
Evaluating Iterative Optimization Across 1000 Data Sets

Yang Chen Yuanjie Huang
LCSA ∗, ICT, CAS, China

and Graduate School, CAS, China
{chenyang,huangyuanjie}@ict.ac.cn

Lieven Eeckhout
Ghent University, Belgium

Lieven.Eeckhout@elis.UGent.be

Grigori Fursin
INRIA, Saclay, France
grigori.fursin@inria.fr

Liang Peng
LCSA, ICT, CAS, China

and Graduate School, CAS, China
pengliang@ict.ac.cn

Olivier Temam
INRIA, Saclay, France
olivier.temam@inria.fr

Chengyong Wu
LCSA, ICT, CAS, China

cwu@ict.ac.cn

Abstract
While iterative optimization has become a popular compiler opti-
mization approach, it is based on a premise which has never been
truly evaluated: that it is possible to learn the best compiler opti-
mizations across data sets. Up to now, most iterative optimization
studies find the best optimizations through repeated runs on the
same data set. Only a handful of studies have attempted to exer-
cise iterative optimization on a few tens of data sets.

In this paper, we truly put iterative compilation to the test for
the first time by evaluating its effectiveness across a large number
of data sets. We therefore compose KDataSets, a data set suite with
1000 data sets for 32 programs, which we release to the public. We
characterize the diversity of KDataSets, and subsequently use it to
evaluate iterative optimization. We demonstrate that it is possible to
derive a robust iterative optimization strategy across data sets: for
all 32 programs, we find that there exists at least one combination
of compiler optimizations that achieves 86% or more of the best
possible speedup across all data sets using Intel’s ICC (83% for
GNU’s GCC). This optimal combination is program-specific and
yields speedups up to 1.71 on ICC and 2.23 on GCC over the high-
est optimization level (-fast and -O3, respectively). This finding
makes the task of optimizing programs across data sets much eas-
ier than previously anticipated, and it paves the way for the practi-
cal and reliable usage of iterative optimization. Finally, we derive
pre-shipping and post-shipping optimization strategies for software
vendors.

Categories and Subject Descriptors D.3.4. [Software: Program-
ming Languages]: Processors—Compilers, Optimization

General Terms Design, Experimentation, Measurement, Perfor-
mance

∗Key Laboratory of Computer System and Architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

Keywords Compiler optimization, Iterative optimization, Bench-
marking

1. Introduction
Iterative optimization has become a popular optimization strat-
egy [4, 10, 12, 22, 29] because of its simplicity while yielding
substantial performance gains. It is essentially based on repeat-
edly trying out a large number of compiler optimizations until the
best combination of compiler optimizations is found for a partic-
ular program (one ‘iteration’ is the evaluation of one combination
of compiler optimizations). From the start though, there has been
a nagging issue: how data set dependent is iterative optimization?
More precisely, if one selects a combination of optimizations based
on runs over one or a few data sets, will that combination still be
the best for other data sets?

Answering this question is key in order to confidently use it-
erative optimization in practice. At the same time, this question is
difficult to answer because there is no benchmark suite with a large
enough number of data sets to emulate the two most likely appli-
cation scenarios. Either a program is tuned through iterative opti-
mization before shipping by the software vendor so that it performs
well across a broad range of data sets; or a program is tuned after
shipping, across a large number of production runs performed by
users.

Several researchers have investigated how program behavior
and performance varies across data sets. Zhong et al. [32] present
two techniques to predict how program locality is affected across
data sets; they consider 6 programs using up to 6 data sets each.
Hsu et al. [20] compare the profiles generated using the 3 data sets
of some SPECint2000 programs, and observe significant program
behavior variability across data sets for some programs. Several
studies focus on the impact of data sets on compiler optimization
parameterization and selection. In particular, Berube et al. [6] col-
lect 17 inputs per program on average for 7 SPECint2000 programs
to study inlining. Haneda et al. [16] use the 3 SPECint2000 data
sets to evaluate compiler optimizations. Mao et al. [24] collect be-
tween 8 and 976 inputs per program for 10 Java programs (150
inputs on average per program, 4 programs with more than 100 in-
puts) to investigate the impact of inputs on the selection of the best
garbage collector. Fursin et al. [14] collect 20 data sets for each
of the MiBench benchmarks — the same benchmark suite used
in this paper — and also evaluate the data set sensitivity of com-
piler optimizations. These iterative optimization studies and oth-
ers [4, 10, 12, 22, 29] underscore the fact that a significant number

of iterations (tens or hundreds) are required to find the best combi-
nation of compiler optimizations. However, to our knowledge, there
is no benchmark suite available with multiple hundreds of distinct
data sets per program. As a result, not only are researchers forced
to evaluate iterative optimization using an unrealistic experimental
setting, they are unable to answer the aforementioned fundamental
question about whether iterative optimization is effective across a
broad range of data sets.

In order to address this key question, we collect 1000 data sets
for 32 programs, mostly derived from the MiBench benchmark
suite [15]. Our results show that, for each benchmark, there is at
least one combination of compiler optimizations that achieves 86%
or more of the maximum speedup (i.e., the speedup obtained with
the best possible combination per data set) across all data sets.
This result has a significant implication: it means that, in practice,
iterative optimization may often be largely data set insensitive. It
also means that a program can be optimized by a software vendor
on a collection of data sets before shipping, and will retain near-
optimal performance for most other data sets. So the problem
of finding the best optimization for a particular program may be
significantly less complex than previously anticipated.

This paper is organized as follows. We present KDataSets in
Section 2, and characterize its diversity and coverage in Section 3;
we also compare KDataSets against the previously proposed Mi-
DataSets, which comes with 20 data sets per benchmark, and show
that a large population of data sets is indeed necessary to capture a
sufficiently wide range of program behaviors. In Section 4, we then
emulate realistic iterative optimization using the 1000 data sets in
KDataSets, devise a strategy for selecting the best possible combi-
nation of optimizations, and evaluate the impact of an unrealistic
experimental context on iterative optimization strategies. We also
discuss the scope and the general applicability of the results ob-
tained in this paper (Section 5). Finally, we summarize related work
(Section 6) and conclude (Section 7).

2. KDataSets: A 1000-Data Set Suite
As mentioned in the introduction, we have collected 1000 data sets
for each of our 32 benchmarks. Most of these benchmarks come
from the MiBench benchmark suite. MiBench [15] is an embed-
ded benchmark suite covering a broad spectrum of applications,
ranging from simple embedded signal-processing tasks to smart-
phone and desktop tasks. It was developed with the idea that desk-
tops and sophisticated embedded devices are on a collision course
(for both applications and architectures, e.g., the x86 Intel Atom
processor is increasingly used for embedded devices), calling for a
broad enough benchmark suite. We use a modified version of the
MiBench suite, which was evaluated across different data sets and
architectures [2, 14]. We also added bzip2 (both the compressor
and the decompressor) to our set of benchmarks, and we plan to
add and disseminate more programs over time. The benchmarks
are listed in Table 1; the number of source lines ranges from 130
lines for kernels, e.g., crc32, to 99,869 lines for large programs,
e.g., ghostscript.

Table 1 summarizes the various data sets in KDataSets; it de-
scribes the range in file size along with a description of how these
data sets were obtained. The data sets vary from simple num-
bers and arrays, to text files, postscript files, pictures and audio
files in different formats. Some data sets, such as the numbers
for bitcount as well as the numbers in the array for qsort, are
randomly generated. For other programs, such as dijkstra and
patricia, we built data sets that exhibit distinct characteristics in
terms of how the workload exercises different control flow paths
and deals with different working set sizes — this was done based
on studying the benchmarks’ source code and our target domain
knowledge.

Program Data set Data set description
(# source lines) file size
bitcount (460) - Numbers: randomly generated in-

tegers
qsort1 (154) 32K-1.8M 3D coordinates: randomly gener-

ated integers
dijkstra (163) 0.06k-

4.3M
Adjacency matrix: varied matrix
size, content, percentage of discon-
nected vertices (random)

patricia (290) 0.6K-1.9M IP and mask pairs: varied mask
range to control insertion rate (ran-
dom)

jpeg d (13501) 3.6K-1.5M JPEG image: varied size, scenery,
compression ratio, color depth

jpeg c (14014) 16k-137M PPM image: output of jpeg c (con-
verted)

tiff 2bw (15477),
2rgba (15424),
dither (15399),
median (15870)

9K-137M TIFF image: from JPEG images
by ImageMagick converter (con-
verted)

susan c, e, s
(each 1376)

12K-46M PGM image: from jpeg images
by ImageMagick converter (con-
verted)

mad (2358) 28K-27M MP3 audio: varied length, styles
(ringtone, speech, music)

lame (14491), ad-
pcm c (210)

167K-36M WAVE audio: output of mad (con-
verted)

adpcm d (211) 21K-8.8M ADPCM audio: output of adpcm c
(converted)

gsm (3806) 83K-18M Sun/NeXT audio: from MP3 au-
dios by mad (converted)

ghostscript
(99869)

11K-43M Postscript file: varied page num-
ber, contents (slides, notes, papers,
magazines, manuals, etc.)

ispell (6522),
rsynth (4111),
stringsearch1
(338)

0.1K-42M Text file: varied size, contents
(novel, prose, poem, technical
writings, etc.)

blowfish e (863) 0.6K-35M Any file: a mix of text, image, au-
dio, generated files

blowfish d (863) 0.6K-35M Encrypted file: output of blow-
fish e

pgp e (19575) 0.6K-35M Any file: a mix of text, image, au-
dio, generated files

pgp d (19575) 0.4K-18M Encrypted file: output of pgp e
rijndael e (952) 0.6K-35M Any file: a mix of text, image, au-

dio, generated files
rijndael d (952) 0.7K-35M Encrypted file: output of rijndael d
sha (197) 0.6K-35M Any file: a mix of text, image, au-

dio, generated files
CRC32 (130) 0.6K-35M Any file: a mix of text, image, au-

dio, generated files
bzip2e (5125) 0.7K-57M Any file: a mix of above text,

image, audio, generated files, and
other files like program binary,
source code

bzip2d (5125) 0.2K-25M Compressed file: output of bzip2e

Table 1. KDataSets description.

The text files are collected from the Gutenberg project
(gutenberg.org) and python.org. Postscript files are collected
from various web sites: somethingconstructive.ne, oss.net,
ocw.mit.edu, samandal.org, pythonpapers.org, etc., and we
converted some of the collected PDF files into PS format. Images
are collected from public-domain-image.com and converted
into the different required formats (TIFF, JPEG, PGM, PPM). Au-
dio files are collected from freesoundfiles.tintagel.net,
jamendo.com, ejunto.com and converted again into the appro-

priate formats (WAVE, ADPCM, Sun/NeXT). For programs with
miscellaneous files as inputs (e.g., compression, encryption), we
use a mix of the aforementioned files. And in some cases, the output
of some programs are inputs to other programs, e.g., mad/adpcm c.
The entire data set suite corresponds to 27GB of data.

All data sets within KDataSets are free in the public domain or
under the Creative Commons license, and will be publicly dissem-
inated at http://www.kdatasets.org.

3. Data Set Characterization
In this section, we characterize KDataSets, analyze how distinct the
data sets are with respect to each other, and how differently they
react to compiler optimizations.

3.1 Experimental setup
Before doing so, we first briefly describe our experimental setup.
We consider 7 identical machines with 3GHz Intel Xeon dual-
core processors (E3110 family), 2GB RAM, 2×3MB L2 cache.
We use the CentOS 5.3 Linux distribution based on Red Hat with
kernel 2.6.18 patched to support hardware counters through the
PAPI library [3].

Most of the results in the paper are obtained using the Intel
ICC compiler v11.1. However, for completeness and in order to
demonstrate that the results in this paper translate to other compil-
ers, we have also conducted the same experiments using GNU GCC
v4.4.1; these results are similar to the ICC results and are reported
in Section 5.1. Both compilers feature a large number of optimiza-
tions. We selected 53 optimization flags for ICC and 132 flags for
GCC that control inlining, unrolling, vectorization, scheduling, reg-
ister allocation, constant propogation, among many others. We use
a random optimization strategy for creating combinations of opti-
mizations: a combination is based on the uniform random selection
of flags; the number of flags is itself randomly selected. Random
selection of compiler optimization combinations is a popular and
effective approach for exploring the compiler optimization design
space [8, 14, 27].

We consider 300 combinations of compiler optimizations for
each program/data set pair throughout the paper — we study the
results’ sensitivity to the number of combinations in Section 5 by
considering 8,000 combinations. For each combination and each
data set, we measure the program’s execution time. We also mea-
sure 9 performance characteristics using hardware performance
counters through the PAPI interface, such as L1, L2 and TLB
miss rates and branch prediction miss rates. And we also col-
lect 66 architecture-independent characteristics using the MICA
toolset [18], such as instruction mix, ILP, branch predictability,
memory access patterns, and working set size.

Finally, Table 2 summarizes the terminology and definitions
used throughout the text. We present this table here as a reference,
and we will introduce the definitions in the text itself as need be.
We use harmonic mean when reporting average speedup numbers.

3.2 Performance characterization
Figure 1 summarizes the performance characteristics for all pro-
grams and all data sets. The violin graphs show the distribution of
the execution time (in cycles), IPC as well as other performance
characteristics that relate to cache and branch behavior across all
data sets per program. All graphs are shown on a logarithmic scale.

The goal of this characterization is to underscore the differ-
ences among the data sets — this illustrates the broad range of
program behavior that these data sets generate. The execution time
distribution (left top graph) shows that the amount of work varies
greatly across data sets: while the standard deviation can be low,
as for tiffmedian, it is fairly high for most other benchmarks.

data sets: d ∈ D, |D| = 1000.
optimization combinations: o ∈ O, |O| = 300.
speedup of o on d: so

d.
data set optimal speedup of d:
soptimal
d = max{so

d, o ∈ O}.
fraction of data set optimal speedup of o on d:
fo

d =
so

d

s
optimal
d

.

program-optimal combination: oopt:
ooptwith highest mininum fraction:
oopt = o/fo

d = maxo∈Omin{fo
d , d ∈ D}.

ooptwith highest mininum speedup:
oopt = o/so

d = maxo∈Omin{so
d, d ∈ D}.

ooptwith highest average fraction:
oopt = o/fo

d = maxo∈Omean{fo
d , d ∈ D}.

ooptwith highest average speedup:
oopt = o/so

d = maxo∈Omean{so
d, d ∈ D}.

Table 2. Definitions and terminology.

The other distributions (see the other graphs) show that not only
does the amount of work vary wildly across data sets, but also the
performance seen at the architecture level in terms of IPC and sev-
eral other performance characteristics (L1 and L2 miss rates, and
branch prediction rate).

3.3 How programs react to compiler optimizations across
data sets

We now investigate how programs react to compiler optimizations
across data sets. To this end, we compile each program with each
of the 300 randomly generated combinations of compiler optimiza-
tions, and then run each of these 300 program versions with each
of the 1000 data sets. We then record the best possible speedup for
each data set, and we will refer to this speedup as the data set op-
timal speedup, see also Table 2 for a formal definition. The data
set optimal speedup is the speedup relative to -fast and -O3 for
ICC and GCC, respectively. Because we have 1000 data sets per
program (and hence 1000 data set optimal speedup numbers), we
report these results as a distribution, see Figure 2 for the Intel ICC
compiler; we report similar results for GNU’s GCC in Section 5.1.
The violin plots thus show the distribution of the data set optimal
speedup for each benchmark. Figure 2(a) sorts the various bench-
marks by average data set optimal speedup. Figure 2(b) shows the
same data but sorts the benchmarks by the number of source code
lines; this illustrates that the impact of compiler optimizations is
uncorrelated with program size.

The results are contrasted. For some programs, the data set
optimal speedups are within ±1% of the average for more than
98% of the data sets, i.e., there is hardly any discrepancy among the
data sets. However, at the other end of the spectrum, ten programs
exhibit significant variation in performance improvements, i.e., the
deviation from their average performance ranges from 10% to 25%.

One can also note that, even for programs with a relatively
small average performance improvement, there are some data sets
for which the performance improvement is significant. Figure 3
illustrates this further. Here we have sorted all data sets and all
programs according to the data set optimal speedup they achieve.
For 14% of data sets, iterative optimization can achieve a speedup
of 1.1 or higher, and for nearly half of the data sets, it can achieve
a speedup of 1.05 or higher. The end conclusion is that iterative
compilation yields substantial performance improvements across
programs and data sets, and the significance of the improvement is
sensitive to the data set.

We also find that the reactions to compiler optimizations are
non-trivial, both across programs, and across data sets for the same
program. In Figures 4 and 5, we plot the mean, standard deviation,

C
yc

le
s

− −

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

IP
C

− −

3e−01

4e−01

6e−01

1e+00

2e+00

L1
_I

C
M

_R
AT

E

− −

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

su
sa

n_
s

str
ing

se
ar

ch
1

su
sa

n_
c

tiff
2r

gb
a

jpe
g_

d
sh

a

ad
pc

m
_c

tiff
2b

w

CRC32

rijn
da

el_
d
m

ad

rijn
da

el_
e

rs
yn

th

pg
p_

e

bz
ip2

d

qs
or

t1

gh
os

tsc
rip

t

tiff
dit

he
r

bz
ip2

e
lam

e

bit
co

un
t

tiff
m

ed
ian

su
sa

n_
e

blo
wfis

h_
e

pa
tri

cia

blo
wfis

h_
d
isp

ell

pg
p_

d

jpe
g_

c
gs

m

dij
ks

tra

ad
pc

m
_d

L1
_D

C
M

_R
AT

E

− −

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

L2
_T

C
M

_R
AT

E

− −

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

B
R

_M
S

P
_R

AT
E

− −

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

su
sa

n_
s

str
ing

se
ar

ch
1

su
sa

n_
c

tiff
2r

gb
a

jpe
g_

d
sh

a

ad
pc

m
_c

tiff
2b

w

CRC32

rijn
da

el_
d
m

ad

rijn
da

el_
e

rs
yn

th

pg
p_

e

bz
ip2

d

qs
or

t1

gh
os

tsc
rip

t

tiff
dit

he
r

bz
ip2

e
lam

e

bit
co

un
t

tiff
m

ed
ian

su
sa

n_
e

blo
wfis

h_
e

pa
tri

cia

blo
wfis

h_
d
isp

ell

pg
p_

d

jpe
g_

c
gs

m

dij
ks

tra

ad
pc

m
_d

Figure 1. Distribution of (normalized) performance characteristics across data sets (on a log scale): number of cycles, IPC, L1 instruction
cache miss rate, L1 data cache miss rate, L2 cache miss rate, branch misprediction rate.

S
p
e
e
d
u
p

1.0

1.2

1.4

1.6

1.8

− −
− −

−

su
sa

n_
s

st
rin

gs
ea

rc
h1

su
sa

n_
c

tif
f2

rg
ba

jp
eg

_d sh
a

ad
pc

m
_c

tif
f2

bw

C
R
C
32

rij
nd

ae
l_
d

m
ad

rij
nd

ae
l_
e

rs
yn

th

pg
p_

e

bz
ip
2d

qs
or

t1

gh
os

ts
cr

ip
t

tif
fd

ith
er

bz
ip
2e

la
m

e

bi
tc
ou

nt

tif
fm

ed
ia
n

su
sa

n_
e

bl
ow

fis
h_

e

pa
tri

ci
a

bl
ow

fis
h_

d
is
pe

ll

pg
p_

d

jp
eg

_c
gs

m

di
jk
st
ra

ad
pc

m
_d

(a) sorted by average data set optimal speedup

S
p
e
e
d
u
p

1.0

1.2

1.4

1.6

1.8

− −

−

− −

−

−
−

− − −
− − −

− − −

−

− − −
−

−

−
− − − − −

−
− −

C
R
C
32

qs
or

t1

di
jk
st
ra

sh
a

ad
pc

m
_c

ad
pc

m
_d

pa
tri

ci
a

st
rin

gs
ea

rc
h1

bi
tc
ou

nt

bl
ow

fis
h_

e

bl
ow

fis
h_

d

rij
nd

ae
l_
e

rij
nd

ae
l_
d

su
sa

n_
e

su
sa

n_
c

su
sa

n_
s

m
adgs

m

rs
yn

th

bz
ip
2e

bz
ip
2d

is
pe

ll

jp
eg

_d

jp
eg

_c

la
m

e

tif
fd

ith
er

tif
f2

rg
ba

tif
f2

bw

tif
fm

ed
ia
n

pg
p_

d

pg
p_

e

gh
os

ts
cr

ip
t

(b) sorted by number of source code lines

Figure 2. Data set optimal speedups relative to -fast for
KDataSets (the horizontal line shows the mean value).

and maximum and minimum speedup for each compiler optimiza-
tion, sorted by increasing mean speedup; this is done for the five
programs with the highest average speedup across all data sets. A
small arrow below the horizontal axis indicates the baseline com-
bination (-fast). The large variations for the standard deviation
show that the impact of each combination can vary strongly: for
some programs, it is almost stable across all data sets, e.g., gsm
(Figure 5(b)), or there are large variations across data sets (all other
examples).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 20 40 60 80 100

S
pe

ed
up

Percentage of data sets across all programs

Figure 3. Distribution of the data set optimal speedups across all
data sets and all programs.

3.4 KDataSets versus MiDataSets
We now compare KDataSets (1000 data sets) against MiDataSets
(20 data sets) [14]. The reason for doing so is to investigate whether
a 1000-data set suite is really needed compared to a 20-data set
suite. The more fundamental question is whether the 20 data sets
in MiDataSets cover most of the space built up by the 1000 data
sets. In other words, do the 1000 data sets cover a much broader
spectrum of the data set space to justify its usage over the 20
data sets that were previously collected? This is valid question,
especially given that the data set optimal speedup are comparable
for KDataSets (Figure 2) compared to MiDataSets (see Figure 6).

An in-depth analysis that involves a broad set of both micro-
architecture-dependent and microarchitecture-independent charac-
teristics reveals that the coverage of the program behavior space
varies significantly across data sets. For that purpose, we have col-
lected the 66 microarchitecture-independent features provided by

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

 0 50 100 150 200 250 300
 0

 0.05

 0.1

 0.15

 0.2

S
pe

ed
up

S
td

ev

combinations

max
mean

min
stdev

Figure 4. Reactions to compiler optimizations for adpcm d.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

 0 50 100 150 200 250 300
 0

 0.05

 0.1

 0.15

 0.2

S
pe

ed
up

S
td

ev

combinations

max
mean

min
stdev

(a) dijkstra

0.90

1.00

1.10

1.20

1.30

 0 50 100 150 200 250 300
 0

 0.05

 0.1

 0.15

 0.2

S
pe

ed
up

S
td

ev

combinations

max
mean

min
stdev

(b) gsm

0.90

1.00

1.10

1.20

1.30

 0 50 100 150 200 250 300
 0

 0.05

 0.1

 0.15

 0.2

S
pe

ed
up

S
td

ev

combinations

max
mean

min
stdev

(c) jpeg c

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

 0 50 100 150 200 250 300
 0

 0.05

 0.1

 0.15

 0.2

S
pe

ed
up

S
td

ev

combinations

max
mean

min
stdev

(d) pgp d

Figure 5. Reactions to compiler optimizations for dijkstra, gsm,
jpec c, pgp d.

the MICA tool v0.22 [18] and 9 microarchitecture-dependent fea-
tures using hardware performance counters as mentioned in Sec-
tion 3.1. For each program, we apply principal component analysis
(PCA) on the characteristics collected for all data sets, following
the methodology by Eeckhout et al. [11]. We then plot the data sets
along the two most significant principal components in Figure 7
— these principal components capture the most significant dimen-
sions; we show plots for only a few representative programs due
to paper length constraints. MiDataSets and KDataSets are shown
using crosses and dots, respectively. KDataSets covers a larger part
of the space than MiDataSets for 25 out of 32 programs, see for
example patricia, ghostscript, bitcount, pgp d. KDataSets
substantially expands the space covered compared to MiDataSets
for 4 out of 32 programs, e.g., gsm, stringsearch1. KDataSets
and MiDataSets cover roughly the same space for three programs,
such as lame and adpcm d.

We have now made the case that KDataSets exhibits signifi-
cantly different behavior compared to MiDataSets. However, this
does not necessarily imply that KDataSets will react very differ-
ently to compiler optimizations. We therefore conduct yet another

S
p
e
e
d
u
p

1.0

1.1

1.2

1.3

1.4

1.5

1.6

− −
−

−
− − −

−

−
−

−

su
sa

n_
s

st
rin

gs
ea

rc
h1

su
sa

n_
c

tif
f2

rg
ba

jp
eg

_d sh
a

ad
pc

m
_c

tif
f2

bw

C
R
C
32

rij
nd

ae
l_
d

m
ad

rij
nd

ae
l_
e

rs
yn

th

pg
p_

e

bz
ip
2d

qs
or

t1

gh
os

ts
cr

ip
t

tif
fd

ith
er

bz
ip
2e

la
m

e

bi
tc
ou

nt

tif
fm

ed
ia
n

su
sa

n_
e

bl
ow

fis
h_

e

pa
tri

ci
a

bl
ow

fis
h_

d
is
pe

ll

pg
p_

d

jp
eg

_c
gs

m

di
jk
st
ra

ad
pc

m
_d

Figure 6. Data set optimal speedups relative to -fast for Mi-
DataSets.

analysis using PCA with the features being the speedups obtained
for each of the combinations, see Figure 8. The conclusion is es-
sentially the same as before: the graphs clearly illustrate the greater
diversity of reactions to compiler optimizations for KDataSets rel-
ative to MiDataSets.

4. Iterative Optimization in Practice
In this section, we investigate the stability of iterative optimization
across data sets and revisit iterative optimization in a realistic ex-
perimental context for two application scenarios.

4.1 Program-optimal combinations
In order to investigate how sensitive the selection of combinations
is to data sets, we first determine the data set optimal speedup, i.e.,
this is the highest speedup for each data set across all 300 combi-
nations. Then, for each program, we retain the combination which
yields the best average performance across all data sets. We term
this combination the program-optimal combination, see Table 2 for
a formal definition; we will clarify the exact selection process in
the next section. In Figure 9, we report the performance for all data
sets and for each program compiled with its program-optimal com-
bination. The distribution of speedups (relative to -fast) across
data sets is shown at the top, while the distribution of the fraction
of the data set optimal speedup is shown at the bottom; the fraction
of the data set optimal speedup is the ratio of the program-optimal
combination speedup over the data set optimal speedup (see also
Table 2) and it is always less than or equal to 1. The key obser-
vation is that, for each program, a single combination can achieve
at least 86% of the data set optimal speedup for all data sets, with
most programs standing at a minimum of 90% of the data set opti-
mal speedup. As mentioned in the introduction, the consequences
are significant. This result confirms that iterative optimization is ro-
bust across data sets: after learning over a sufficient number of data
sets, the selected best tradeoff combination is likely to perform well
on yet unseen data sets.

4.2 How to select the program-optimal combination
We now explain in more detail our strategy for selecting the
program-optimal combination. In Table 3(a), we show an illustra-
tive example with two data sets D1 and D2 and three combinations
comb1, comb2 and comb3 plus the baseline (-fast for ICC). For
each program, we evaluate every combination on every data set,
deduce the data set optimal speedup, and, in the next two columns,
compute the fraction of the data set optimal speedup achieved by
every combination on every data set. We then want to select a com-
bination that maximizes performance across all data sets. So we
find the minimum fraction of the data set optimal speedup achieved
by each combination (rightmost column), and pick the combination
with the highest minimum fraction of the data set optimal speedup.

++ +
+ +

+
+

+ + +++++++++++

−
2
0

−
1
5

−
1
0

−
5

0
5

1
0

−20 −15 −10 −5 0 5 10 15

patricia

+
+

+

+
+

+
++
++++

+++

+
+
++

+

−
2
0

−
1
0

0
1
0

2
0

3
0

4
0

5
0

−20 −15 −10 −5 0 5 10

ghostscript

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+ +
+

+

+
+

−
1
0

−
5

0
5

1
0

−50 −40 −30 −20 −10 0 10

adpcm_d

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

−
1
5

−
1
0

−
5

0
5

1
0

1
5

−15 −10 −5 0 5 10 15 20

lame

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+

−
1
5

−
1
0

−
5

0
5

1
0

1
5

2
0

−20 −10 0 10

pgp_d

+

+

+
+
++
+++
++

+

+ + +
+
++
++

−
2
0

−
1
5

−
1
0

−
5

0
5

−30 −20 −10 0 10 20

bitcount

+

+

+

+
+

+

+

+

+

+

+

+

++

+ +

+

+

+

+

−
2
0

0
2
0

4
0

6
0

8
0

1
0
0

−25 −20 −15 −10 −5 0 5 10

stringsearch1

+

+

+

++ +

++

+

+

+

+
+

+

+ +

+

+

+
+

−
1
0

0
1
0

2
0

3
0

4
0

−50 −40 −30 −20 −10 0 10

gsm

Figure 7. Data set characterization using principal component analysis: the features are a set of microarchitecture-dependent and
microarchitecture-independent characteristics; KDataSets is shown using gray dots, and MiDataSets is shown using black crosses.

+

+

+

+
+

+
++

+
+

++++++++++

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

−1.5 −1.0 −0.5 0.0 0.5 1.0

patricia

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

−2 −1 0 1

ghostscript

+

+
+

+

+

+

+ ++

+

+

+

+

+

+

+

+

+

+

+

−
3

−
2

−
1

0
1

2

−4 −2 0 2 4 6

adpcm_d

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

−0.6 −0.4 −0.2 0.0 0.2 0.4

lame

+

+

+

+
+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

−2 −1 0 1 2 3 4 5

pgp_d

++
+ + ++++

++
+

+

+

+

+ +
+
+

+
+

−
0
.1

0
.0

0
.1

0
.2

0
.3

−0.1 0.0 0.1 0.2 0.3

bitcount

+

+

++++
+

+
+

+

++

+

+

+

++

+

+

+

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−0.5 0.0 0.5 1.0 1.5

stringsearch1

+

+

+

+

+
+

+

+

+

+

++

+

+
+

+

++

+

+

−
0
.0

4
−

0
.0

2
0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

gsm

Figure 8. Data set characterization using principal component analysis: the features are the speedup numbers across the 300 combinations
of compiler optimizations; KDataSets is shown using gray dots, and MiDataSets is shown using black crosses.

S
p

e
e

d
u

p

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

− − − − − − − − −
−

− − − − − − − −
− − − − − − − − − − −

− −

−

F
ra

c
ti
o

n

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 −
− − − −

− − − −

−

−

−
− −

−
−

−
−

−

+
−

− −
− −

− −
− −

− −

−

su
sa

n_
s

st
rin

gs
ea

rc
h1

su
sa

n_
c

tif
f2

rg
ba

jp
eg

_d sh
a

ad
pc

m
_c

tif
f2

bw

rij
nd

ae
l_
d

C
R
C
32

m
ad

rij
nd

ae
l_
e

rs
yn

th

pg
p_

e

bz
ip
2d

qs
or

t1

gh
os

ts
cr

ip
t

tif
fd

ith
er

bi
tc
ou

nt

la
m

e

bz
ip
2e

tif
fm

ed
ia
n

su
sa

n_
e

bl
ow

fis
h_

e

bl
ow

fis
h_

d

pa
tri

ci
a

is
pe

ll

pg
p_

d

jp
eg

_c
gs

m

di
jk
st
ra

ad
pc

m
_d

Figure 9. Speedup (top graph) and fraction of the data set optimal
speedup (bottom graph) for the program-optimal combinations.

(a)

Speedup Fraction data set
optimal speedup

Comb. D1 D2 Avg. D1 D2 Min
baseline 1.00 1.00 1.00 0.77 0.91 0.77
comb1 1.20 1.10 1.15 0.92 1.00 0.92
comb2 1.30 1.07 1.19 1.00 0.97 0.97
comb3 1.25 1.05 1.15 0.96 0.95 0.95
data set
optimal

1.30 1.10 1.20 1.00 1.00 1.00

(b)

Speedup Fraction data set-
optimal speedup

Comb. D1 D2 Avg. D1 D2 Min
baseline 1.00 1.00 1.00 0.77 0.99 0.77
comb1 1.20 1.01 1.11 0.92 1.00 0.92
comb2 1.30 0.98 1.14 1.00 0.97 0.97
comb3 1.25 0.99 1.12 0.96 0.98 0.96
data set
optimal

1.30 1.01 1.16 1.00 1.00 1.00

Table 3. Illustrative examples showing (a) how to select the
program-optimal combination with the highest minimum fraction
of the data set optimal speedup; (b) shows a case for which the
program-optimal combination leads to slowdown relative to the
baseline.

Program-optimal combinations may sometimes, though rarely,
induce slowdowns compared to the baseline. Let us define the data
set optimal speedup for each data set as B; and let us define the
fraction of the data set optimal speedup that the program-optimal
speedup achieves as M . If the data set optimal speedup is small, it
may be the case that B×M < 1, i.e., a slowdown compared to the
baseline. Because this only happens when B is small, the resulting
slowdown is small as well. Consider the example in Table 3(b):
because the data set optimal speedup for data set D2 is small, the
fraction of the data set optimal speedup for comb2 and comb3 is
high even though it induces a slight slowdown. As a result, comb2
gets selected as the combination with the highest minimum fraction
of the data set optimal speedup; on average across D1 and D2,
it does induce a significant average speedup, but there is a slight
slowdown for D2. In Figure 9, we can see that this phenomenon
happens (in top graph, violin part below speedup equal to one),
though infrequently. For instance, programs such as patricia
exhibit slowdowns for a few of their data sets. It is relatively
more frequent for a couple programs such as rijndael e; the

S
p

e
e

d
u

p

0.90

0.95

1.00

1.05

1.10

+ − − −

F
ra

c
ti
o

n

0.88

0.90

0.92

0.94

0.96

0.98

1.00

−
− − −

sp
ee

du
p_

m
in

sp
ee

du
p_

m
ea

n

fr
ac

tio
n_

m
in

fr
ac

tio
n_

m
ea

n

sp
ee

du
p_

m
in

sp
ee

du
p_

m
ea

n

fr
ac

tio
n_

m
in

fr
ac

tio
n_

m
ea

n

sp
ee

du
p_

m
in

sp
ee

du
p_

m
ea

n

Figure 10. Different
ways for selecting
program-optimal com-
binations for CRC32.

 0

 4

 8

 12

 16

 20

 24

 28

 32

100 99 98 97 96 95 94 93 92 91

#
 p

ro
g
ra

m
s

co
ve

re
d

% of optimial value of all criteria

Figure 11. Evaluation of the compro-
mise selection strategy for determining the
program-optimal combination.

most extreme example is CRC32 for which the program-optimal
combination yields a slowdown on average.

4.3 Alternative ways for selecting program-optimal
combinations

There are different ways for how to determine the program-optimal
combination. Depending on the user’s objectives, it is possible to
tune the selection of the program-optimal combination to minimize
risk (maximize the minimum speedup), or to maximize average
performance (maximize average speedup or maximize the average
fraction of the data set optimal speedup). As an example, we show
in Figure 10 the performance for program-optimal combinations of
CRC32 selected using these different criteria. While some exhibit an
average slowdown, some result in an average speedup. Below, we
study these different selection criteria and outline a general strategy
for selecting program-optimal combinations.

We consider four different criteria for selecting the program-
optimal combination: pick the combination that maximizes (i) the
average speedup (across all data sets), or (ii) the minimum speedup,
or (iii) the minimum fraction of the data set optimal speedup, or (iv)
the average fraction of the best speedup. While the best criterion
really depends on the user’s objective, we propose the compromise
selection strategy that performs well under all criteria. The strategy
determines a set of program-optimal combinations that perform
best under each criterion: each set for a criterion contains the
combinations that achieve at least P% of the optimal value for that
criterion. Then, we determine the intersection of these four sets of
combinations. Each combination in this intersection is eligible to be
a compromise program-optimal combination; we randomly pick a
compromise program-optimal combination within that intersection.
If the intersection is empty, we lower the value of P (from 100%
downwards) and try again.

In Figure 11, we show the fraction of programs for which we
can find at least one combination that achieves at least P% of the
optimal value for all four criteria. For all programs, it is possible
to find combinations that achieve 91% of the optimal value of
all criteria; 95% of the optimal value is achieved for all but one
program. As a result, the end conclusion is that, independently
of the user’s objective, there is almost always a combination that
performs well for every criterion, at least among those tested above.

4.4 How many data sets are needed
One remaining issue for having a truly robust program optimization
approach is to understand how many data sets are required in order
to find a good program-optimal combination.

Program Percentage of program-optimal performance
85% 90% 95% 99%

adpcm d 2 3 5 11
dijkstra 2 2 2 5
gsm 2 2 2 7
jpeg c 1 1 2 21
pgp d 7 12 21 40
ispell 2 2 2 3
patricia 1 2 2 3
blowfish d 1 2 6 154
blowfish e 1 2 2 54
susan e 122 145 179 259
tiffmedian 2 2 2 153
bzip2e 2 2 2 467
lame 2 2 2 2
bitcount 1 1 1 1
tiffdither 1 1 2 2
ghostscript 2 2 2 90
qsort1 1 2 16 34
bzip2d 1 32 74 340
pgp e 2 2 2 294
rsynth 1 2 17 43
rijndael e 2 20 130 623
mad 2 2 2 7
CRC32 2 2 138 326
rijndael d 2 4 59 845
tiff2bw 1 1 2 615
adpcm c 1 2 2 6
sha 8 21 41 231
jpeg d 1 2 2 8
tiff2rgba 1 1 2 856
susan c 1 1 2 7
stringsearch1 2 2 8 760
susan s 2 2 60 119

Table 4. Minimum number of data sets required to select a combi-
nation achieving X% of the program-optimal speedup; the bench-
marks are sorted by their average data set optimal speedups.

To do so, we set up the following experiment. We randomly
sample N (out of 1000) data sets, select the program-optimal com-
bination across these N data sets, evaluate its performance on all
of the 1000 data sets, and deduce what percentage of the program-
optimal combination performance is achieved. For each N , we
repeat this process 1000 times and compute the average percent-
age. We then report the minimum number of data sets that are re-
quired to select a combination with a performance within 85%,
90%, 95% and 99% of the performance obtained when comput-
ing the program-optimal combination across all 1000 data sets, see
Table 4.

The results vary across programs. For 14 out of the 32 programs,
we achieve 85% of the program-optimal performance using only a
single data set; only 1 program can achieve 95% of the program-
optimal performance with a single data set. For 18 programs, at
least 2 data sets are needed to achieve within 85% of the program-
optimal speedup. The top five programs still need 6 data sets on
average to achieve 95% of the program-optimal performance. Four
programs require several tens, or even several hundreds, of data
sets to achieve 90% of the program-optimal performance, and 14
programs require between 154 and 856 data sets to achieve 99% of
the program-optimal performance.

In summary, about nine-tenths of the programs require from one
to a few tens of data sets to achieve near-optimal performance, and
the remaining tenth requires hundreds of data sets.

4.5 Evaluating iterative optimization within a realistic
experimental context

The two most typical use cases for iterative optimization are: (i) the
software vendor optimizes the software before shipping, and (ii) the
end user is willing to tune the software she/he is using. There is one

A
ve

ra
g

e
 s

p
e

e
d

u
p

0.8

0.9

1.0

1.1

1.2

1.3

1.4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−

−−

−

su
sa

n_
s

st
rin

gs
ea

rc
h1

su
sa

n_
c

tif
f2

rg
ba

jp
eg

_d sh
a

ad
pc

m
_c

tif
f2

bw

C
R
C
32

rij
nd

ae
l_
d

m
ad

rij
nd

ae
l_
e

rs
yn

th

pg
p_

e

bz
ip
2d

qs
or

t1

gh
os

ts
cr

ip
t

tif
fd

ith
er

bz
ip
2e

la
m

e

bi
tc
ou

nt

tif
fm

ed
ia
n

su
sa

n_
e

bl
ow

fis
h_

e

pa
tri

ci
a

bl
ow

fis
h_

d
is
pe

ll

pg
p_

d

jp
eg

_c
gs

m

di
jk
st
ra

ad
pc

m
_d

Figure 12. Iterative optimization using a single data set versus us-
ing 1000 data sets; the horizontal line corresponds to the aver-
age speedup using the program-optimal combination selected over
1000 data sets.

significant difference between these two cases for the iterative opti-
mization learning process. In the first case, the software vendor can
repeatedly run the same data sets, and thus easily compare the per-
formance impact of combinations across runs. In the second case,
the user is only doing production runs, so each run corresponds to
a different data set. Most users are not willing to dedicate time, i.e.,
they do not want to perform repeated runs of the same data sets, in
order to tune their compiler combinations; they instead want this
process to happen transparently. As a result, the iterative optimiza-
tion process must learn across different data sets, making it difficult
to compare the performance impact of compiler combinations.

Until now, due to the lack of a large number of data sets, itera-
tive optimization was evaluated in either scenario using unrealistic
hypotheses. In the pre-shipping case, the evaluation was often con-
ducted using a single data set. In the post-shipping case, the eval-
uation assumed that a user would be willing to run the same data
sets multiple times. In the sections below, we use our large num-
ber of data sets to create realistic conditions for both scenarios, and
to truly assess the potential performance benefits of iterative opti-
mization in each scenario.

4.5.1 Pre-shipping scenario
In this scenario, we assess the performance benefit of tuning a
software using a large number of data sets rather than a single one,
see Figure 12. For the one-data set case, we compute the speedup as
follows. For each program, we pick data sets one by one. For each
data set, we run all possible combinations, select the combination
with the maximum speedup, and apply it to all other 999 data sets;
the average data set speedup is computed over the 999 data sets
and the training data set. We report the corresponding distribution
in Figure 12, as well as the average speedup obtained with the
program-optimal combination selected using 1000 data sets (thick
horizontal bar). The fact that the bulk of most violins is below the
bar, and in most cases well below the bar, indicates that this training
also often leads to sub-optimal performance. The fact that several
violins are elongated also indicates that single-data set training is
unstable/unreliable, i.e., performance will vary wildly depending
on which data set is chosen.

4.6 Post-shipping scenario
In the post-shipping scenario, since we can only run each data set
once, it is impossible to compute the speedup. This experimental
context differs in two ways from the unrealistic context used in
most iterative optimization studies. First, the relative ordering of
combinations is imprecise: an experiment with a particular data set
may conclude that one combination outperforms another, whereas

Realistic

42 combs, speedups

300 combs, comparisons

0.90

1.00

1.10

1.20

1.30

1.40

su
sa

n_
s

st
rin

gs
ea

rc
h1

su
sa

n_
c

tif
f2

rg
ba

jp
eg

_d sh
a

ad
pc

m
_c

tif
f2

bw

C
R
C
32

rij
nd

ae
l_
d
m

ad

rij
nd

ae
l_
e

rs
yn

th

pg
p_

e

bz
ip
2d

qs
or

t1

gh
os

ts
cr

ip
t

tif
fd

ith
er

bz
ip
2e

la
m

e

bi
tc
ou

nt

tif
fm

ed
ia
n

su
sa

n_
e

bl
ow

fis
h_

e

pa
tri

ci
a

bl
ow

fis
h_

d
is
pe

ll

pg
p_

d

jp
eg

_c
gs

m

di
jk
st
ra

ad
pc

m
_d

av
er

A
ve

ra
g
e
 s

p
e
e
d
u
p

Figure 13. Evaluation of a realistic versus unrealistic evaluation
methodology in a post-shipping scenario.

an experiment with another data set may conclude the opposite.
Second, the number of combinations that can be evaluated is lim-
ited by the number of available data sets.

In order to compare combinations, we resort to the run-time
approach proposed by Stephenson et al. [30] and Fursin et al. [13].
We use function cloning where each clone is compiled differently;
this is akin to versioning: the code contains two versions of the
same routines compiled using two different combinations. At run-
time, either version of each method is randomly used upon each
call, and the execution time is collected for each call, allowing to
compare the sum of the execution times of the methods for each
version. Even though this comparison is statistical, because of the
discrepancies in numbers and durations of calls, previous research
works have shown that it is reliable in practice and comes with low
overhead [13, 30].

In order to realistically emulate iterative optimization in a post-
shipping scenario, we must evaluate the combination selection
strategies on unseen data sets. So we split the data sets into 900
training data sets and 100 test data sets. We randomly define one
thousand such 900/100 training/test sets, and conduct the evalua-
tions below for all sets, and report the average results.

We now have to select the set of combinations to be evaluated.
When optimizing one program, it is realistic to leverage the expe-
rience gathered from other programs. Therefore, for each program,
we start with a set of high-potential combinations; these are the
program-optimal combinations for the other 31 programs. In or-
der to evaluate N = 31 combinations, we need N×(N−1)

2
= 465

comparisons and therefore need that many data sets. With 900 data
sets at our disposal, we can increase the initial set of 31 combina-
tions with Nr randomly selected combinations, in order to increase
the probability of discovering new better suited combinations. The
only constraint is that (N+Nr)×(N+Nr−1)

2
≤ 900; we find that the

maximum value of Nr is 11, so we add 11 randomly selected com-
binations, for a total of 42 combinations.

We now compare the realistic case where 42 combinations are
evaluated using 42×41

2
= 861 runs versus the unrealistic case

where the same set of combinations are evaluated on all data sets.
The comparison between the realistic case, see the ‘Realistic’
bars, and the unrealistic case, see the ‘42 combs, speedups’
bars in Figure 13, helps discriminate the impact of comparing
on distinct data sets. While the performance obtained under the
realistic experimental conditions is slightly below the unrealistic
case, we find that it is often close for most programs, and barely
different on average.

-fast -finline-limit=8 -no-vec
-fast -ansi-alias -finline -no-vec
-fast -no-vec
-O2
-fast -nolib-inline
-fast -fno-builtin -no-inline-factor
-fast -inline-max-total-size=3000 -no-inline-factor
-fast -inline-max-size=1024 -ipo3
-fast -no-inline-factor -unroll8
-fast -fno-fnalias -fno-omit-frame-pointer -no-vec
-fast -fno-alias -fpack-struct -no-vec
-fast -ansi-alias -finline-limit=512 -nolib-inline
-fast -finline-limit=512 -opt-jump-tables=large
-O3 -ipo1 -no-opt-jump-tables
-fast -no-inline-min-size
-fast -finline-limit=32 -fno-builtin -opt-malloc-options=2
-fast -ip-no-inlining -nolib-inline -opt-malloc-options=1
-fast -ipo2

Table 5. The Intel ICC compiler optimizations that affect perfor-
mance the most, obtained after pruning the program-optimal com-
binations.

We also compare the realistic case against a case where all com-
binations are compared, though using distinct data sets, in order to
discriminate the impact of evaluating a restricted set of combina-
tions. Since we do not have 300×299

2
= 44850 data sets, we ap-

proximate this scenario by reusing data sets (i.e., for comparing
each pair of combinations, we randomly pick a data set), and re-
port the result in Figure 13, see ‘300 combs, comparisons’. We
again find that the performance of the realistic case is very close to
the performance of the less realistic case.

This result is significant. It implies that, even under realistic ex-
perimental conditions, it is possible to achieve almost the same per-
formance as the upper bound performance defined by less realistic
experimental conditions. In other words, the potential of iterative
optimization can indeed be achieved in practice, even in a post-
shipping scenario.

4.7 Analysis: Key compiler optimizations
We now delve a little deeper in the composition of program-
optimal combinations. These combinations may contain more than
50 optimization flags, making it difficult to understand which op-
timizations really impact performance. We therefore prune the
program-optimal combinations by simply removing optimization
flags one by one, randomly, as long as they do not change the
overall speedup. Table 5 shows the top performing combinations
after pruning across all programs and data sets for ICC. (There are
fewer pruned combinations than programs: program-optimal com-
binations may prune to the same combinations or the baseline.)
This list of top combinations underscores that, even though mod-
ern compilers have powerful optimizations such as vectorization,
inter-procedural analysis, etc., the heuristics in charge of activat-
ing these different optimizations and selecting their parameters
may not be effective. For example, the -fast optimization level in
ICC includes inlining and vectorization by default, but both opti-
mizations may degrade performance. Iterative optimization does a
better job at applying these optimizations to particular programs:
e.g., only apply inlining to programs with small functions, or turn
off vectorization when it is detrimental to performance.

5. Discussion on scope of the results
The results in this paper are obviously tied to the experimental
setup. In this section, we aim at gaining insight into how general
the results and conclusions are.

S
pe

ed
up

1.0

1.5

2.0

− −
−

− − −
−

−

−

F
ra

ct
io

n

0.80

0.85

0.90

0.95

1.00 − − − − −
−

−
− − −

− − − − − −

−
−

− − − − −
−

−

−
−

−

−

−
− +

m
ad

rijn
da

el_
e

blo
wfis

h_
e

rijn
da

el_
d

CRC32

blo
wfis

h_
d

pg
p_

d

qs
or

t1

ad
pc

m
_d

gh
os

tsc
rip

t

pa
tri

cia
isp

ell

tiff
dit

he
r

dij
ks

tra gs
m
pg

p_
e

bz
ip2

d

jpe
g_

d

tiff
2r

gb
a
lam

e

tiff
2b

w

jpe
g_

c

su
sa

n_
s

ad
pc

m
_c

bz
ip2

e

bit
co

un
t

su
sa

n_
e

str
ing

se
ar

ch
1

tiff
m

ed
ian sh

a

su
sa

n_
c

rs
yn

th

Figure 14. Speedup (top graph) and fraction of the data set opti-
mal speedup (bottom graph) for the program-optimal combinations
for GNU’s GCC.

5.1 Results for GNU’s GCC
We used Intel’s ICC compiler throughout the paper. We now eval-
uate whether the conclusions also apply to other compilers. We
therefore consider GNU’s GCC compiler v4.4.1. Figure 14 reports
the data set optimal speedups (with respect to -O3) that can be
achieved using GCC. Compared to Figure 9, we observe that GCC
achieves higher speedups than ICC — this is relative to the -O3 and
-fast baseline combinations, respectively. It is also interesting to
note that the best speedups are achieved for different programs for
the most part. More importantly, we find again that, for each pro-
gram, a single combination can achieve 83% of the data set optimal
speedup for all data sets, with most programs standing at 90% or
higher. Therefore, our conclusions are valid for two of the most
widely used compilation platforms.

5.2 Data sets coverage
There is no guarantee that our collection of 1000 data sets covers
the entire program behavior space — there may still be parts of the
space that are unrepresented by KDataSets. For instance, our initial
attempt at collecting data sets for program tiffmedian resulted
in the distribution shown in Figure 15(a). The 20 data sets did
in fact a better job at covering the program behavior space than
our initial 1000 data sets. This turned out to be due to the lack of
very small images (< 29kB). This is because these small images
exhibit a significantly different L1, L2 and DTLB behavior than
large images (29kB − 1.5MB), resulting in significantly different
and more spread out program behavior. After increasing the mix
of small and large images, the coverage of the 1000 data sets
was eventually superior to that of the 20 data sets, as shown in
Figure 15(b); the circles in Figure 15(b) correspond to the data sets
added to our initial set, the withdrawn redundant data sets do not
show. However, even the notion of ‘covering the program behavior
space’ is subjective because a given user may be interested in a
limited type of data sets only.

5.3 Compiler combinations
There is also no guarantee that the 300 combinations we explored
covers the entire compiler optimization space. To see whether 300
combinations is too small a number, we conducted an additional
experiment in which we consider 8000 combinations. However, to
complete it in a reasonable amount of time, we had to run each
combination on 10 randomly chosen data sets instead of all the
1000 data sets. The data set optimal speedups across these 8000

+

+

+
+

++
+

+
+

+ +

+

+

+

+

+

++ ++

−
5

0
−

4
0

−
3

0
−

2
0

−
1

0
0

1
0

−40 −30 −20 −10 0 10 20

(a) initial 1000 data sets

o

o

o

o

o

o

o

o

oo

o
o

o
o
oo
o

o

o

o

o

o
o

o

o

oo

o

o o

o

o

o o

oo
oo

oo

o

o

o
o

o

o

o

o

oo

o

o

o

o

oo

o

o

o

o

+

+

+
+

++
+

+
+

+ +

+

+

+

+

+

++ ++

−
5

0
−

4
0

−
3

0
−

2
0

−
1

0
0

1
0

−40 −30 −20 −10 0 10 20

(b) including small images

Figure 15. Program behavior space of tiffmedian.

S
p
e
e
d
u
p

1.0

1.1

1.2

1.3

1.4

1.5

1.6

− − − − −
−

− − − − − − − − − − − − − − − − − − − −
− − −

−
−

−

su
sa

n_
s

st
rin

gs
ea

rc
h1

su
sa

n_
c

tif
f2

rg
ba

jp
eg

_d sh
a

ad
pc

m
_c

tif
f2

bw

C
R
C
32

rij
nd

ae
l_
d

m
ad

rij
nd

ae
l_
e

rs
yn

th

pg
p_

e

bz
ip
2d

qs
or

t1

gh
os

ts
cr

ip
t

tif
fd

ith
er

bz
ip
2e

la
m

e

bi
tc
ou

nt

tif
fm

ed
ia
n

su
sa

n_
e

bl
ow

fis
h_

e

pa
tri

ci
a

bl
ow

fis
h_

d
is
pe

ll

pg
p_

d

jp
eg

_c
gs

m

di
jk
st
ra

ad
pc

m
_d

Figure 16. Data set optimal speedups relative to -fast for 8000
combinations.

combinations are reported in Figure 16. Compared to Figure 2(a),
except for a few data sets (e.g., in sha and adpcm d), we observe
no significant difference overall, which suggests that 300 combina-
tions may be enough to represent the optimization space that can
be explored in a reasonable time window.

5.4 Platforms and benchmarks
More generally, we cannot assert that our conclusions generalize
beyond our benchmark suite, compiler platforms (Intel ICC and
GNU GCC) and target architecture. There are also obvious exam-
ples where the performance of program segments is data set sen-
sitive; auto-tuned libraries like FFTW [25] or ATLAS [31] are ex-
amples where data set dependent tuning is useful. Nevertheless, our
results suggest that, in general, the data set sensitivity problem may
have been overstated. We also note that our results are consistent
across all benchmarks so far.

5.5 Fine-grain iterative optimization
For now, we only considered whole-program optimizations, i.e.,
a combination of compiler optimizations is applied across the en-
tire program. However, a more fine-grain iterative optimization ap-
proach may apply different combinations to different sections of the
code (e.g., functions or loops). Fine-grain iterative optimization is
more complicated because it introduces optimization dependences
(and possibly ripple effects): e.g., applying a combination to func-
tion F1 can affect the behavior of another function F2, and thus the
choice of its best combination. This dependence complicates the
problem as well as largely increases the design space. We will ex-
plore practical ways to tackle that issue as part of our future work.

5.6 Measurement bias
Recent work by Mytkowicz [26] raises the issue of measurement
bias, and provides evidence for two sources of measurement bias,

namely link order and environment size. We believe that link or-
der should not be considered measurement bias in the context of
iterative optimization. Link order should rather be viewed as an-
other opportunity for iterative optimization. Environment size af-
fects only one fourth of the benchmark programs in [26] by a small
margin only (within ±2% using ICC). In our study, 73% of pro-
gram/dataset pairs have a speedup that is higher than 1.02, and are
thus relatively immune to this source of measurement bias.

6. Related Work
We already mentioned in the introduction that several studies have
investigated the impact of data sets on program behavior and per-
formance. And some of these have even looked how data sets af-
fect program optimization decisions. Most of these works remain
limited by the restricted number of data sets available in existing
benchmark suites. The SPEC CPU2000 suite contains 3 input sets
per benchmark, and most benchmarks have less than 10 data sets in
the SPEC CPU2006. The embedded EEMBC benchmark suite [1]
also contains less than 10 data sets for most benchmarks. The re-
cently introduced parallel PARSEC benchmark suite [7] contains
6 data sets for each benchmark. A large number of data sets is not
only useful for compiler research and workload characterization re-
search (e.g., [21]), many architecture studies rely on profile-based
optimization techniques as well [23, 28], and may benefit from hav-
ing more data sets in order to study data set sensitivity.

Several studies have investigated redundancy among data sets
and how to find a minimal set of representative programs and
inputs for architecture research [11]. We use several of the proposed
statistical techniques and feature characterization approaches in
this article to investigate our own data set suite.

Finally, we have mentioned the broad set of iterative/adaptive
compilation techniques which attempt to find the best possible
compiler optimizations by stochastically scanning the set of all
possible combinations [4, 10, 12, 17, 19, 22, 29]. They have
demonstrated that optimizations search techniques can effectively
improve performance of statically compiled programs on rapidly
evolving architectures, thereby outperforming state-of-the-art com-
pilers, albeit at the cost of a large number of exploration runs. Many
of these research works have shown how machine-learning and sta-
tistical techniques [4, 9, 12, 22, 29] can be used to select or tune
program transformations based on program features. Most of these
works also require a large number of training runs. For instance,
Stephenson et al. [30] and Arnold et al. [5] collect profile infor-
mation across multiple runs of a Java program to selectively apply
run-time optimizations.

7. Conclusions and Future Work
Using KDataSets, a collection of 1000 data sets for 32 programs,
we investigate a fundamental issue in iterative optimization, which
could not be thoroughly evaluated up to now: whether it is pos-
sible to learn the best possible compiler optimizations across dis-
tinct data sets. We conclude that the issue seems significantly more
simple than previously anticipated, with the ability to find a near-
optimal combination of compiler optimizations across all data sets.
We outline a process for selecting the program-optimal combina-
tion, and we investigate the impact of performing iterative opti-
mization in an unrealistic context.

For now, we have investigated whole-program optimizations,
and we intend to study whether the same conclusions are sustained
for fine-grain optimizations. We also intend to apply our conclu-
sions to datacenters where, typically, a few programs are run a
very large number of times, and where any execution time reduc-
tion translates into proportional gains in datacenter equipment and
operating costs.

Acknowledgments
We would like to thank the anonymous reviewers for their valu-
able feedback. Lieven Eeckhout is supported through the FWO
projects G.0232.06, G.0255.08, and G.0179.10, and the UGent-
BOF projects 01J14407 and 01Z04109. Olivier Temam is sup-
ported by the IST FP7 HiPEAC2 contract No. IST-217068. Olivier
Temam and Grigori Fursin are supported by EU FP6 MILEPOST
project contract No. IST-35307. The rest of the authors are sup-
ported by National Natural Science Foundation of China under
grant No. 60873057 and 60921002, and National Basic Research
Program of China under grant No. 2005CB321602.

References
[1] EEMBC: The Embedded Microprocessor Benchmark Consortium.

http://www.eembc.org.

[2] cBench: Collective Benchmarks. http://www.ctuning.org/
cbench.

[3] PAPI: A Portable Interface to Hardware Performance Counters. http:
//icl.cs.utk.edu/papi.

[4] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams. Using
machine learning to focus iterative optimization. In Proceedings of
the International Symposium on Code Generation and Optimization
(CGO), pages 295–305, March 2006.

[5] M. Arnold, A. Welc, and V.T.Rajan. Improving virtual machine per-
formance using a cross-run profile repository. In Proceedings of the
ACM Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 297–311, October 2005.

[6] P. Berube and J. Amaral. Aestimo: a feedback-directed optimization
evaluation tool. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages
251–260, March 2006.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 72–81, October 2008.

[8] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and
O. Temam. Rapidly selecting good compiler optimizations using
performance counters. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), pages 185–197, March
2007.

[9] K. Cooper, P. Schielke, and D. Subramanian. Optimizing for reduced
code space using genetic algorithms. In Proceedings of the Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 1–9, July 1999.

[10] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian,
L. Torczon, and T. Waterman. ACME: adaptive compilation made
efficient. In Proceedings of the ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 69–77, July 2005.

[11] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quantifying
the impact of input data sets on program behavior and its applications.
Journal of Instruction-Level Parallelism, 5:1–33, February 2003.

[12] B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. Probabilistic
source-level optimisation of embedded programs. In Proceedings of
the ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 78–86, July 2005.

[13] G. Fursin and O. Temam. Collective optimization. In Proceedings of
the International Conference on High Performance Embedded Archi-
tectures & Compilers (HiPEAC), pages 34–49, January 2009.

[14] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam. Midatasets:
Creating the conditions for a more realistic evaluation of iterative
optimization. In Proceedings of the International Conference on High
Performance Embedded Architectures & Compilers (HiPEAC), pages
245–260, January 2007.

http://www.eembc.org
http://www.ctuning.org/cbench
http://www.ctuning.org/cbench
http://icl.cs.utk.edu/papi
http://icl.cs.utk.edu/papi

[15] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the IEEE Fourth Annual Interna-
tional Workshop on Workload Characterization (WWC), pages 3–14,
December 2001.

[16] M. Haneda, P. Knijnenburg, and H. Wijshoff. On the impact of data
input sets on statistical compiler tuning. In Proceedings of the 20th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), April 2006.

[17] K. Hoste and L. Eeckhout. Cole: compiler optimization level explo-
ration. In Proceedings of the Sixth Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 165–
174, April 2008.

[18] K. Hoste and L. Eeckhout. Comparing benchmarks using key
microarchitecture-independent characteristics. In Proceedings of
the IEEE International Symposium on Workload Characterization
(IISWC), pages 83–92, October 2006.

[19] K. Hoste, A. Georges, and L. Eeckhout. Automated just-in-time com-
piler tuning. In Proceedings of the Eighth Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO),
April 2010.

[20] W. C. Hsu, H. Chen, P. C. Yew, and D.-Y. Chen. On the predictability
of program behavior using different input data sets. In Proceedings
of the Sixth Annual Workshop on Interaction between Compilers and
Computer Architectures (INTERACT), pages 45–53, February 2002.

[21] Y. Jiang, E. Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and
Y. Gao. Exploiting statistical correlations for proactive prediction of
program behaviors. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO), April 2010.

[22] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones.
Fast searches for effective optimization phase sequences. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 171–182, June 2004.

[23] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho.
Profile-based dynamic voltage and frequency scaling for a multiple

clock domain microprocessor. In Proceedings of the 30th Annual
International Symposium on Computer Architecture (ISCA), pages 14–
27, June 2003.

[24] F. Mao, E. Z. Zhang, and X. Shen. Influence of program inputs on
the selection of garbage collectors. In Proceedings of the ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE), pages 91–100, March 2009.

[25] F. Matteo and S. Johnson. FFTW: An adaptive software architecture
for the FFT. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), volume 3, pages
1381–1384, May 1998.

[26] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Proceeding
of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
265–276, February 2009.

[27] Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler
optimizations for automatic performance tuning. In Proceedings of
the International Symposium on Code Generation and Optimization
(CGO), pages 319–332, March 2006.

[28] K. Sankaranarayanan and K. Skadron. Profile-based adaptation for
cache decay. ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 1:305–322, September 2004.

[29] M. Stephenson, M. Martin, and U. O’Reilly. Meta optimization:
Improving compiler heuristics with machine learning. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 77–90, June 2003.

[30] M. W. Stephenson. Automating the Construction of Compiler Heuris-
tics Using Machine Learning. PhD thesis, MIT, USA, January 2006.

[31] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical
optimization of software and the atlas project. In Parallel Computing,
March 2001.

[32] Y. Zhong, X. Shen, and C. Ding. Program locality analysis using
reuse distance. Transactions on Programming Languages and Systems
(TOPLAS), 31(6):1–39, Aug. 2009.

	Introduction
	KDataSets: A 1000-Data Set Suite
	Data Set Characterization
	Experimental setup
	Performance characterization
	How programs react to compiler optimizations across data sets
	KDataSets versus MiDataSets

	Iterative Optimization in Practice
	Program-optimal combinations
	How to select the program-optimal combination
	Alternative ways for selecting program-optimal combinations
	How many data sets are needed
	Evaluating iterative optimization within a realistic experimental context
	Pre-shipping scenario

	Post-shipping scenario
	Analysis: Key compiler optimizations

	Discussion on scope of the results
	Results for GNU's GCC
	Data sets coverage
	Compiler combinations
	Platforms and benchmarks
	Fine-grain iterative optimization
	Measurement bias

	Related Work
	Conclusions and Future Work

