space, which

is already a considerable amount.

Another way to look at this issue is to analyze how the

number of assigned ways affects the slowdown. For this

purpose, we plot the slowdown of each application as a

function of the number of assigned ways. Figure 3 illustrates

the results for some applications of the SPEC suite. Looking

at highly cache sensitive applications like xalancbmk, we

find that the slowdown when varying the cache space can be

modeled using an exponential function a · e−x + b, where

a and b are constants that depend on the application and x
is the cache space. We also explored other approximations,

including a linear, quadratic and cubic function, however, we

find the exponential function to yield the best fit. For instance,

soplex follows the equation 5.24 · e−x + 0.026.

The previous finding suggests that the slowdown grows

exponentially as the number of assigned cache ways is re-

196

Fig. 4. Correlation between L2 miss stall cycles and slowdown on the Intel
Xeon E5 2658A v3.

duced. Or, inversely, for having a linear reduction in slowdown

we need an exponential increase in cache space. Note that

previous research has found a square root relationship between

cache space and hit ratio [4], [19].

Theoretically, we could use these equations to determine

the assignment of cache ways. However, the real slowdown

that a given application is suffering at runtime cannot be

directly calculated since the execution time of the applications

in isolation is unknown. Several previous works have focused

on estimating this execution time. However, most of them

require additional hardware [7], [9], [12], [41] to calculate the

number of cycles the processor is stalled due to interference in

the shared resources, or need to modify the OS scheduler [14],

[45].

Our work targets unmodified commercial processors run-

ning a vanilla Linux kernel, so since we could not use previous

research, we looked into the available performance events

related to processor stalls due to shared resources, and studied

the correlation between them and overall application slow-

down. We find that the STALLS L2 PENDING perfor-

mance counter is the one that best correlates with application

slowdown. This counter gathers the number of cycles during

which the execution of an application is stalled due to L2

cache misses. Figure 4 plots slowdown versus the number

of stalls (in trillions) gathered by the mentioned performance

counter for several runs of SPEC applications executed with

different numbers of co-runners (3, 7 and 11 random co-

runners). As observed, there is a strong positive correlation

(r=0.982, N=833, p=0.000) between the slowdown metric and

the STALLS L2 PENDING count.

This correlation can be explained with the following ratio-

nale. The STALLS L2 PENDING counter is affected by

the interference in all the shared resources in our experimental

platform, which are the LLC, the main memory, and the on-

chip interconnects (two rings connecting the L3 slices and the

memory controllers) as depicted in Figure 5. This performance

counter does not differentiate between stall cycles caused by

normal misses and interference misses, but as the number

QPI

DDR DDR
Home Agent

Mem. Ctrl.

PCIe

Core
0

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

L1
+
L2

L1
+
L2

L1
+
L2

L1
+
L2

L1
+
L2

L1
+
L2

L1
+
L2

L1
+
L2

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

Core
8

Core
9

Core
10

Core
11

L1
+
L2

L1
+
L2

L1
+
L2

L1
+
L2

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

LLC
2.5 MB

DDR DDR
Home Agent

Mem. Ctrl.

Fig. 5. Block diagram for the Intel Xeon E5 2658A v3.

of concurrently running applications grows, the stall cycles

due to interference start to dominate (the ANTT for 8 and 12

concurrently running applications is, on average, over 3 and

4, respectively) so this drawback becomes less important.

Another way to understand this correlation is to examine

the following equation:

Slowdown =
ExecCycles

ExecCyclesalone
=

=
CoreCycles+ STALLS L2 PENDING

ExecCyclesalone
, (5)

where CoreCycles represents the execution time mi-

nus the cycles stalled due to L2 misses. For high enough

slowdowns, the result of this equation is dominated by

STALLS L2 PENDING.

Finally, as observed in Figure 4, there are some points

that deviate from the main trend. These deviations are due

to L3 block replacements that cause L2 invalidations to keep

the inclusion principle (notice that the L2 cache is private

and the whole cache hierarchy is inclusive [24]). In turn,

these invalidations produce additional L2 misses that increase

the number of CoreCycles. We verified this hypothesis by

analyzing the data used for Figure 2 in which we varied the

number of available ways for each application. As expected,

we find that the applications that present a deviant behavior

in Figure 4 have a sudden increase in L2 evictions when the

cache space is reduced (2 or 3 ways in the LLC). This only

happens for the applications that exhibit such behavior and not

the rest.

This effect could be taken into account using a different

performance event that considers L2. For instance, there is

a performance counter that gathers the number of execution

stalls due to L1 misses (STALLS L1D PENDING). Unfortu-

nately, this counter does not behave correctly in our experi-

mental platform (its value is always zero).

197

V. TO OVERLAP OR NOT TO OVERLAP CACHE WAYS

Most previous cache partitioning approaches work by as-

signing cache ways to applications to be used exclusively. That

is, a given cache way can be only used by one application.

When using CAT capabilities, however, a wider design

space opens. In addition to assigning ways exclusively to

individual applications, cache ways can be: (i) allocated to

a single CLOS hosting a set of applications (i.e., limited

sharing), and (ii) allocated to multiple classes of service. To the

best of our knowledge, only the first design choice has been

considered in previous research [15], [31], [49]. Moreover,

unlike this work which targets fairness, the focus of these

approaches is on Quality-of-Service, and CAT capabilities are

used to isolate latency-critical applications.

Assigning all the ways as private to individual applications

becomes quite unrealistic on real hardware using CAT, mainly

due to the high number of potentially running applications,

the limited number of supported classes of service, and the

limited number of cache ways. For instance, the Intel Xeon

E5 2600 v3 family has 20 ways in the LLC and supports 4

CLOS. Therefore, no more than four applications could have

exclusive ways assigned.

Even in the most recent Intel Broadwell EP machines that

support up to 16 classes of service, the number of concurrently

running applications can be higher, and the number of ways

in the LLC is still limited to 20. Thus, if a workload with

eight applications is executed, each application would have

on average 2.5 ways, which clearly is insufficient to reach

reasonable performance for most of them. Other partitioning

schemes could be tried, giving more ways to some applications

and less to others, but since there are applications that require

a high number of ways to perform well (see xalancbmk,

omnetpp and similar applications in Figure 2) this approach

does not scale well and cannot be generalized.

Although grouping applications in classes of services that

can access disjoint sets of ways may seem like a viable

solution, it has the same problems as the previous approach,

because while it partly solves the limitation in available classes

of service, the number of ways in a CLOS is still too small

for some applications to meet reasonable performance goals.

Two experiments were carried out to verify this claim. In

one, the cache is divided in partitions of the same size for

each CLOS and we try different clustering schemes to map 8

applications to 4 classes of service. In the other, we try several

partitioning schemes with each partition being of a different

size. In each case we also try different approaches to group

applications (e.g., KMeans clustering, complementary cache

requirements, similar cache requirements, etc.). In both exper-

iments, throughput is significantly degraded without improving

fairness with respect to no partitioning.

Consequently, all the partitioning approaches proposed in

this work allow for overlapping LLC cache ways (i.e., CBMs)

among classes of service.

VI. CLUSTER-BASED PARTITIONING POLICIES

As mentioned in Section IV, applications running on a

multicore processor suffer from slowdown due to interference

that arises from resource sharing. The interference varies

during execution time depending on the run-time resource

requirements of the applications and, since not all the ap-

plications have the same requirements and are not affected

equally, unfairness arises. Our goal is to smartly partition

cache resources to counteract the slowdown inequalities, which

leads to a fairer system.

A cache partitioning mechanism can be characterized by

three main design aspects [20]: target, evaluation metric and

policy metric. Our proposal targets fairness, and the evaluation

metric we use is the one defined in Section II, the CoV of the

slowdowns. This metric cannot be computed online, because

the execution time alone cannot be measured at run-time, so

using the insights presented in Section IV, we use the CoV

of the STALLS L2 PENDING as the metric that guides

our policies. Specifically, the goal is the minimize the CoV of

the STALLS L2 PENDING counter.

Additionally, when using CAT for partitioning the cache

three main design decisions must be taken: (i) the number of

partitions in the LLC, (ii) which applications are assigned to

each partition, and (iii) the amount of resources assigned to

each partition.

Each design decision can, in turn, be either statically estab-

lished or dynamically adjusted at run-time. These three axes

open a new design space, summarized in Table I, which greatly

affects the performance and fairness that a policy provides. In

this work we explore it and present the most relevant results.

Although policies for each type that made sense have been

devised and evaluated, for the sake of clarity only results for

the best performing ones are presented in this paper.

Taking all of this into account, we propose a fam-

ily of application clustering algorithms, based on the

STALLS L2 PENDING event. They target fairness and

cover the key issues of the design space. The family consists of

three main policies, namely SFn-mK, mK, and Dunn, where

n and m are parameters of the policies, whose meaning is

described below. The differences between policies mainly arise

due to two aspects: the number of clusters the policy builds

at run-time, and the form in which cache ways are assigned

to clusters (i.e., fixed or dynamic).

All the proposed policies group applications in clusters

using the KMeans algorithm [18] according to the number

of core stalls due to L2 misses. Given n one-dimensional data

points (only one variable — core stalls — is being considered

per application), this algorithm distributes them into k clusters,

assigning each application to its closest cluster, where the

closeness is calculated as the Euclidean distance between

the data point and the cluster centroid. A major advantage

of using one-dimensional data (as in this case) is that an

optimized version of KMeans can be used, with O(k ·n·log n)
complexity. Once the clusters have been obtained, all the

applications in a given cluster are assigned to the same CLOS.

198

TABLE I
DESIGN SPACE AND EVALUATED POLICIES. LEGEND: S = STATIC AND D

= DYNAMIC.

Num. Clusters Cluster sizes Ways per cluster Policies

S S S
S S D
S D S SFn-mK
S D D mK
D S S
D S D
D D S
D D D Dunn

The number of LLC ways assigned to each CLOS and the

number of clusters used depend on the specific policy.

SFn-mK Policies. In these policies, applications are

grouped in m clusters using the KMeans algorithm. After the

clustering process is done, the m clusters are sorted according

to their centroid values in descending order and mapped to

different classes of service. The cluster whose applications

are suffering the highest slowdown (i.e., the most critical one)

is given the highest priority and it is allowed write access to

all the cache ways (i.e., its CBM is set to 0xFFFFF). The

following clusters receive a decreasing number of ways in

steps of n according to their criticality. For example, for n = 3
and m = 4, the four clusters, sorted in critical order, receive

20, 17, 14 and 11 cache ways, respectively. Different values

of n and m, ranging from 2 to 4, have been evaluated. In

this work, we only show results for the policies of the form

SFn-4K, which were the best performing.

mK Policies. These policies also group applications using

the same criterion as the previous group of policies, but the

number of ways assigned to each partition is not static but

computed using a simple exponential function. We chose an

exponential function because looking at Figure 3, to have a

linear reduction in slowdown an exponential increase in cache

space is required. Other functions were explored, such as linear

and quadratic functions, but the exponential approach was the

one providing the best results. The input to the exponential

function is the normalized stalls of each cluster with respect

to the most critical one, a value in the interval [0..1]. The

output of the function is the number of assigned cache ways

for the cluster, a value in the interval [2..20]. Figure 6 depicts

the behavior of this policy for m clusters. In the example of the

figure, cluster m− 1 is the most critical one, and the number

of assigned ways is 20, 10, 4, and 2, for the clusters m − 1,

m− 2, 1, and 0, respectively.

Dunn Policy. This policy follows the same approach as the

mK policy regarding clustering and the assignment of cache

ways to classes of service. The number of classes of service

to use is, unlike previous policies that consider a fixed number

of clusters, dynamically determined at runtime to adapt to

the different phases of the workload execution. To this end,

two indices to evaluate clustering validity and determine the

optimal number of clusters (Silhouette [35] and Dunn [8]) have

Avg. Stalls0

Avg. Stalls1

Avg. Stallsk-2

Avg. Stallsk-1

Apps {a}

Apps {b,c}

Apps {d,e,f}

Apps {g,h}

[...]

Cluster0

Cluster1

Clusterm-2

Clusterm-1

So
rt

ed

Re
la

tiv
e

Cl
us

te
r S

ta
lls

1

0
Ways 220

f(x) = a·e b·x + C

(centroid)

(centroid)

(centroid)

(centroid)

Fig. 6. Policy with clustering and a model for the ways.

been evaluated. In this paper, results are only shown for the

policy using the Dunn index, since it yielded slightly better

results on our experimental platform, thus we refer to this

approach as the Dunn policy.

The Dunn index is defined as follows. Assuming k denotes

the number of clusters, dmin the minimal distance between

points of different clusters, and dmax the largest within-cluster

distance; the Dunn index for k clusters is then computed as

Dunnk =
dmin

dmax
.

The closest the Dunn index to 0 the better. As a result, the k
value that minimizes the Dunn index is selected.

VII. EXPERIMENTAL SETUP

All the experiments have been performed on the Intel Xeon

E5 2658 v3 processor [21], that has been one of the first Intel

processors to support Cache Allocation Technology.

This processor implements HyperThreading and is deployed

with twelve cores supporting up to two simultaneous threads

each. However, to avoid intra-core interference, experiments

have been conducted allocating a single thread per core. Each

core includes a 32 KB L1 data cache and a 256 KB L2 cache,

both of which are private. All the cores share an L3 cache,

the LLC in the system, with 30MB and 20 ways (which gives

an average of 2.5 MB per core). The entire cache hierarchy is

inclusive [24].

The proposal focuses on the LLC, where the space is

distributed according to the different devised policies using

CAT. In order to make the experiments repeatable, important

system details are provided next. The processor frequency was

fixed to 2.20 GHz with the Linux 4.9.0 performance governor.

The main memory of the system has a maximum theoretical

bandwidth of 68 GB/s across 4 channels. We experimentally

measured memory latencies of 75 ns for an idle machine and

570 ns for a saturated machine. The machine has 4 types of

199

hardware prefetchers: 2 prefetchers associated with the L1-

data cache and 2 prefetchers associated with the L2 cache.

All of them were kept enabled during the experiments.

All the devised schemes, explained in Section VI, have been

evaluated and compared against a baseline that performs no

partitioning (referred as NoPart).

The experiments have been conducted with two sets of

45 multiprogram mixes from the SPEC CPU2006 benchmark

suite [1] using the reference input set. The first set contains

8-application workloads and the second 12-application work-

loads. To compose the application mixes, we first classify the

applications in the SPEC benchmark suite into two categories,

cache sensitive and cache insensitive, based on the offline

evaluation performed in Section IV. Then, we create work-

loads varying the ratio of sensitive to insensitive applications.

All the workloads are randomly generated, and results are

collected executing each workload until all the applications

have completed the same number of instructions they execute

when running alone on the machine for 60 seconds.

Our experimental environment consists of a manager pro-

gram that reads a configuration file with a list of workloads

and the partitioning policy that will be used. The manager
then forks and execs as many times as necessary to launch the

applications in the workload. At regular intervals of 500 ms

the manager reads the required performance counters and uses

this information to properly size the partitions and assign

applications to classes of service. We tried other two different

intervals for adjusting the partitioning: 100ms and 1000ms. In

the first case there was no significant difference in the results,

but the overhead was higher, since the manager was active

more frequently. In the second case the results were worse

compared to the same configuration with a smaller interval.

When an application executes as many instructions as it

would run in isolation during 60 seconds, the manager restarts

it. However, only the results from the first run of each

application are taken into account. Note that due to limitations

in the libraries employed for performance monitoring [22]

and cache partitioning [23], applications need to be pinned

to cores2.

Each experiment has been repeated a minimum of 10 times,

until the margin of error was less than 1%, with a confidence

of 95%. This applies to all the plots and data shown in this

paper, so no confidence intervals are drawn on the figures.

VIII. EVALUATION

This section is aimed at providing insights and quantify the

benefits of the devised policies. To this end, the evaluation

focuses on three main design concerns: (i) Can a simple static

policy provide significant fairness? (ii) Should the number of

clusters match the maximum number of CLOSes supported by

the machine all the time? (iii) Would dynamically adapting the

number of classes of service to the optimal number of clusters

further improve the results? The three devised policies and the

2Starting from version 4.10, the Linux kernel has native support for CAT,
and it does not have this limitation. Unfortunately, it was not available when
the experiments were performed.

Fig. 7. Normalized unfairness across the 45 8-application workloads with the
SF2-4K, SF3-4K and SF4-4K policies.

experiments discussed below were designed to answer these

three questions.

A. Exploring unfairness enhancements with a simple policy
(static number of clusters, static number of ways)

To explore the potential of CAT to help facing unfairness,

we evaluate the simple SFn-4K policy across the studied 45

8-application workloads. Remember that this policy assumes

four clusters, and the number of ways assigned to each cluster

is decreased from 20 (assigned to the highest priority cluster)

in steps of n. In this experiment, we vary the value of n from

2 to 4.

Figure 7 shows the results. To plot the curves, we first

have sorted the 45 workloads in ascending order depending

on the normalized unfairness they present using the SF2-

4K policy. Then, SF2-4K and SF3-4K have been plotted

following the same order. As observed, this policy, by merely

assigning a static number of ways to each CLOS and using 4

classes of service improves unfairness significantly, by 12%,

16% and 21% on average for SF2-4K, SF3-4K and SF4-4K,

respectively. Also note that not all the mixes obtain the best

results with the same value of n. Although SF4-4K presents

the best results, in around 10% of the workloads, another value

of n yields better results.

Important conclusions can be drawn from this experiment.

First, the STALL L2 PENDING counter acts as a good

criterion to group applications in clusters. Second, regardless

of the value of n, unfairness is significantly improved over the

non-partitioning approach. Third, CAT presents high potential

to improve system fairness even with a simple policy based

on clustering.

B. Determining the number of cache ways assigned to each
cluster dynamically

Section VIII-A, using a simple policy and exploring only

three values of n, has shown that there is not a number of

ways that can be assigned statically to clusters to provide the

best results for every workload. In other words, there is not

a single optimal n value for all the workloads. Additionally,

200

Fig. 8. Ways assigned to each CLOS during the execution of the 4th 8-
application workload.

although not measured in the previous experiment, cache space

requirements of the applications in a workload can change

during the execution so being able to adapt to these changes

can provide further unfairness improvements.

To deal with the shortcomings of a static way allocation,

the mK policy was devised, which dynamically assigns the

number of ways that best fits the cache space requirements

for each of the application clusters. This policy allows greater

flexibility, since the number of ways assigned to each cluster

is adjusted dynamically at runtime. Figure 8 illustrates how

the number of ways assigned to each CLOS varies during

the execution of the 4th 8-application workload running under

the 4K policy (i.e., grouping applications into 4 clusters). As

observed, unlike the previous policies (the SFn-mK group of

policies), the number of cache ways assigned to each cluster

varies at run-time, which allows this policy to bring important

benefits over the SFn-4K, as our results will show.

The mK policy has been evaluated while setting the value

of m to 2, 3 and 4 clusters, see Figure 9. The 45 8-application

workloads have been sorted in increasing unfairness order,

according to the results of the 4K policy. The 2K and 3K

policies have been plotted following the same order. Counter-

intuitively, not always the maximum number of clusters (i.e.,

4) shows the best results; even more, on average, the policy

with two clusters (2K) yields slightly better results than the

one with 4 clusters (4K). The reason is that changing the

clustering (i.e., the number of clusters and the applications in

them) displaces the centroids and thus can have a significant

impact on the number of assigned cache ways to each cluster.

Moreover, less clusters oftentimes means more ways per

CLOS, which improves the performance of applications with

high cache space requirements.

Taking into account these results and comparing them with

the ones presented in Figure 7, two important conclusions can

be drawn. First, the major fairness benefits come from the

fact that cache ways are dynamically assigned to clusters at

run-time, rather than the number of clusters itself. Notice that

in Figure 9, the normalized unfairness starts from below 0.25

Fig. 9. Normalized unfairness across the 45 8-application workloads with the
2K, 3K and 4K policies.

while in Figure 7 it starts from around 0.5. Second, additional

benefits could be brought by dynamically selecting the proper

number of clusters.

Note that some workloads experience an increase in unfair-

ness (see rightmost data points in Figure 9). This is the case

for workloads composed mostly of applications that are not

cache-sensitive, so the absolute (non-normalized) unfairness

is low. Their absolute unfairness is around 0.07, which is

significantly less than the global average around 0.23. So,

while in some corner cases we see a small increase in

unfairness in absolute terms, this is compensated for by large

reductions in unfairness (both in absolute and relative terms)

in the general case. The explanation for this behavior is that in

low unfairness scenarios, and for some specific applications,

our metric slightly overestimates the cache space required.

This could be addressed by employing an unfairness threshold

to enable or disable the policy, but since the increase in

unfairness is so small, we decided to keep the policy as simple

as possible.

C. Putting it all together: the Dunn policy

The previous discussion indicates that a dynamic policy

selecting the optimal number of clusters for each workload,

and the optimal number of ways for each cluster would be

the best approach. This claim led us to design the Dunn

partitioning policy, which is the one that provides the best

results overall.

Figure 10 shows normalized unfairness over no partitioning

for each of the studied 8-application workloads and compares

the Dunn policy with the 2K and SF3-4K policies, since

both policies achieve a significant reduction in unfairness,

with performance results within the same range as Dunn. The

workloads are sorted in ascending unfairness order according

to the Dunn policy results, and the 2K and SF3-4K results

have been plotted following the same order. Clearly, the 2K

and Dunn policies are the ones that reduce unfairness the most

over no partitioning, by on average 36% and 39%, respectively,

and by up to 80%. The other policy, SF3-4K, has less effect

on unfairness, reducing it by 16% on average.

201

Fig. 10. Normalized unfairness results with respect to NoPart for the 45
8-application workloads with the different partitioning policies.

Fig. 11. Average Dunn results normalized against NoPart for the 8-application
workloads.

Figure 11 presents the average results for different metrics

(see Section II) across all the 8-application workloads achieved

by the Dunn policy. The results have been normalized against

the NoPart baseline. Note that there is a clear inverse cor-

relation between LLC hit ratio and unfairness. The reason

is that most of the time unfairness is caused by the slowest

applications, which frequently access the cache but miss due

to lack of enough cache space. As a consequence, these

applications stall for long periods. As the Dunn policy gives

more cache ways to the slowest applications, their accesses

start to hit the cache, which reduces the number of stalls and

improves system fairness. This behavior also improves per-

application performance (ANTT), although the STP metric

is slightly reduced because the fastest applications are given

fewer resources.

As explained above, the Dunn policy dynamically chooses

the optimal number of clusters. To analyze if the improvements

that Dunn provides over the mK policies come, in fact, from

choosing the correct number of clusters, Figure 12 plots

the number of clusters used during the execution time of a

workload (workload number 12 in Figure 10 and number 11

Fig. 12. Number of clusters used during the execution of the 12th 8-
application workload.

in Figure 93). According to Figure 9, it seems clear that two

clusters does not work well for this workload, and that three

and four clusters perform similarly. Figure 10 shows that for

this workload, Dunn performs significantly better than 2K,

so it must be picking three and four clusters as the optimal

number of clusters. As expected, Figure 12 corroborates this.

In summary, a dynamic policy to adapt the number of

clusters and the number of ways per cluster can, in fact,

provide meaningful fairness improvements compared to static

policies. Another insight is that the potential of CAT seems to

be limited more by the number of available ways in the LLC

than by the number of classes of service.

D. Results with 12 cores

To evaluate the scalability potential of the Dunn policy

we now consider 12-application workloads created following

the approach described in Section VII. Figures 13 and 14

provide insight regarding how the Dunn policy affects system

performance, unfairness and LLC hit ratio.

Looking at Figure 13 it is clear that the important unfairness

reduction achieved for the 8-application workloads is also ac-

complished for the 12-application workloads, where unfairness

is reduced by 25% on average. This unfairness reduction does

not affect STP, which on average remains the same, but comes

accompanied by a significant improvement in ANTT, which

decreases by 12% on average. As with 8-application work-

loads, the unfairness and performance (ANTT) improvements

are because the Dunn policy greatly increases the LLC hit

ratio, which in turn reduces the number of cycles that cores

are stalled (by 15%, on average).

Figure 14 shows detailed results for each one of the

workloads. Unfairness is reduced for all the workloads by

at least 12%, and up to 45%. ANTT also improves for all

the workloads. Finally, depending on the workload, the Dunn

policy presents an STP that deviates from NoPart by less than

10%.

3While the workloads in both figures are the same, they have been sorted
following a different criterion.

202

Fig. 13. Average Dunn results normalized against NoPart for the 12-
application workloads.

Fig. 14. Dunn results normalized against NoPart for the 45 12-application
workloads.

IX. RELATED WORK

A large body of research has concentrated on addressing

contention within the LLC, proposing solutions of a very dif-

ferent nature. These proposals can be implemented in hardware

or software. In this section we review them, paying special

attention to those that make use of CAT. Additionally we also

review proposals that estimate cache interference and others

whose focus is also on fairness.

a) Online LLC management using CAT: Recent publi-

cations make use of Intel’s CAT technology to manage the

use of the LLC with different aims. Both Heracles [31] and

Dirigent [49] focus on maximizing utilization in large-scale

datacenters without affecting user-perceived latency in latency-

critical applications. To do so, they classify applications a
priori as batch or latency-critical, and use CAT to limit

the amount of cache resources that batch applications can

consume. Ginseng [15] focuses on cloud computing providers

that rent virtual machines, and uses a market-driven auction

system to partition the LLC into non-overlapping partitions

depending on how much each guest is willing to pay and how

that affects the rest.

b) Partitioning proposals that require hardware changes:
A mechanism for cache partitioning is way partitioning. An

example of a prototype multicore using this technique is

provided by Cook et al. [5]. There are different ways for

managing the number of ways for the different applications.

UCP [34] and ASM-Cache [41] use set sampling and duplicate

cache tags to gather information that is later used to partition

the cache. On the other hand, the proposal by Gupta and

Zhou [17] partitions the cache while increasing spatial locality

with aggressive prefetching.

Other proposals enforcing cache partitions at the way level

change the cache replacement algorithm. This is the case for

PriSM [32] which manages cache occupancy of different cores

by controlling their eviction probabilities. Similarly, Kahn et

al. [28] propose a modified replacement policy to dynamically

create two logical partitions, one for clean lines and another

for dirty lines, with different eviction probabilities. Futility

Scaling (FS) [44] is yet another replacement-based cache

partitioning scheme. Its goal is to precisely partition the cache

while still maintaining high associativity even with a large

number of partitions.

A different approach is used in Vantage [37] and Ubik [27].

Both employ ZCaches [36] to partition the cache. Vantage

optimizes partitions to gain performance, while Ubik ensures

QoS and improves the performance of batch applications.

Iyer [25] presents the CQoS cache management framework,

which provides prioritized service to multiple heterogeneous

threads sharing a cache structure. Chang and Sohi [3] select

multiple partitions and enforce them in a time-sharing manner

across multiple epochs within a stable program phase. They

propose a QoS metric that modulates the allocated cache space

for a given thread.

c) Software-based partitioning proposals: A significant

amount of work has been devoted to software-based cache

partitioning approaches. Most of it has been based on page-

coloring [40], [42], [47], [48], which is used to control where

application data is located in the cache. Some of them,

such as [30], perform application profiling at runtime and

choose the page coloring used. However the overhead of this

profiling can be high. Solari et al. [38] use page coloring, but

with the novelty of considering an LLC addressing scheme

similar to the one used by Intel Sandy Bridge processors. The

main disadvantage of page coloring is, however, that when

repartitioning occurs, memory pages need to be copied to new

locations, so is less versatile than a hardware-based mechanism

as the one used in this paper.

d) Interference analysis: Shared cache interference both

in CMPs and SMTs is a well-known problem that has been

studied by several authors. Eyerman et al. [7] and Du Bois et

al. [12] propose an approach to measure this interference by

duplicating a fraction of the shared LLC cache tags. Ebrahimi

et al. [9] propose to keep track of the lines evicted by the

different competing cores using a hash table to estimate inter-

ference and use this estimation to enforce fairness. Subramania

et al. [41] employ an approach similar to Eyerman et al. to

estimate application slowdown due to interference.

203

e) Fairness: Most techniques aimed at achieving fair

overall system performance, which is the goal of this work,

are software-based and rely on OS scheduling [14], [45], [46].

Ebrahimi et al. [9] improve system fairness by dynamically

adapting the rate at which different cores inject requests

into the memory subsystem. Kim et al. [29] improve system

fairness by partitioning the shared L2 cache without requiring

any OS modification. However, their approach requires offline

profiling, which makes it impractical. The approach proposed

by Sharifi et al. [39] is based on changing the cache replace-

ment policy to focus on fairness among cores by penalizing

the core with the highest IPC in favor of the others.

X. CONCLUSIONS

Previous research on cache sharing has shown that par-

titioning approaches can be used to distribute cache ways

among the running applications with the aim of improving fair-

ness. These approaches have been evaluated using simulation

methodologies with much simplification over real machines.

Moreover, a critical issue to address fairness, which is the

need for estimating the slowdown of the running applications,

is performed in previous works using extra hardware, which

makes them impractical in existing processors.

This work presented a family of cache partitioning poli-

cies to address system fairness on commercial Intel pro-

cessors. All the devised policies employ application cluster-

ing to group applications into classes of service using the

STALL L2 PENDING event counter, which has been

proven in this work to be a good proxy for per-application

slowdown. Once the classes of service have been established,

each class is given a number of ways according to a simple

mathematical function. Experimental results show that for 8-

application workloads, the Dunn policy (i.e., the best perform-

ing one) reduces system unfairness by up to 80% (39% on

average) for 8-application workloads and by up to 45% (25%

on average) for 12-application workloads compared to a non-

partitioning approach without harming overall system perfor-

mance (STP) and even significantly improving per-application

performance (ANTT) for 12-application workloads.

Finally, we would like to remark that through this work we

have presented the proposed policies step-by-step, discussing

all the decisions taken on the intermediate phases that led us to

the most refined proposal, and showing how to take advantage

of the different capabilities of the CAT technology. Regarding

CAT from the fairness point of view, two main conclusions can

be drawn. First, in most of the evaluated workloads, using only

two classes of service during the whole execution time allows

achieving outstanding system fairness results. In other words,

counterintuitively, using additional classes of service does not

always result in further system fairness enhancements. Notice

that this observation contrasts with the current Intel trend,

which has increased the number of supported classes of service

from 4 to 16 in the latest Intel microprocessor generation.

Second, instead of using a large number of classes of service,

the key issue to deal with system fairness lies on the function

employed to assign cache ways to classes of service. We find

that an exponential distribution of cache ways is the one that

best improves system fairness.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-

back and suggestions. This work was supported in part by the

Spanish Ministerio de Economı́a y Competitividad and Plan

E funds, under grants TIN2014-62246-EXP and TIN2015-

66972-C5-1-R. Additional support is provided by the FWO

projects G.0434.16N and G.0144.17N.

REFERENCES

[1] Standard Performance Evaluation Corporation. [Online]. Available:
http://www.spec.org

[2] F. J. Cazorla, A. Ramı́rez, M. Valero, P. M. Knijnenburg, R. Sakellariou,
and E. Fernández, “QoS for High-Performance SMT Processors in
Embedded Systems,” IEEE Micro, vol. 24, no. 4, pp. 24–31, 2004.

[3] J. Chang and G. S. Sohi, “Cooperative Cache Partitioning for Chip
Multiprocessors,” in Proceedings of the 21st Annual International Con-
ference on Supercomputing (ICS), 2007, pp. 242–252.

[4] C. K. Chow, “Determination of Cache’s Capacity and Its Matching
Storage Hierarchy,” IEEE Transactions on Computers, vol. 25, no. 2,
pp. 157–164, 1976.

[5] H. Cook, M. Moretó, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic,
“A Hardware Evaluation of Cache Partitioning to Improve Utilization
and Energy-Efficiency while Preserving Responsiveness,” in Proceed-
ings of the 40th Annual International Symposium on Computer Archi-
tecture (ISCA), 2013, pp. 308–319.

[6] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-core Mapping Policies to Reduce Memory Interference
in Multi-core Systems,” in Proceedings of the 21st International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2012, pp. 455–456.

[7] K. Du Bois, S. Eyerman, and L. Eeckhout, “Per-thread Cycle Accounting
in Multicore Processors,” ACM Transactions on Architecture and Code
Optimization, vol. 9, no. 4, pp. 29:1–29:22, 2013.

[8] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use
in Detecting Compact Well-Separated Clusters,” Journal of Cybernetics,
vol. 3, no. 3, pp. 32–57, 1973.

[9] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via Source
Throttling: A Configurable and High-performance Fairness Substrate for
Multi-core Memory Systems,” in Proceedings of the 15th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2010, pp. 335–346.

[10] B. Everitt, The Cambridge dictionary of statistics, 2002.
[11] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for

Multiprogram Workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, 2008.
[12] S. Eyerman and L. Eeckhout, “Per-thread Cycle Accounting in SMT

Processors,” in Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2009, pp. 133–144.

[13] S. Eyerman and L. Eeckhout, “Restating the Case for Weighted-
IPC Metrics to Evaluate Multiprogram Workload Performance,” IEEE
Computer Architecture Letters, vol. 13, no. 2, pp. 93–96, 2014.

[14] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Addressing Fairness in
SMT Multicores with a Progress-Aware Scheduler,” in Proceedings of
the 29th International Parallel and Distributed Processing Symposium
(IPDPS), 2015, pp. 187–196.

[15] L. Funaro, O. A. Ben-Yehuda, and A. Schuster, “Ginseng: Market-
Driven LLC Allocation,” in Proceedings of the USENIX Conference on
Usenix Annual Technical Conference, 2016, pp. 295–308.

[16] R. Gabor, S. Weiss, and A. Mendelson, “Fairness Enforcement in Switch
on Event Multithreading,” ACM Transactions on Architecture and Code
Optimization, vol. 4, no. 3, 2007.

[17] S. Gupta and H. Zhou, “Spatial Locality-Aware Cache Partitioning
for Effective Cache Sharing,” in Proceedings of the 44th International
Conference on Parallel Processing (ICPP), 2015, pp. 150–159.

[18] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means
Clustering Algorithm,” Journal of the Royal Statistical Society, vol. 28,
no. 1, pp. 100–108, 1979.

204

[19] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma, “On the
Nature of Cache Miss Behavior: Is It

√
2?” Journal of Instruction-Level

Parallelism, vol. 10, 2008.
[20] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist,

Utilitarian, and Capitalist Cache Policies on CMPs: Caches As a Shared
Resource,” in Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2006, pp.
13–22.

[21] Intel Corporation, Intel Xeon Processor E5-
2658 v3. Available: http://ark.intel.com/es/products/81905/
Intel-Xeon-Processor-E5-2658-v3-30M-Cache-2 20-GHz

[22] Intel Corporation, Processor Counter Monitor. Available: https:
//github.com/opcm/pcm.git

[23] Intel Corporation, User space software for Intel Resource Director
Technology. Available: https://github.com/01org/intel-cmt-cat

[24] Intel Corporation, Improving Real-Time Performance by Utilizing
Cache Allocation Technology, April 2015, no. 31843-001US. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/cache-allocation-technology-white-paper.pdf

[25] R. Iyer, “CQoS: A Framework for Enabling QoS in Shared Caches
of CMP Platforms,” in Proceedings of the 18th Annual International
Conference on Supercomputing (ICS), 2004, pp. 257–266.

[26] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. Hsu, and S. Reinhardt, “QoS Policies and Architecture for
Cache/Memory in CMP Platforms,” in Proceedings of the International
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS), 2007, pp. 25–36.

[27] H. Kasture and D. Sanchez, “Ubik: Efficient Cache Sharing with
Strict QoS for Latency-critical Workloads,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 729–742.

[28] S. M. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and D. A.
Jiménez, “Improving Cache Performance Using Read-Write Partition-
ing,” in Proceedings of the 20th International Symposium on High
Performance Computer Architecture (HPCA), 2014, pp. 452–463.

[29] S. Kim, D. Chandra, and D. Solihin, “Fair Cache Sharing and Partition-
ing in a Chip Multiprocessor Architecture,” in Proceedings of the 13rd
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2004, pp. 111–122.

[30] L. Liu, Y. Li, C. Ding, H. Yang, and C. Wu, “Rethinking Memory
Management in Modern Operating System: Horizontal, Vertical or
Random?” IEEE Transactions on Computers, vol. 65, no. 6, pp. 1921–
1935, 2016.

[31] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving Resource Efficiency at Scale,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture
(ISCA), 2015, pp. 450–462.

[32] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic Shared
Cache Management (PriSM),” in Proceedings of the 39th Annual Inter-
national Symposium on Computer Architecture (ISCA), 2012, pp. 428–
439.

[33] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Schedul-
ing for Chip Multiprocessors,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2007, pp. 146–160.

[34] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared

Caches,” in Proceedings of the 39th Annual International Symposium
on Microarchitecture (MICRO), 2006, pp. 423–432.

[35] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53 – 65, 1987.

[36] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways and As-
sociativity,” in Proceedings of the 43rd Annual International Symposium
on Microarchitecture (MICRO), 2010, pp. 187–198.

[37] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-
grain Cache Partitioning,” in Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2011, pp. 57–68.

[38] A. Scolari, D. B. Bartolini, and M. D. Santambrogio, “A Software
Cache Partitioning System for Hash-Based Caches,” ACM Transactions
on Architecture and Code Optimization, vol. 13, no. 4, pp. 57:1–57:24,
2016.

[39] A. Sharifi, S. Srikantaiah, M. T. Kandemir, and M. J. Irwin, “Courteous
Cache Sharing: Being Nice to Others in Capacity Management,” in
Proceedings of the 49th Annual Design Automation Conference (DAC),
2012, pp. 678–687.

[40] T. Sherwood, B. Calder, and J. Emer, “Reducing Cache Misses Using
Hardware and Software Page Placement,” in Proceedings of the 13th
International Conference on Supercomputing (ICS), 1999, pp. 155–164.

[41] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu,
“The Application Slowdown Model: Quantifying and Controlling the
Impact of Inter-application Interference at Shared Caches and Main
Memory,” in Proceedings of the 48th Annual International Symposium
on Microarchitecture (MICRO), 2015, pp. 62–75.

[42] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Managing shared
L2 caches on multicore systems in software,” in Proceedings of the
Workshop on the Interaction between Operating Systems and Computer
Architecture (WIOSCA), 2007.

[43] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware Scheduling on single-ISA Heterogeneous Multi-cores,”
in Proceedings of the 22nd International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2013, pp. 177–188.

[44] R. Wang and L. Chen, “Futility scaling: High-associativity cache parti-
tioning,” in Procedings of the 47th Annual International Symposium on
Microarchitecture (MICRO), 2014, pp. 356–367.

[45] C. Wu, J. Li, D. Xu, P.-C. Yew, J. Li, and Z. Wang, “FPS: A Fair-
Progress Process Scheduling Policy on Shared-Memory Multiproces-
sors,” Journal on Transactions on Parallel and Distributed Systems,
vol. 26, no. 2, pp. 444–454, 2015.

[46] D. Xu, C. Wu, P.-C. Yew, J. Li, and Z. Wang, “Providing Fairness
on Shared-Memory Multiprocessors Via Process Scheduling,” in Per-
formance Evaluation Review, vol. 40, no. 1, 2012, pp. 295–306.

[47] Y. Ye, R. West, Z. Cheng, and Y. Li, “COLORIS: A Dynamic Cache
Partitioning System Using Page Coloring,” in Proceedings of the 23rd
International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2014, pp. 381–392.

[48] X. Zhang, S. Dwarkadas, and K. Shen, “Towards Practical Page
Coloring-based Multicore Cache Management,” in Proceedings of the
4th European Conference on Computer Systems (EuroSys), 2009, pp.
89–102.

[49] H. Zhu and M. Erez, “Dirigent: Enforcing QoS for Latency-Critical
Tasks on Shared Multicore Systems,” in Proceedings of the 21st Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016, pp. 33–47.

205

