
Reliability-Aware Garbage Collection for Hybrid
HBM-DRAMMemories

WENJIE LIU, Ghent University
SHOAIB AKRAM, Australian National University
JENNIFER B. SARTOR, Ghent University
LIEVEN EECKHOUT, Ghent University

Emerging workloads in cloud and data center infrastructures demand high main memory bandwidth and
capacity. Unfortunately, DRAM alone is unable to satisfy contemporary main memory demands. High-
bandwidth memory (HBM) uses 3D die-stacking to deliver 4–8× higher bandwidth. HBM has two drawbacks:
(1) capacity is low, and (2) soft error rate is high. Hybrid memory combines DRAM and HBM to promise low
fault rates, high bandwidth, and high capacity. Prior OS approaches manage HBM by mapping pages to HBM
versus DRAM based on hotness (access frequency) and risk (susceptibility to soft errors). Unfortunately, these
approaches operate at a coarse-grained page granularity, and frequent page migrations hurt performance.

This paper proposes a new class of reliability-aware garbage collectors for hybrid HBM-DRAM systems
which place hot and low-risk objects in HBM and the rest in DRAM. Our analysis of 9 real-world Java
workloads shows that: (1) newly-allocated objects in the nursery are frequently written, making them both
hot and low-risk, (2) a small fraction of the mature objects are hot and low-risk, and (3) allocation site is
a good predictor for hotness and risk. We propose RiskRelief, a novel reliability-aware garbage collector
that uses allocation site prediction to place hot and low-risk objects in HBM. Allocation sites are profiled
offline and RiskRelief uses heuristics to classify allocation sites as DRAM and HBM. The proposed heuristics
expose Pareto-optimal trade-offs between soft error rate (SER) and execution time. RiskRelief improves SER
by 9× compared to an HBM-Only system while at the same time improving performance by 29% compared
to a DRAM-Only system. Compared to a state-of-the-art OS approach for reliability-aware data placement,
RiskRelief eliminates all page migration overheads, which substantially improves performance while delivering
similar SER. Reliability-aware garbage collection opens up a new opportunity to manage emerging HBM-
DRAM memories at fine granularity while requiring no extra hardware support and leaving the programming
model unchanged.

CCS Concepts: • Computer systems organization → Reliability; Heterogeneous (hybrid) systems;
Processors and memory architectures; • Software and its engineering → Garbage collection.

Additional Key Words and Phrases: Soft-error reliability, hybrid memories, high-bandwidth memory, garbage
collection

This work is supported by the European Research Council (ERC) Advanced Grant agreement no. 741097, and FWO projects
G.0434.16N and G.0144.17N. Wenjie Liu is supported through a CSC fellowship.
Authors’ addresses: L. Liu, J. B. Sartor and L. Eeckhout, ELIS Department, Ghent University, iGent, Technologiepark 126,
9052 Zwijnaarde, Belgium; emails: Wenjie.Liu@UGent.be, Jennifer.Sartor@UGent.be, Lieven.Eeckhout@UGent.be; S. Akram,
Research School of Computer Science, Australian National University, 108 North Road Canberra ACT 2600, Australia; email:
shoaib.akram@anu.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/1-ART1
https://doi.org/10.1145/3431803

Page 1 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

https://doi.org/10.1145/3431803

1:2 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

ACM Reference Format:
Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout. 2020. Reliability-Aware Garbage Collection
for Hybrid HBM-DRAM Memories. ACM Trans. Arch. Code Optim. 1, 1, Article 1 (January 2020), 25 pages.
https://doi.org/10.1145/3431803

1 INTRODUCTION
Emerging cloud workloads, such as machine learning inference and stream analytics, have en-
couraged new throughput-oriented compute platforms. These platforms consist of many-core
processors, graphic processing units, and a range of accelerators. Altogether, these compute plat-
forms have an insatiable demand for main memory bandwidth. The confluence of ever-growing
compute power and the slow historical growth in pin count for off-chip communication [33]
has exacerbated the memory bandwidth wall [56]. High Bandwidth Memory (HBM) [7], i.e., 3D-
stacked DRAM, delivers higher bandwidth than traditional DRAM, while consuming less power
and space [10, 18, 19, 22, 28, 38, 39, 61].
HBM has two shortcomings though: (1) capacity is limited to a couple GBs, and (2) soft error

rate is high due to higher density and new failure modes [34, 49]. Hybrid HBM-DRAM memory
combines the best of both worlds to provide high capacity and high bandwidth. Unfortunately,
unless properly managed, HBM reliability is a concern. Our experimental results reveal that an
HBM-Only system yields 34% higher performance than a DRAM-Only system, but the entire
program heap is capacity-limited and, moreover, is highly vulnerable to soft errors. A DRAM-Only
system, on the other hand, is substantially more reliable (by at least two orders of magnitude), but
at the expense of considerably lower performance compared to HBM-Only. The goal of this work
is to achieve the best of both worlds, i.e., deliver high reliability while achieving high performance.
A flurry of prior work proposes hardware and OS approaches to optimize hybrid memory

performance. Specifically, hardware approaches use HBM as a cache for DRAM [18, 19, 37, 41, 43],
whereas OS approaches map frequently accessed pages in HBM [51, 54, 55, 62]. Only recently
have researchers turned attention to data placement approaches to address the low reliability
of HBM [27]. Indeed, soft error rates in production systems are continuously increasing, and
they grow proportionally with information density [42]. Hardware-only approaches to tackle
reliability are insufficient because they will soon require impractical error detection and correction
capabilities [47]. OS approaches [27] also face drawbacks: (1) they are reactive, (2) page migrations
incur significant performance penalty, and (3) they are coarse-grained and require excessive HBM
capacity.
This paper takes a different, so far unexplored, approach by leveraging garbage collection in

modern managed languages to place program data in hybrid HBM-DRAM memory at a finer
granularity than state-of-the-art OS approaches. Garbage collection (GC) in managed languages
such as Java, C#, JavaScript, Python, and Ruby manages virtual heap memory on behalf of the
programmer. Most high-performance GCs place newly allocated (young) objects in a small nursery
space. A nursery collection copies surviving objects to the mature space. This generational heap
organization leads to short pause times and high application (mutator) locality and performance [8].
Our analysis of various Java applications from the DaCapo suite [13] shows that: (1) nursery
objects are hot (frequently accessed) and low-risk (highly mutated), and (2) only a small fraction of
nursery survivors are hot and low-risk. These results reveal an opportunity to effectively manage
HBM-DRAM memory.

This work proposes a new class of reliability-aware garbage collectors for hybrid memory. These
collectors place hot and low-risk objects in HBM to improve reliability and performance. The
remaining objects are placed in DRAM to utilize its large capacity. Reliability-aware garbage
collection overcomes the disadvantages of the state-of-the-art OS approach. Specifically, prediction

Page 2 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

https://doi.org/10.1145/3431803

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:3

enables pro-active allocation of objects in HBM as opposed to reactive page migrations. Moreover,
placing objects using GC eliminates the overhead of costly page migrations.
In this paper, we propose two reliability-aware garbage collectors. RiskRelief-Nursery (RR-N)

places the nursery in HBM and the mature space in DRAM. It requires minimal changes to the
Java runtime but is highly effective in delivering low soft error rates compared to an HBM-Only
system, while improving performance compared to a DRAM-Only system. RiskRelief-Mature (RR-
M) places the nursery in HBM and exploits offline program profiling to place hot and low-risk
nursery survivors in HBM. We show that mature object hotness and risk are predictable on a
per allocation-site basis. Surprisingly perhaps, we find that object hotness and risk are weakly
correlated. Hence, placing objects in HBM based solely on hotness significantly hurts reliability.
The insight is to place objects in HBM versus DRAM based on hotness and risk.

Based on these observations, we propose heuristics to classify allocation sites as DRAM and
HBM. Allocation sites are classified as HBM if most objects they allocate are hot and low-risk.
All other allocation sites default as DRAM. We generate this per allocation-site advice offline and
feed it to RR-M. In turn, RR-M uses the advice during runtime to place nursery survivors in HBM
or DRAM. Our proposed heuristics expose previously unseen Pareto-optimal trade-offs between
execution time and soft error rate. A single profiling run generates a range of advices for the GC
runtime. Thus, depending upon factors such as environmental conditions, available HBM capacity
and performance goals, a system operator can adjust the advice fed to RR-M to meet specific
constraints.

Our experimental results show that RR-N reduces the overall soft error rate by 18× on average
compared to an HBM-Only system, while improving performance over a homogeneous DRAM-Only
system by 20%. The state-of-the-art OS solution by Gupta et al. [27] achieves similar SER as RR-N,
however, performance is substantially worse (even worse than the DRAM-Only system) because
of the high cost of TLB shootdowns on modern x86 multicores [51]. Both RR-N and the prior OS
approach use a modest 128 MB of HBM on a 32-core platform. RR-M uses an additional 18% of
HBM capacity but delivers 29% higher performance compared to a DRAM-Only system. Higher
HBM capacity impacts overall SER and RR-M reduces SER by 9× over HBM-Only.
In summary, the main contributions of this paper are:
• hotness (access frequency) and risk (susceptibility to soft errors) characterization of objects in
Java applications, showing that hotness and risk are only weakly correlated;

• showing that allocation site is a good predictor for object hotness and risk;
• the design and implementation of reliability-aware garbage collection for hybrid HBM-DRAM
memories to minimize soft error rate while maximizing overall application performance — in
contrast, performance-optimized HBM-DRAM management significantly hurts reliability;

• profile-driven RiskRelief reliability-aware collectors that exploit allocation-site prediction to
place hot and low-risk objects in HBM and the rest in DRAM;

• a profiling framework to measure object hotness and risk on a per allocation-site basis; two
heuristics to generate the allocation advice for GC; and a compilation framework that exploits
the advice to steer allocation of objects in HBM and DRAM.

• simulation and real hardware emulation results motivating hybrid HBM-DRAM memory for
Java applications, and showing that RiskRelief collectors manage hybrid HBM-DRAM memory
significantly better than state-of-the-art OS approaches.

2 EXPLOITING HIGH-BANDWIDTH MEMORY
In this section, we discuss the motivation for HBM, and we describe its distinct performance and
reliability characteristics. We also review existing approaches to manage HBM.

Page 3 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:4 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

2.1 3D-Stacked Memory
Disruptive approaches to mitigate the memory bandwidth wall are needed [56]. The bandwidth
between conventional DRAM and the processor is limited by pin count, which increases by roughly
10% every year [33]. However, compute power grows much more rapidly. Furthermore, having
enough pins to stream a 1024-bit word every cycle to the processor would require 40 Watt just for
memory I/O [48]. High-bandwidth memory vertically stacks DRAM chips in a 3D arrangement to
deliver higher bandwidth than conventional DRAM. Through-silicon vias (TSVs) interconnect the
vertically stacked chips using wide communication lanes.

Conventional DRAM technology, e.g., DDR4, places two 64-bit words on the data bus every cycle.
Several DRAM chips work in tandem to produce the word. For example, 16 ×4 chips each provide 4
bits every cycle to render a 64-bit word. In contrast, the state-of-the-art HBM standard allows up to
12 dies per stack, and each stack has 8 unique 128-bit channels per stack, leading to a much wider,
1024-bit memory interface [35]. Internally, each DRAM chip consists of many banks. A 64-byte
cache line is striped across banks in different DRAM chips to maximize parallelism. Hardware
employs error correction codes (ECC) to shield against soft errors. Typically, an additional chip
provides ECC protection to the data word. Most commonly, DRAM employs single-error correcting,
double-error detecting (SECDED) codes.

HBM inherits the failure modes of conventional DRAM because it uses a similar cell technology
and array layout. Unfortunately, new failure modes exist in HBM, for instance, due to TSV fail-
ures [34]. HBM also exhibits higher bit density increasing susceptibility to soft errors [7, 27, 34, 36].
Furthermore, HBM employs weaker error correction due to cost and complexity constraints [27, 36].
Put together, HBM reliability is a major concern which necessitates hardware and software ap-
proaches to mitigate the vulnerability to soft errors in HBM and improve the overall reliability of
the memory system.

2.2 Managing HBM in Hardware
Exploiting HBM as a last-level DRAM cache is predominant. In particular, prior work proposes new
organizations for DRAM caches [38], intelligent tag placement (for example, co-locating tags with
data) [28, 41], new techniques to reduce the bandwidth consumed by cache operations [18, 19], and
techniques to enable set associativity in giga-scale DRAM caches [71]. Prior work also attempts
to mitigate the performance overhead of DRAM caches for capacity-limited applications [17].
Although transparent to the software stack, DRAM caches have two drawbacks: (1) they limit the
available memory capacity, and (2) they require extensive hardware support because conventional
SRAM-based cache organizations are suboptimal for DRAM technology. Moreover, none of this prior
work considers the low reliability of HBM, thus rendering program data in HBM highly vulnerable
to transient faults. Liu et al. [44] propose Binary Star which coordinates the reliability schemes in
the 3D DRAM LLC versus main memory to improve the reliability of the overall memory hierarchy.
Binary Star achieves high reliability for the overall memory system with limited performance loss,
while requiring modifications to both system software and hardware. RiskRelief does not require
any hardware changes.
ECC codes are the first line of defense against transient faults. DRAM scaling relies on ECC

hardware because smaller DRAM cells are more susceptible to soft errors. Several works study
DRAM soft error rates in the field [59, 63, 64]. Weaker ECC backs die-stacked memory due to
implementation costs [36] and thus requires soft error mitigation from other sources, e.g., through
software, as we discuss next.

Page 4 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:5

2.3 Managing HBM in the OS
Existing OS approaches to manage hybrid HBM-DRAM memory aim at either maximizing perfor-
mance or balancing performance and reliability. Performance-focused approaches hurt reliabil-
ity [55], because they place all hot pages in HBM while being agnostic to soft error vulnerability.
Gupta et al. [27] propose a dynamic page migration scheme which estimates page hotness and
risk using performance counters and which migrates (every 100ms) cold and high-risk pages to
DRAM, and hot and low-risk pages to HBM. In contrast, we estimate hotness and risk at a much
finer granularity of objects. Our solution pro-actively places objects in HBM versus DRAM, and
does not require dynamic monitoring nor additional performance counter hardware. We compare
to the OS page migration approach in this work.
Oskin and Loh [51] propose OS-managed DRAM caches. Their work shows the high cost of

page migrations due to TLB shootdowns. They also explore statically partitioning program data
in C applications in DRAM and HBM, albeit with negligible benefits. Their proposal does not
consider the heterogeneity in reliability in a hybrid HBM-DRAM memory system. We expose both
DRAM and HBM to the OS to exploit full memory capacity. Furthermore, this is the first work to
expose 3D-stacked memory to garbage collection in the managed runtime for fine-grained object
placement.

3 BACKGROUND
Before describing how RiskRelief predicts hotness and risk and leverages these predictions to
manage hybrid HBM-DRAM systems, we first provide additional background in soft error reliability
and managed runtimes.

3.1 Soft Error Reliability
RiskRelief builds upon two notions, namely hotness and risk. Intuitively, hotness refers to how
frequently an object is accessed, whereas risk refers to how susceptible an object is to soft errors.
We now define both concepts and focus on risk more because it is a less well-known metric.
Hotness. Hotness is a well-known concept and typically refers to how frequently a particular code
segment executes. Analogously, we define the hotness of an object as to how frequently the object
is accessed through read or write operations. We define an object’s hotness as the sum of reads
and writes to the object. Our analysis shows that of all accesses to objects, 54% of the accesses on
average are reads, and 46% are writes. The high percentage of writes motivates our hotness criteria
as the sum of reads and writes.
Risk. Quantifying the risk of an object in HBM is more involved. We build upon the mechanistic
notion of architectural vulnerability factor (AVF) to quantify susceptibility to soft errors. AVF
is the probability that a transient fault leads to an observable program error. To compute AVF,
Mukherjee et al. [57] categorize all bits in a hardware structure into two types: (1) those necessary
for architecturally correct execution (ACE), and (2) the remaining un-ACE bits. A fault in the ACE
bits results in an observable program error (assuming the fault evades ECC hardware), and a fault
in un-ACE bits has no bearing on program correctness. A bit can be ACE for only a fraction of the
total execution time. The AVF of a hardware structure is the fraction of all bits that are in ACE
state during each cycle.

Precisely computing AVF of an object requires tracking every read and write operation. Consider
an object 𝑂 , stored at memory location 𝑀 , is written at time 𝑡1 and read at times 𝑡2 and 𝑡3, after
which 𝑂 is dead from the program’s point of view (i.e., no other memory location points to 𝑂).
𝑂 is ACE for 𝑡3 − 𝑡1 time units, namely between the write at 𝑡1 and its last read at 𝑡3. In case the
object would have been written at times 𝑡2 and 𝑡3, the object would be un-ACE throughout. In other

Page 5 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:6 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

words, to precisely compute the AVF of an object, one needs to track all reads and all writes, which
is too high overhead to do online in the context of a managed runtime.
Instead, we build upon prior work [27] and use proxy metrics that are easier to collect while

correlating well with AVF. The proxies considered are the writes to reads ratio (𝑊𝑟/𝑅𝑑) and the
writes-squared to reads ratio (𝑊𝑟

2/𝑅𝑑). The intuition behind these proxies is that an object that is
written a lot is more likely to lead to more un-ACE periods. We use the writes-squared to reads
ratio in this work because it places extra emphasis on the absolute number of accesses [27]. Since
writes-squared to reads ratio is inversely proportional to AVF, we refer to it as AVF-X. In other
words, a high writes-squared to reads ratio (high AVF-X) means low risk, and vice versa. Soft error
rate (SER) is defined as the product of a device’s failure-in-time (FIT-Rate) and AVF. FIT-Rate is
defined as the raw failure rate due to single event faults, and depends on environmental factors
and circuit characteristics.

3.2 Managed Runtimes
Java Virtual Machine. This work uses the language runtime to improve system reliability in
hybrid memory systems. Our work generalizes to languages with garbage collection, but we use
the Java Virtual Machine (JVM) in this work. Exposing HBM to the JVM entails extending the
OS NUMA interface [3]. We use the open-source Jikes Research VM (RVM) as our platform. Jikes
RVM’s modular design makes it easy to modify [5, 6, 12, 25]. Jikes RVM is a meta-circular VM
written in Java. It has both a baseline and an optimizing compiler, along with several garbage
collectors [11, 14, 60]. The object layout and metadata, and a variety of reference barriers can be
changed quickly because of the clean interface between the compiler and garbage collector [25, 69].
Generational Garbage Collection. Despite other differences, garbage collectors in modern lan-
guages have converged on a generational heap organization. The generational organization delivers
high performance because many objects die young [65]. The application (mutator) allocates new
objects contiguously into a nursery. When the nursery memory is full, a minor collection first
identifies live roots that point into the nursery, e.g., from global variables, the stack, registers, and
the mature space. It then identifies reachable objects by tracing references from these roots. It copies
reachable objects to a mature space. The nursery space is claimed en masse for fresh allocation.
Nursery size. Nursery size is critical to overall performance, pause time, and space efficiency [8,
11, 66, 72]. A nursery collection incurs a fixed cost to scan the root set and a variable cost depending
upon the number of objects that survive a minor collection. Large nurseries sometimes improve
performance because objects have more time to die. They, however, increase the overall mem-
ory footprint, often unnecessarily retaining dead short-lived objects, and they incur high pause
times [50, 72]. We use a 4MB nursery because prior work establishes that it performs well for our
applications [13, 58].
GenImmix.We build on the best-performing collector in Jikes RVM: generational Immix (Gen-
Immix) [14]. We use it as the baseline and modify it to create the RiskRelief collectors. GenImmix
uses a copying nursery and a mark-region mature space. The mark-region mature space consists
of a hierarchy of blocks and lines. Blocks are multiples of page sizes and constitute multiple lines.
Lines are multiples of cache line sizes. Objects can span lines but not blocks. Nursery collections
copy nursery objects consecutively in space into free lines within blocks in the mature space by
incrementing a bump pointer equal to the size of the object. This contiguous allocation outperform
free-list allocators due to its locality benefits [11, 14, 32]. Immix reclaims memory at a line and
block granularity by marking lines and blocks live when it marks objects live during tracing. To
defragment blocks, it combines marking with copying based on runtime heuristics. We use the
default settings for the maximum object size (8 KB), for line size (256 bytes), and block size (32 KB).

Page 6 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:7

0
20
40
60
80

100

0 50 100 150

%
 m

at
u

re

sites sorted by hotness

Hotness Volume

90%

32%

(a) Hotness and Volume for Fop

0
2
4
6
8

10

0 50 100

%
 A

V
F-

X

sites sorted by hotness

Mean AVF-X AVF-X

(b) AVF-X for Fop

0
20
40
60
80

100

0 100 200 300

%
 m

at
u

re

sites sorted by hotness

Hotness Volume

90%

21%

(c) Hotness and Volume for Bloat

0

1

2

3

4

0 50 100 150

%
 A

V
F-

X

sites sorted by hotness

Mean AVF-X AVF-X

(d) AVF-X for Bloat

0
20
40
60
80

100

0 100 200 300

%
 m

at
u

re

sites sorted by hotness

Hotness Volume
80%

66%

(e) Hotness and Volume for Pmd

0
5

10
15
20
25

0 50 100 150 200 250

%
 A

V
F-

X

sites sorted by hotness

Mean AVF-X AVF-X

(f) AVF-X for Pmd

Fig. 1. Distribution of hotness and mature heap volume by allocation site (left column), versus risk for the
top hottest allocation sites (right column) for Fop (top), Bloat (middle), and Pmd (bottom).

The JVM manages objects larger than an 8 KB threshold separately, allocating them directly into a
non-copying large object space [40].

4 HOTNESS AND RISK PREDICTION
This section motivates allocation-site prediction for object hotness and risk.

4.1 Distribution of Hotness and Risk
We start by quantifying hotness and risk across allocation sites for three benchmarks that are
representative for the entire benchmark suite, namely Fop, Bloat and Pmd. Figure 1 (left column)
shows the cumulative distribution of mature-object hotness and their total volume (as a percentage
of total mature allocation) per allocation site. Allocation sites are sorted on the horizontal axis by
their hotness. We observe that a large fraction of mature-object accesses are captured by a relatively
small fraction of the mature heap. For example, for Fop, 90% of the mature-object accesses are
concentrated to only 32% of the mature heap. This result suggests an opportunity to allocate the

Page 7 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:8 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

0

20

40

60

80

100

100 90 80 70 60 50

%
 o

f
h

ea
p

 v
o

lu
m

e

Homogeneity (%)

Hotness

Risk

Combined

Fig. 2. Percentage heap volume as a function of allocation-site homogeneity for hotness, risk, and combined
hotness and risk assuming a 10% cutoff threshold.

relatively small fraction of hot objects in HBM to improve performance while placing the bulk of
the mature heap in DRAM to exploit its capacity. Unfortunately, using hotness as the sole criterion
to place objects in HBM versus DRAM severely compromises a program’s vulnerability to soft
errors. The graphs in the right column of Figure 1 report AVF-X for the objects allocated from the
top-100 hot allocation sites. To provide a point of reference, we also report mean AVF-X across
all mature objects. We observe a remarkable variation in AVF-X across allocation sites from well
below to well above the mean. It is clear from these graphs that hotness does not imply low risk,
i.e., a hot object may be high-risk or low-risk. In other words, hotness is not predictive for risk.
This result implies that using hotness alone as a criterion to classify allocation sites as low- versus
high-risk severely compromises soft error vulnerability. Instead, we need a method that classifies
allocation sites for both hotness and risk combined, which is what we describe next.

4.2 Allocation-Site Homogeneity
The key insight that underpins RiskRelief is that allocation site is a good predictor for both hotness
and risk. To demonstrate this is indeed the case, we first compute the hotness and risk for all objects
and we determine which objects are among the top 10% (cutoff-threshold) for either criterion. More
specifically, we label an object as hot if it is among the 10% hottest objects; if not, the object is
classified as cold. Similarly for risk, we label an object as low-risk if it is among the 10% lowest-risk
objects; otherwise, the object is classified as high-risk. We then compute for each allocation site, the
fraction hot versus cold objects, the fraction low-risk versus high-risk objects, and the fraction of
objects that are both hot and low-risk (i.e., combined). We define homogeneity of an allocation site
with respect to hotness, risk or combined hotness/risk, as the fraction of objects that are classified
in the same category. For example for the combined metric, perfect (100%) homogeneity means that
all objects allocated from this site are both hot and low-risk, or they are not, i.e., they are either
cold or high-risk. On the other hand, a value of 50% means no homogeneity, i.e., 50% of objects are
hot and low-risk, whereas the remaining 50% is either cold or high-risk.
Figure 2 reports the percentage heap volume as a function of allocation site homogeneity for

hotness, risk, and the combined metric; we report average results across all benchmarks. This graph
shows the fraction of heap volume allocated by sites that have a homogeneity of at least 𝑁%, with 𝑁
varying from 100 to 50%. The higher the fraction heap volume covered, the better. As expected, heap
volume increases with decreasing allocation site homogeneity. At 100% homogeneity, a relatively
small fraction of the total heap volume is covered. However, reducing homogeneity quickly increases
the heap volume covered. At 50% homogeneity, the entire heap is covered. The most important, and
perhaps surprising, insight from this graph is that the combined metric outperforms the isolated

Page 8 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:9

Fig. 3. Overview of RiskRelief. Offline analysis records the number of reads and writes to all objects. Then,
per-object hotness and risk metrics are used to generate an allocation site classification advice which serves
as input to a bytecode rewriter. The rewriter annotates hot and low-risk sites as HBM, steering the garbage
collector to place objects in HBM.

hotness and risk metrics. For example, for 90% homogeneity, more than 97% of the heap is correctly
classified for the combined metric, versus 79% and 72% for hotness and risk, respectively. This
implies that allocation site is a more accurate predictor for hotness and risk combined, than for hotness
and risk in isolation. The intuition is that fewer objects satisfy both the hotness and risk thresholds.
We thus conclude that allocation site is a very accurate predictor to predict whether objects are hot
and low-risk for placement in HBM.

Note that high allocation site homogeneity does not imply that the majority of objects are both
hot and low-risk. In fact, an allocation site can have high homogeneity but produce predominantly
cold objects, or produce predominantly high-risk objects, or produce predominantly hot and low-
risk objects. We only want allocation sites that allocate hot and low-risk objects to be classified
as HBM. We find that RiskRelief is sensitive to the object hotness and risk cutoff threshold, but is
rather insensitive to the allocation site homogeneity threshold. We use a default object hotness
and risk cutoff threshold of 20% and explore its sensitivity in the evaluation section. We use an
aggressive allocation site homogeneity threshold of 1% to classify allocation sites as HBM that
produce even a small fraction of hot and low-risk objects, i.e., at least 1% of the objects allocated
from this site are both hot and low-risk. (Note that because of high allocation site homogeneity,
this implies that most objects are hot and low-risk.) We choose this aggressive threshold to make
sure that hot and low-risk objects are allocated in HBM to the extent possible.

5 RELIABILITY-AWARE GARBAGE COLLECTION
Reliability-aware garbage collection places hot and low-risk objects in HBM, and the rest in DRAM.
We first provide a general overview of RiskRelief after which we describe the different components
in more detail.

5.1 Overview
Figure 3 shows the workflow of RiskRelief. We first profile the Java application to collect per-
object read- and write-intensity traces. We then group objects in traces by their allocation site. We
use per-object hotness and risk to classify allocation sites as HBM to DRAM, based on heuristics.
This classification constitutes advice which we use to annotate Java bytecodes as HBM. All other
allocation sites default to DRAM. During production, RiskRelief uses a unique allocation sequence
for HBM-marked allocation sites. This sequence places hot and low-risk objects in HBM.

Page 9 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:10 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

Object Reads Writes Method:Idx

O1 16 8 A():10

O2 16 4 A():10

O3 16 0 A():10

O4 4 8 B():14

O5 4 4 B():14

O6 1 0 B():14

Heuristic θh θt θhot θavf-x HBM Sites

FMID 1% --- 14 4 A

MRAT 1% 20% 24 16 None

MRAT 1% 40% 20 4 A

MRAT 1% 60% 16 4 A

MRAT 1% 80% 12 1 A & B

MRAT 1% 100% 1 0 A & B

(a) Example access trace (c) Allocation site prediction

Hotness AVF-X

24 4

20 1

16 0

12 16

8 4

1 0

(b) Hotness and
risk calculation

Fig. 4. Example of an access trace with allocation sites in the last column (a), per object hotness and AVF-X
(b), and prediction of allocation sites using the FMID and MRAT heuristics (c).

5.2 Profiling
RiskRelief relies on offline profiling of Java programs to discover hot and low-risk objects. The
outcome of profiling is an access trace of per-object reads and writes, see Figure 4 for an example
(we will discuss the example in more detail later). We track reads and writes in an architecture-
independent manner, i.e., we count all load/store accesses to an object’s fields. We count accesses to
an object’s primitive and reference fields, and to its meta-data header, which contains information
such as the class type information, synchronization bits, and garbage collector bits.
Profiling per-object accesses can be done in two ways: (1) using read and write barriers in the

managed runtime, or (2) using dynamic instrumentation. All generational garbage collectors use
reference write barriers for correctness. Write barriers record all mature-to-nursery pointers in a
remembered set, which are processed during a minor collection to precisely identify all live nursery
survivors. Primitive write barriers are a straightforward extension of reference write barriers.
Unlike write barriers, read barriers incur prohibitive overheads [46]. Most production JVMs include
collectors that do not require read barriers. Jikes RVM provides both primitive and reference write
barriers [4], but does not implement read barriers.

We therefore rely on dynamic binary instrumentation instead using Pin [45]. Because Pin has no
notion of an object’s boundary in memory, we deploy a cooperative scheme in which Jikes RVM
records each object’s starting address, its size in bytes, and its allocation site identifier; in turn, Pin
records the number of read and write accesses to each memory location. At the end of the program
execution, we gather logs from Jikes RVM and Pin, and we aggregate the two logs to create the
access trace which contains all the objects instantiated by each allocation site and the total number
of accesses to each object on a per allocation-site basis.

To give each object a unique address in the access trace, we size the mature heap during profiling
to preclude full-heap collections. We further set the nursery size to 4 MB. Using this nursery size is
a good balance between the size of the access trace and the coverage of mature object behaviors.
We label allocation sites with unique identifiers, as in [31].

5.3 Allocation Site Classification
After profiling, we analyze the access trace to generate allocation advice, classifying allocation sites
as HBM versus DRAM. Figure 4(a) shows an example access trace. Two allocation sites contained in
methods A() and B() allocate a total of six objects. The trace also shows the different number of
reads and writes to objects. We analyze the trace to compute per-object hotness and risk using the
definitions described in the previous sections, see Figure 4(b). Next, we use two criteria to label
allocation sites: (1) the fraction of total objects allocated from a site that are hot and low-risk, and

Page 10 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:11

(2) heuristics to decide which objects are hot and low-risk. If the fraction of hot and low-risk objects
allocated from a site is larger than the homogeneity threshold (𝜃ℎ), the site is labeled as HBM;
otherwise, the site is a DRAM site. Next, we use two heuristics to qualify objects as hot versus cold,
and low- versus high-risk.
Fixed-Midpoint (FMID) is inspired by Gupta et al. [27] and uses the average hotness (or AVF-X)
across all mature space objects as the cut-off to quantify the hotness (or risk) of objects from an
allocation site. Specifically, with FMID, we qualify an object as hot if the sum of reads and writes to
that object are above the cut-off (average). FMID has the advantage that hotness and AVF-X are
straightforward to compute. The disadvantage is that it uses a single cut-off value, which leads to a
specific design point in terms of SER, performance and HBM usage. In practice, a heuristic that
exposes a trade-off is more desirable, which we advocate in this paper.
Moving-Ratio (MRAT) uses a ratio namely 𝜃𝑡 (e.g., top-10%) to divide objects into two quadrants,
e.g., hot and cold. The hotness cut-off (𝜃ℎ𝑜𝑡) places an object allocated from a site in the top-10%
of hot objects. Similarly for identifying low-risk objects, the risk cut-off (𝜃𝑎𝑣𝑓 −𝑥) places an object
within the top-10% low-risk objects. The user or system administrator specifies the ratio based
on environmental constraints. Varying the ratio opens up a trade-off between HBM capacity,
performance, and overall SER.

Example. Figure 4(a) shows an example access trace consisting of 6 objects from two allocation
sites in methods A() and B(), respectively. Per-object hotness and risk is shown in Figure 4(b). We
analyze the trace using the FMID and MRAT heuristics, and identify which of the two sites are
classified as HBM in Figure 4(c). We fix 𝜃ℎ at 1%, and vary 𝜃𝑡 from 20% to 100% for MRAT. The
average hotness and risk is 14 and 4, respectively. Therefore, with FMID, the allocation site in
method A() has one object (O1) with hotness larger than the average value, and risk larger than
or equal to the average risk. Since 1 out of 3 objects from this site are hot and low-risk, which is
higher than the homogeneity-threshold of 1%, this site is classified as HBM. Next, we set 𝜃𝑡 to 20%
for MRAT and compute the HBM sites. Since 𝜃𝑡 is 20%, we only consider the hottest object (1 out
of 6), and the lowest risk object to compute 𝜃ℎ𝑜𝑡 and 𝜃𝑎𝑣𝑓 −𝑥 . O1 is the hottest leading to 𝜃ℎ𝑜𝑡 of 24.
Similarly, O4 has the lowest risk, leading to a 𝜃𝑎𝑣𝑓 −𝑥 of 16. Neither allocation site in Figure 4(a)
has an object with both hotness larger than or equal to 24, and risk larger than or equal to 16.
Thus, using MRAT with 𝜃𝑡 at 20% leads to all allocations in DRAM. On the other hand, setting 𝜃𝑡 to
40% or 60% results in allocation in HBM for A(). Finally, setting 𝜃𝑡 to 80% and 100% results in all
allocations in HBM. This example demonstrates the flexibility exposed by MRAT in exploiting the
rich trade-offs that exist between SER, performance, and HBM capacity.

5.4 Bytecode Generation
The previous step generates allocation site advice as a file of <site-string, advice> pairs. The advice
file only includes the HBM-labeled allocation sites. Unlabeled allocation sites default to DRAM.
Since a minority of allocation sites are labeled HBM, the size of the advice file is minimized. We use
bytecode rewriting to communicate allocation site labels to the managed runtime. The bytecode
rewriter first identifies the allocation site and then queries the advice file to check whether the
site is present. If it is not, the rewriter leaves the new bytecode unchanged. If it is, the rewriter
overwrites the new bytecode with a newly introduced new_hbm bytecode. The runtime, when
interpreting or compiling the new bytecode, uses the default allocator, called ALLOC_DEFAULT.
The runtime then copies all objects allocated by such sites to DRAM if they survive a nursery
collection. For the new_hbm bytecode, the runtime uses the newly added ALLOC_HBM allocator.

Page 11 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:12 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

nursery mature large

DRAM

mutator mutatorGC

DRAM
(a) Homogeneous DRAM-only system

nursery mature large

HBM

mutator mutatorGC

DRAM
(b) RiskRelief-Nursery hybrid memory

nursery mature large

HBM

DRAM

mature large

GC

mutator mutatorGC

(c) RiskRelief-Mature hybrid memory

Fig. 5. Main memory heap organizations.

This allocator sets a bit in the object header which notifies the garbage collector to copy these
objects to HBM if they survive a nursery collection.
Note that because RiskRelief is a profile-based approach, there might exist allocation sites that

were not seen during profiling, i.e., an allocation site was not executed in the profile run while it
gets executed in a production run. These unprofiled sites will be unlabeled, and default to DRAM,
following the above procedure. Future work may explore whether labeling unprofiled sites as HBM
might be desirable, or whether dynamically profiling just these objects might be tractable and
beneficial.

5.5 Heap Organization
We now describe RiskRelief’s heap organizations. The heap organization for a conventional homo-
geneous DRAM-Only system is shown in Figure 5(a). The RiskRelief collectors place the nursery
in HBM because the nursery is highly mutated, and hence contains objects that are both hot and
low-risk. RR-N places only the nursery in HBM and the rest, i.e., the mature space and large object
space, in DRAM, see Figure 5(b). RR-M further partitions the mature and large object spaces into
DRAM and HBM regions, see Figure 5(c).

RR-N operates as follows. Nursery objects are allocated in the HBM nursery. Objects that survive
a nursery collection are copied to the mature space in DRAM. Large objects (larger than 8 KB as in

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:13

our baseline configuration) are allocated directly in the Large Object Space (LOS) which is mapped
in DRAM.
RR-M is more complicated as it requires adjusting the allocation process. In general, new al-

location is a two-step process: (1) reserving space and (2) initializing the object header, called
post-allocation. For RR-M, post-allocation sets a bit in the object’s header if its allocation site is
labeled HBM, as shown in Figure 6. We steal a bit, not in use from the object header in Jikes RVM,
and call it the HBM_BIT. Objects with the HBM_BIT set are predicted to be hot and low-risk.
During nursery collection, the garbage collector checks the HBM_BIT of each object. If the bit is
set, it promotes the object to the mature space in HBM. Otherwise, it promotes the object to the
DRAM mature space.

1 @Inline
2 public Address postAlloc(ObjectReference ref, int allocator) {
3 if (allocator == Gen.ALLOC_HBM) {
4 byte old = readHeaderByte(ref);
5 writeHeaderByte(ref, (byte) (old | HBM_BIT));
6 }
7 }

Figure 6. Our post-allocation sequence sets the HBM_BIT in the header of (predicted) hot and low-risk
objects.

RR-M also involves changes to how large objects are treated. For these objects, RR-M’s AL-
LOC_DEFAULT allocates the object directly in the LOS DRAM space, whereas ALLOC_HBM places
the object directly in the LOS HBM space.

6 EXPERIMENTAL SETUP
The main results presented in Section 7 are obtained through detailed architectural simulation to
accurately assess performance and reliability. This section elaborates on this methodology. We
complement these simulation results with emulation results on real hardware in Section 8.
Java Virtual Machine and workloads. We use Jikes RVM 3.1.2 [5, 6] and nine applications
from the DaCapo suite [13] that work with our simulation and VM infrastructure. We use four
benchmarks from the DaCapo-9.12-bach benchmark suite (sunflow, lusearch, pmd, and xalan).
We use an updated version of lusearch, called lu.Fix [70], that eliminates useless allocation, and
an updated version of pmd, called pmd.S [23], that eliminates a scaling bottleneck due to a large
input file. We use three benchmarks from DaCapo 2006: fop, antlr and bloat. As in established
methodology, we use 2× the minimum heap size for our benchmarks, and we use different inputs
for profiling (default) versus measurement (large). We consider 32-instance workloads of our
benchmarks to generate realistic memory traffic.
Java performance evaluation.We follow best practices in Java performance evaluation [15, 29,
32]. We use replay compilation to eliminate non-determinism introduced by just-in-time compila-
tion. During a profiling run, the VM records a plan with the optimization level for each method
for the run with the shortest execution time. We then run each benchmark for two iterations. In
the first unmeasured iteration, the JIT compiler applies the optimization plan to each method. We
then measure the second iteration, which excludes compilation overhead and which represents
application steady-state behavior. We report the average across four simulation runs.
Simulator.Weuse Sniper [16] v6.0, a parallel and high-speed cycle-level x86 simulator formulticore
systems, using its most detailed cycle-level hardware-validated core model. Prior work extended

Page 13 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:14 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

Processors Parameters

Number of cores 1 socket, 32 cores
Core frequency 4.0 GHz
Issue width 4-wide out-of-order
ROB size 128 entries
Branch predictor hybrid local/global predictor
Caches Parameters
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache shared 32 MB, 16 way, 30 cycle
HBM Parameters
Capacity 2 GB for hybrid, 32 GB for HBM-only
Bus frequency 500 MHz (DDR 1.0 GHz)
Bus width 128 bits
Channels 8 channels
Banks 8 banks/channel
ECC SEC-DED ECC [30]
tCAS-tRCD-tRP-tRAS 45-45-45-180 CPU cycles
DRAM Parameters
Capacity 32 GB
Bus frequency 800 MHz (DDR 1.6 GHz)
Bus width 64 bits
Channels 2 channels
Banks 8 banks/channel
ECC single-ChipKill ECC [21]
tCAS-tRCD-tRP-tRAS 45-45-45-180 CPU cycles

Table 1. Simulated system parameters.

Sniper for managed language runtimes, including dynamic compilation, and emulation of frequently-
used system calls [58].
Simulated architectures.We consider a 32-core processor with three memory systems: DRAM-
Only, HBM-Only (both with 32 GB of main memory) and a hybrid HBM-DRAM system with 2 GB
HBM and 32 GB DRAM, see also Table 1. We emphasize that the 32 GB HBM-Only system is an
idealized but unrealistic point of comparison. We further assume a shared 32 MB L3 cache, 25.6 GB/s
DRAM bandwidth and 128 GB/s HBM bandwidth. We assume SEC-DED ECC for HBM because of
its lower complexity and power consumption [20, 52]. In line with production systems, we assume
single-Chipkill ECC for DRAM.
Simulating multi-programmed Java workloads is time-consuming. Specifically, simulating a

32-core system executing 32 instances of the same Java benchmark in rate mode takes up to one
month of simulation time for several benchmarks. Moreover, we ran into simulator infrastructure
issues when simulating that many cores. We therefore report results for a single-core system
with all shared hardware structures scaled down proportionally. We simulate an L3 cache of
1 MB/core, DRAM bandwidth of 0.8 GB/s for each core, and HBM bandwidth of 4 GB/s per core.
Our analysis (not shown due to space constraints) confirms that the reported experimental results
are conservative — in reality, the improvements in performance and SER through RiskRelief are
higher — we confirmed this for up to 8 cores for two benchmarks (pmd and pmd.S) and up to 16
cores for the remaining benchmarks.
Page migration overhead. We compare RiskRelief to the state-of-art reliability-aware OS ap-
proach for hybrid memories proposed by Gupta et al. [27]. Page migration overhead is critical to

Page 14 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:15

DRAM-only

RiskRelief-Nursery (128M)

RiskRelief-Mature (364M) HBM-only

OS-PageLevel (128M)

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Ex
ec

. t
im

e
n

o
rm

. t
o

D

R
A

M
-o

n
ly

SER norm. to HBM-only

Fig. 7. The execution time versus SER trade-off for the RiskRelief collectors and the state-of-the-art OS
approach, normalized to the DRAM-Only and HBM-Only systems.

such OS approaches and includes (1) the latency for moving pages between HBM and DRAM, and
vice versa, and (2) TLB shootdown overhead.1 We assume the latency of copying pages across
DRAM and HBM to be 5,000 CPU cycles [9, 24]. The total overhead of a TLB shootdown is inde-
pendent of the application and depends on the number of cores in the system. The OS keeps track
of the ‘slave’ cores that requested a modified virtual to physical page mapping in the past. During a
TLB shootdown, the ‘initiator’ core requests all slave cores to invalidate the modified TLB entries,
flushes its own TLB and waits for the responses from all the slave cores. Following prior work
by Villavieja et al. [67], we model the overhead of a TLB shootdown in a system with 𝑁 cores as
follows:

𝑇𝑠ℎ𝑜𝑜𝑡𝑑𝑜𝑤𝑛 = 𝑁 ×𝑇𝑠𝑙𝑎𝑣𝑒 +𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 ,

with 𝑇𝑠𝑙𝑎𝑣𝑒 and 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 the time overheads incurred by each slave and initiator cores, respectively.
We use published overhead numbers [24] scaled to our 4 GHz processor.
SER calculation. SER, as mentioned before, is computed as the device’s raw FIT-Rate times
its AVF. We use the default configuration of FaultSim for evaluating our hybrid HBM-DRAM
architecture [49]. FaultSim’s default transient FIT rate values for DRAM and HBM are based on a
field study conducted on the Oak Ridge ‘Jaguar’ supercomputer [64]. We further assume SEC-DED
and single-Chipkill ECC for HBM and DRAM, respectively. Using this methodology, we find that
the FIT-Rates equal 0.1140 and 0.0005 for HBM and DRAM, respectively. Our simulation platform
precisely computes AVF by counting the number of reads and writes per cache line, which is not
possible on real hardware. More specifically, we logically divide memory into 64-byte cache lines
and measure the number of reads and writes per cache line, which we then use to compute AVF
per cache line. For a hybrid HBM-DRAM system, we first compute the SER for DRAM and HBM as
the product of their respective FIT-Rate and AVF. We then scale the individual SER numbers by the
percentage of program heap that is placed in DRAM and HBM.

7 RESULTS
We now evaluate RiskRelief collectors across three primary metrics: (1) SER, (2) performance and
(3) HBM capacity. Unless otherwise stated, we set 𝜃ℎ to 1% and 𝜃𝑡 to 20%.

1Gupta et al. [27] account for the page migration overhead but not the TLB shootdown overhead.

Page 15 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:16 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

0

0.2

0.4

0.6

0.8

1

SE
R

no
rm

. t
o

H
BM

-o
nl

y

DRAM OS RR-N RR-M HBM

Fig. 8. Soft error rates normalized to HBM-Only for the RiskRelief collectors, the OS approach and DRAM-
Only.

7.1 Key Trade-Offs
Using HBM to store a portion of the program heap provides a reliability/performance trade-off, see
Figure 7. An HBM-Only system delivers the best performance, but the heap is highly susceptible to
soft errors, i.e., the overall normalized SER equals 1. On the other hand, a DRAM-Only system is
34% slower than HBM-Only, but SER is close to 0 (0.003 to be precise). RiskRelief-Nursery places
the nursery in HBM and achieves 20% higher performance than a DRAM-Only system. It also
reduces SER by 18× compared to an HBM-Only system. HBM capacity for the 32-core system
equals 128 MB, which is moderate relative to the total 2 GB HBM capacity.
The state-of-the-art OS approach achieves roughly similar SER as RiskRelief-Nursery, while

also requiring 128 MB HBM capacity. Our analysis shows that the OS approach correctly predicts
that the nursery is hot and low risk. It thus migrates the nursery pages to HBM. Unfortunately,
on x86 multi-core platforms, page migrations incur a substantial performance penalty. The large
number of page migrations results in high overhead, and the OS approach performs 24% worse than
RiskRelief-Nursery. The significant performance penalty of the OS approach makes it unsuitable
for Java applications because the benefits of high HBM bandwidth to access highly mutated and
frequently read data is offset by the high cost of page migrations. Our analysis further shows that
the overhead of TLB shootdowns is the major contributor to the high cost of page migrations.

Both the state-of-the-art OS approach and RiskRelief-Nursery place the nursery in HBM, using
only a modest fraction of the available HBM capacity. Figure 7 shows that the RiskRelief-Mature
collector uses a larger fraction of the available HBM capacity by placing part of the mature heap
space in HBM as well. RiskRelief-Mature is highly effective at improving performance beyond
RiskRelief-Nursery. On average, the execution time reduces by an additional 9% compared to
RiskRelief-Nursery, and by 29% compared to a DRAM-Only system, while still improving SER by a
factor 9× compared to an HBM-Only system.

7.2 Soft Error Rate
We now discuss soft error rates for the different systems we evaluate in this work. Figure 8 shows
SER of DRAM-Only, RR-N, RR-M, and the OS approach, normalized to HBM-Only for the individual
workloads. We observe that a DRAM-Only memory system is highly reliable with negligible SER
compared to HBM-Only. This observation is consistent with prior work which reports that in
DRAM-Only systems, non-DRAM failures, such as those in memory controllers and memory
channels, dominate the majority of errors [47]. Whereas HBM-Only is highly unreliable with a

Page 16 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:17

0

0.5

1

1.5

2

Ex
ec

. t
im

e
no

rm
. t

o
D

RA
M

-o
nl

y

DRAM OS RR-N RR-M HBM

Fig. 9. Execution times normalized to DRAM-Only for the RiskRelief collectors, the OS approach and HBM-
Only.

normalized SER of 1, RR-N reduces the SER by 18× on average. All benchmarks observe a reduction
in SER and the reduction in SER varies from 9× (Fop) to 48× (Xalan). The differences in per-
benchmark SER reduction are due to access patterns in the nursery, more specifically, the ratio
of nursery writes to reads. RR-N is the most reliable system of all systems we evaluate in this
work, but it does not fully utilize the available HBM capacity. We can utilize the available HBM
capacity to gain more performance. As mentioned before, RR-M is the best performing system,
however, it sacrifices reliability over RR-N. Still, RR-M reduces SER by 9× over HBM-Only. Some
benchmarks, such as Bloat, experience no change in SER reduction with RR-M compared to RR-N.
This phenomenon occurs because SER depends on several factors including the ratio of object writes
to reads, the rate of memory allocation, and how often the objects in the program heap are accessed
after the first allocation. Per-benchmark SER reduction with RR-M compared to HBM-Only varies
from 5× to 30×. For completeness, the OS approach achieves a normalized SER that is comparable
to RR-N.

7.3 Performance
We show per-benchmark performance results in Figure 9, normalized to a DRAM-Only system.
Execution time with an HBM-Only system reduces by 34% on average. Individual benchmarks
show a variety of trends. For example, the execution time of Xalan, Pmd, Pmd.S and Lusearch
reduces by more than 40%. As reported in Table 3, these benchmarks are characterized by either
large heaps, high allocation rates, or high nursery survival rates. The compute-bound Sunflow
benefits the least from HBM bandwidth. Our analysis indicates that memory read operations in
Sunflow exhibit very high on-chip cache hit rates, thus leading to limited traffic to main memory.

The RiskRelief collectors deliver performance in-between DRAM-Only and HBM-Only. Placing
the nursery in HBM with RiskRelief-Nursery (RR-N) reduces execution time by 20% on average
compared to a DRAM-Only system. Benchmarks that allocate rapidly benefit more from HBM
bandwidth. For example, Lusearch allocates the largest volume of objects across our benchmarks,
and RR-N reduces its execution time by 34%. The reasons for this large reduction in execution time
include: (1) faster read and write operations to memory, (2) higher throughput of memory zeroing
to provide security as guaranteed by Java semantics [1, 70], and (3) faster nursery collections.
Surprisingly, Sunflow allocates young objects rapidly in the nursery and has the largest number
of nursery collections of all of our benchmarks, yet its execution time reduction with RR-N is

Page 17 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:18 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

 Migrated Pages Migration
Epochs

Migrated Pages
/Epoch DRAM→HBM HBM→DRAM Total

Fop 1037 5 1042 3 347.3

Bloat 1921 494 2415 33 73.2

Antlr 1038 12 1050 7 150.0

Sunflow 1574 556 2130 66 32.3

Lu.fix 1323 23 1346 26 51.8

Lusearch 3584 1522 5106 76 67.2

Pmd.S 1083 42 1125 10 112.5

Xalan 23011 3406 26417 57 463.5

Pmd 2263 111 2374 18 131.9

Avg 4093 686 4779 33 158.8

Table 2. The number of page migrations (DRAM to HBM, HBM to DRAM, and total), the number of 100ms
migration epochs, and the number of page migrations per epoch for the OS approach.

only 15%. This small reduction is because Sunflow has a small nursery survival rate (only 2%) and
copying nursery survivors to the mature space does not require high bandwidth. RiskRelief-Mature
(RR-M) reduces the execution time on average by an additional 9% over RR-N, and by 29% over a
DRAM-Only system. RR-M splits the mature and large object spaces across DRAM and HBM. The
benchmark that benefits the most from RR-M is Lusearch. The execution time of Lusearch reduces
by 43%. The performance of Lusearch with RR-M is only 5% less compared to HBM-Only, showing
the effectiveness of RR-M in exploiting HBM’s high bandwidth. Similarly, the performance of Xalan
and the two variants of Pmd also improve substantially with RR-M.

The OS approach leads to a significant performance degradation compared to RR-N. Performance
degrades for most benchmarks and we note a significant performance degradation for Fop (42%)
and Xalan (77%). The reason is the high number of page migrations per unit of time, see also Table 2
which reports the number of page migrations from DRAM to HBM and vice versa, the number of
100ms migration epochs, and the number of page migrations per epoch. We note that Fop and
Xalan are the benchmarks with the highest number of page migrations per unit of time: 347.3 and
463.5 migrations per epoch. Each page migration incurs the overhead of copying the pages and TLB
shootdowns. Our measurements indicate that TLB shootdowns account for 41% and 45% of the total
execution time for Fop and Xalan, respectively. In other words, TLB shootdowns lead to significant
performance degradations for workloads that incur a large number of page migrations per unit of
time. The OS approach delivers performance that is better than RR-N for Sunflow, and only slightly
worse than RR-N for Bloat, Lu.fix and Lusearch. This is due to the relatively small number of page
migrations per 100 ms epoch for these benchmarks, see Table 2. The number of page migrations
per epoch is substantially smaller for these benchmarks — Sunflow (32.3), Bloat (73.2), Lu.fix (51.8)
and Lusearch (67.2) — compared to the other benchmarks with more than one hundred and up to
several hundreds of page migrations per epoch; note that Sunflow has the lowest number of page
migrations which leads to a small performance overhead (6%) and a net performance improvement
over RR-N.

7.4 RR-M versus Performance-Focused GC
Utilizing HBM capacity is a trade-off between performance and reliability. RR-M can be configured
in a variety of ways to exploit this trade-off space. Performance improves when RR-M is configured
to place more mature-space objects in HBM, but this compromises reliability. We show this trade-off
in Figure 10. We vary 𝜃𝑡 from 10% to 40%. Execution time reduces by 3%, but the SER increases
by 5.4×. The reason for the SER increase is that, as RR-M tries to achieve higher performance by

Page 18 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:19

10%

15%

20%
25%

30%

40%

1%

2%

5%
10%

15%0.7

0.71

0.72

0.73

0 0.1 0.2 0.3 0.4 0.5 0.6

Ex
e

c.
 t

im
e

 n
o

rm
. t

o

D
R

A
M

-o
n

ly

SER norm. to HBM-only

RR-M Perf-focused

Fig. 10. Execution time versus SER trade-off for different configurations of RR-M and its performance-focused
variant.

Allocation Heap RR nursery

MB MB survival % avg max avg max avg max avg max avg max

Fop 1792 2560 20% 169 184 215 269 230 296 235 302 106 129

Bloat 39872 2112 4% 162 180 167 190 167 187 185 214 128 168

Antlr 7872 1536 15% 250 341 276 393 324 491 339 518 128 128

Sunflow 61440 3456 2% 190 245 410 707 479 850 484 860 124 127

Lu.fix 27136 2176 2% 177 217 177 215 177 216 191 244 126 156

Lusearch 137408 2176 4% 972 1478 959 1474 966 1487 960 1491 121 156

Pmd.S 6464 3136 27% 177 215 327 520 389 659 418 723 128 129

Xalan 31360 3456 14% 210 278 301 432 320 437 322 435 168 515

Pmd 11648 3136 23% 335 513 449 730 608 1019 677 1150 122 140

Avg 36110 2638 12% 294 406 364 548 407 627 423 660 128 183

Heap % 12% 18% 21% 23% 5%

OS-PageLevelRR-M-10% RR-M-20% RR-M-30% RR-M-40%

Table 3. Object demographics: total allocation, heap size, nursery survival rates, and average and maximum
mature heap usage (in MB) for our 32-instance workloads.

placing an increasingly larger fraction of the mature space in HBM, it copies objects with low AVF
to HBM. In other words, as 𝜃𝑡 increases, allocation sites with a larger number of high-risk objects
are classified as HBM, which results in higher performance, but lower reliability.

Figure 10 plots a similar performance versus reliability trade-off curve for a performance-focused
variant of RR-M. This performance-focused variant labels allocation sites as HBM based only on
the percentage of hot objects allocated from the site. Similar to RR-M, it uses the 𝜃𝑡 threshold to
classify objects as hot versus cold. The resulting trade-off curve with this performance-focused
collector clearly shows the benefits of RiskRelief in mitigating HBM’s high susceptibility to soft
errors. Specifically, for the same performance, RR-M exhibits 4.8× lower SER than the performance-
focused variant. RR-M takes into account both how often an object is accessed and its AVF before
placing it in HBM.

7.5 Memory and Demographic Analysis
Table 3 summarizes total allocation, nursery survival rates, and percentage of mature heap in HBM
for RR-M for the different 32-instance workloads. Our applications allocate frequently ranging from
1.8 GB (Fop) up to 137 GB (Lusearch). Our nursery survival rates vary from 2% to 27%. Copying
objects to HBM is faster than DRAM, and hence benchmarks that copy a larger fraction of objects
to HBM on a nursery collection benefit more from HBM’s high bandwidth. Examples include

Page 19 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:20 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

Xalan and Pmd. The next columns show the average and maximum HBM (in MB) for different
configurations of RR-M. Specifically, we show the HBM capacity in MB for different 𝜃𝑡 thresholds.
HBM capacity with the most reliable RR-M configuration (𝜃𝑡 of 10%) equals 294 MB on average,
and up to 972 MB. Lusearch consumes the largest HBM capacity with close to 1.5 GB. RR-M places
only 12% of the total heap volume in HBM with a 10% 𝜃𝑡 threshold. The percentage of heap volume
in HBM increases to 23% of the total heap volume in HBM with a 𝜃𝑡 of 40%. On the other hand, the
OS approach places only 5% of the total heap in HBM.

8 EVALUATION ON REAL HARDWARE
Accurately assessing SER for a hybrid memory systems requires per-cacheline read/write statistics
which we can only obtain through simulation. We now complement our simulation results with
experimentation on commercial hardware, for three reasons: (1) to demonstrate that we can deploy
RiskRelief on real systems, (2) to show that RiskRelief directs the vast majority of writes to HBM,
and (3) to report the runtime overhead of RR-M relative to RR-N.
Emulation platform. Since we lack access to a commercial machine with HBM, we emulate
hybrid HBM-DRAM memory on an existing multi-socket NUMA platform, as in [3]. Commercial
HBM systems present HBM as an additional NUMA node to the OS [53], which is exactly what we
emulate. In other words, by running Java workloads on the emulation platform with RiskRelief
collectors, we incorporate OS and runtime effects as expected on commercial HBM systems. We
isolate the Java workload on one socket and disable the other socket. We populate both sockets
with commodity DRAM chips. Local memory emulates HBM, and remote memory emulates DRAM.
We modify Jikes’ MMTk to split the virtual heap into HBM and DRAM. Our two-socket Intel Sandy
Bridge E5-2650L processor has 8 physical cores per socket and two hyperthreads per core. We use
Ubuntu 12.04.2 with a 3.16.0 kernel. We run 8-instance workloads to utilize all the available cores.
Number of writes to HBM. We now quantify the number of writes to HBM versus DRAM on
the emulation platform which features 132GB of main memory, evenly distributed between the
two sockets. We use all DRAM channels on both sockets. All cores share the 20MB LLC on each
processor. The available bandwidth to memory is 51.2 GB/s, more than the maximum bandwidth
consumed by any of our workloads. A QPI link that supports up to 8GB/s connects the two sockets.
We use Intel’s pcm-memory utility to measure the number of writes to HBM and DRAM.

RiskRelief allocates the frequently accessed low-risk objects in HBM and the rest in DRAM. We
thus expect that most writes happen to HBM. We observe that in simulation, on average, 90% and
87% of writes happen to HBM for RR-M and RR-N, respectively. On the emulation platform, we find
that 87% and 83% of writes happen to HBM, respectively. Simulation and emulation thus confirm
that RiskRelief captures the vast majority of writes to HBM — this indicates that the frequently
accessed low-risk objects are indeed allocated in HBM. The small discrepancy between emulation
and simulation is a result of differences in the OS, hardware prefetcher, memory controller, among
other things.
RR-M runtime overhead. RR-M incurs runtime overhead because of the extra steps involved
during post-allocation and nursery evacuation. To quantify these overheads as accurately as possible,
we compare the performance of RR-M versus RR-N on the emulation platform while placing the
entire heap on one socket of our NUMA platform. On average, the overhead incurred by RR-M is
less than 1%, with a maximum of 1.3% for lusearch.

9 OTHER RELATEDWORK
Beyond the related work already discussed in this paper, some prior work focuses on automated
memory management for hybrid DRAM-PCM memories. However, to the best of our knowledge,

Page 20 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:21

this is the first work to automatically manage memory to improve soft error reliability in 3D-stacked
memories by dynamically allocating objects to HBM versus DRAM through garbage collection in
the managed language runtime.
Production systems now combine DRAM with non-volatile memory (NVM) to deliver high

capacity and performance. The most promising NVM, Phase Change Memory (PCM), suffers from
low write endurance. Gao et al. [26] use hardware and OS cooperation to expose defective lines in
PCM to the garbage collector to avoid allocation in defective lines.

Write-rationing garbage collection for hybrid DRAM-PCMmemories [4] places frequentlywritten
objects in DRAM to protect PCM from writes and extend its lifetime. More specifically, Kingsguard-
Nursery places the nursery in DRAM because the nursery is highly mutated. Kingsguard-Writers
dynamically monitors objects to discover highly written mature objects. Crystal Gazer exploits
offline profiling to identify allocation sites that produce highly written objects [2].

Wang et al. [68] focus on Big Data systems (e.g., Spark) and leverage GC to place highly accessed
information in DRAM in hybrid DRAM-PCM systems. They exploit memory semantics in the Java
runtime and focus solely on performance.

10 CONCLUSION
Emerging high-bandwidth memory (HBM) uses 3D stacking to offer more bandwidth than DRAM.
Unfortunately, its capacity is limited, and soft error rate is high. Due to greater bit density and new
failure modes, hardware error correction alone is insufficient to make HBM reliable. Prior software
approaches that leverage the OS to place hot and low-risk pages in HBM have several drawbacks
as they operate at a coarse-grained page granularity and introduce page migration overheads that
are prohibitive for multicore systems.

This work explores garbage collection inmanaged runtimes to balance reliability and performance
for a hybrid HBM-DRAM memory system. We propose reliability-aware garbage collection to
allocate fine-grained hot and low-risk objects in HBM. Both RiskRelief-Nursery and RiskRelief-
Mature place the nursery for young objects in HBM because the nursery is highly accessed and
low-risk. RiskRelief-Mature further uses allocation-site prediction to map hot and low-risk mature
objects in HBM. We show that object hotness and risk are weakly correlated. RiskRelief-Mature
thus uses heuristics to classify objects as hot and low-risk for allocation in HBM. Reliability-
aware garbage collection substantially outperforms the state-of-the-art OS approach, substantially
improves SER over an HBM-Only system, and significantly improves performance over a DRAM-
Only system. This work shows that exposing 3D stacking to language runtimes is a promising
avenue for balancing reliability and performance.

REFERENCES
[1] Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout. 2016. DVFS performance prediction for managed multithreaded

applications. In Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
12–23.

[2] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout. 2019. Crystal Gazer: Profile-Driven
Write-Rationing Garbage Collection for Hybrid Memories. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 3, 1 (2019), 1–27.

[3] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout. 2019. Emulating and Evaluating Hybrid
Memory for Managed Languages on NUMA Hardware. In Proceedings of IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 93–105.

[4] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout. 2018. Write-rationing Garbage Col-
lection for Hybrid Memories. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 62–77.

[5] Bowen Alpern, C. Richard Attanasio, John J. Barton, Michael G. Burke, Perry Cheng, Jong-Deok Choi, Anthony Cocchi,
Stephen J. Fink, David Grove, Michael Hind, Susan Flynn Hummel, Derek Lieber, Vassily Litvinov, Mark F. Mergen, Ton

Page 21 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

1:22 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

Ngo, James R. Russell, Vivek Sarkar, Mauricio J. Serrano, Janice C. Shepherd, Stephen E. Smith, Vugranam C. Sreedhar,
Harini Srinivasan, and John Whaley. 2000. The Jalapeño virtual machine. IBM Systems Journal 39, 1 (2000), 211–238.

[6] Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria A. Butrico, Anthony Cocchi, Perry Cheng, Julian Dolby,
Stephen J. Fink, David Grove, Michael Hind, Kathryn S. McKinley, Mark Mergen, J. Eliot B. Moss, Ton Anh Ngo, Vivek
Sarkar, and Martin Trapp. 2005. The Jikes RVM Project: Building an Open Source Research Community. IBM System
Journal 44, 2 (2005), 399–418.

[7] AMD. [n.d.]. High Bandwidth Memory. AMD. https://www.amd.com/en/technologies/hbm
[8] Andrew W. Appel. 1989. Simple Generational Garbage Collection and Fast Allocation. Software: Practice and experience

19, 2 (1989), 171–183.
[9] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and Gabriel H. Loh. 2017. Avoiding TLB Shootdowns

Through Self-Invalidating TLB Entries. In Proceedings of the 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). 273–287.

[10] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei Jiang, Gabriel H. Loh1, Don McCauley, Pat
Morrow, Donald W. Nelson, Daniel Pantuso, Paul Reed, Jeff Rupley, Sadasivan Shankar, John Shen, and Clair Webb.
2006. Die Stacking (3D) Microarchitecture. In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 469–479.

[11] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Myths and Realities: The Performance Impact of
Garbage Collection. In Proceedings of the Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS). 25–36.

[12] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Oil and Water? High Performance Garbage
Collection in Java with MMTk. In Proceedings of the International Conference on Software Engineering (ICSE). 137–146.

[13] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the
Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA).
169–190.

[14] Stephen M. Blackburn and Kathryn S. McKinley. 2008. Immix: A Mark-region Garbage Collector with Space Efficiency,
Fast Collection, and Mutator Performance. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 22–32.

[15] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2008. Wake Up and Smell the Coffee: Evaluation Methodology for the 21st Century. Commun. ACM 51,
8 (2008), 83–89.

[16] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeckhout. 2014. An Evaluation of High-Level
Mechanistic Core Models. ACM Transactions on Architecture and Code Optimization (TACO) 11, 3 (2014), 1–25.

[17] ChiaChen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014. CAMEO: A Two-Level Memory Organization with
Capacity of Main Memory and Flexibility of Hardware-Managed Cache. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1–12.

[18] ChiaChen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2015. BEAR: Techniques for mitigating bandwidth bloat in
gigascale DRAM caches. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA).
198–210.

[19] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BATMAN: Techniques for Maximizing System Bandwidth
of Memory Systems with stacked-DRAM. In Proceedings of the International Symposium on Memory Systems (MEMSYS).
268–280.

[20] NVIDIA Corp. 2016. NVIDIA Pascal Architecture. NVIDIA Corp. https://www.nvidia.com/en-us/data-center/pascal-
gpu-architecture/

[21] Timothy J. Dell. 1997. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main Memory by.
[22] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P. Jouppi. 2010. Simple but Effective Heterogeneous

Main Memory with On-Chip Memory Controller Support. In Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC). 1–11.

[23] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout. 2013. Bottle Graphs: Visualizing Scalability
Bottlenecks in Multi-threaded Applications. In Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA). 355–372.

Page 22 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

https://www.amd.com/en/technologies/hbm
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:23

[24] Bogdan F. Romanescu, Alvin R. Lebeck, Daniel J. Sorin, and Anne Bracy. 2010. UNified Instruction/Translation/Data
(UNITD) coherence: One protocol to rule them all. In Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA). 1–12.

[25] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner, David Grove, J. Eliot B. Moss, and Sergey I.
Salishev. 2009. Demystifying Magic: High-level Low-level Programming. In Proceedings of the International Conference
on Virtual Execution Environments (VEE). 81–90.

[26] Tiejun Gao, Karin Strauss, Stephen M. Blackburn, Kathryn S. McKinley, Doug Burger, and James Larus. 2013. Using
Managed Runtime Systems to Tolerate Holes inWearable Memories. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 297–308.

[27] Manish Gupta, Vilas Sridharan, David Roberts, Andreas Prodromou, Ashish Venkat, Dean Tullsen, and Rajesh Gupta.
2018. Reliability-Aware Data Placement for Heterogeneous Memory Architecture. In Proceedings of the 24th IEEE
International Symposium on High Performance Computer Architecture (HPCA). 583–595.

[28] Gabriel H. Loh and Mark D. Hill. 2011. Efficiently enabling conventional block sizes for very large die-stacked DRAM
caches. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 454–564.

[29] Jungwoo Ha, Magnus Gustafsson, Stephen M. Blackburn, and Kathryn S. McKinley. 2008. Microarchitectural Charac-
terization of Production JVMs and Java Workloads. In IBM CAS Workshop.

[30] Mu-Yue Hsiao. 1970. A Class of Optimal Minimum Odd-weight-column SEC-DED Codes. IBM Journal of Research and
Development 14, 4 (1970), 395–401.

[31] Jipeng Huang and Michael D. Bond. 2013. Efficient Context Sensitivity for Dynamic Analyses via Calling Context
Uptrees and Customized Memory Management. In Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA). 53–72.

[32] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss, Zhenlin Wang, and Perry Cheng. 2004.
The Garbage Collection Advantage: Improving Mutator Locality. In Proceedings of the ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA). 69–80.

[33] ITRS. 2005. Internatial Technology Roadmap for Semiconductors: ASSEMBLY AND PACKAGING.
[34] Prashant J. Nair, David A. Roberts, andMoinuddin K. Qureshi. 2014. Citadel: Efficiently Protecting StackedMemory from

Large Granularity Failures. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 51–62.

[35] JEDEC. [n.d.]. High Bandwidth Memory. JEDEC. https://www.jedec.org/standards-documents/docs/jesd235a
[36] Hyeran Jeon, Gabriel H. Loh, and Murali Annavaram. 2014. Efficient RAS support for die-stacked DRAM. In Proceedings

of the International Test Conference (ITC). 1–10.
[37] Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. 2014. Unison Cache: A Scalable and Effective

Die-Stacked DRAM Cache. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 25–37.

[38] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-stacked DRAM Caches for Servers: Hit Ratio, Latency, or
Bandwidth? Have It All with Footprint Cache. In Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA). 404–415.

[39] Xiaowei Jiang, Niti Madan, Li Zhao, Mike Upton, Ravishankar Iyer, Srihari Makineni, Donald Newell, Yan Solihin, and
Rajeev Balasubramonian. 2010. CHOP: Adaptive filter-based DRAM caching for CMP server platforms. In Proceedings
of the 16th International Symposium on High-Performance Computer Architecture (HPCA). 1–12.

[40] Richard Jones and Rafael Lins. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory Management.
John Wiley & Sons, Inc.

[41] Moinuddin K. Qureshi and Gabe H. Loh. 2012. Fundamental Latency Trade-off in Architecting DRAM Caches:
Outperforming Impractical SRAM-Tags with a Simple and Practical Design. In Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 235–246.

[42] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. 2014. Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In Proceeding of the 41st Annual International Symposium on Computer Architecuture (ISCA). 361–372.

[43] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jangwoo Kim, Jinkyu Jeong, and Jae W. Leet. 2015.
A fully associative, tagless DRAM cache. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA). 211–222.

[44] Xiao Liu, David Roberts, Rachata Ausavarungnirun, Onur Mutlu, and Jishen Zhao. 2019. Binary Star: Coordinated
Reliability in Heterogeneous Memory Systems for High Performance and Scalability. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO) (MICRO). 807–820.

[45] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. 2005. Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 190–200.

Page 23 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

https://www.jedec.org/standards-documents/docs/jesd235a

1:24 Wenjie Liu, Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

[46] Matthias Meyer. 2006. A True Hardware Read Barrier. In Proceedings of the 5th International Symposium on Memory
Management (ISMM). 3–16.

[47] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. 2015. Revisiting Memory Errors in Large-Scale Production
Data Centers: Analysis and Modeling of New Trends from the Field. In Proceedings of the 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 415–526.

[48] Micron. 2007. TN-41-01: Calculating memory system power for DDR3.
[49] Prashant J. Nair, David A. Roberts, and Moinuddin K. Qureshi. 2015. FaultSim: A Fast, Configurable Memory-Reliability

Simulator for Conventional and 3D-Stacked Systems. ACM Transactions on Architecture and Code Optimization (TACO)
12, 4 (2015), 1–24.

[50] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat Alamian, and Onur Mutlu. 2016. Yak: A
High-performance Big-data-friendly Garbage Collector. In Proceedings of the USENIX Conference on Operating Systems
Design and Implementation (OSDI). 349–365.

[51] Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach to Die-Stacked DRAM. In Proceedings of the
2015 International Conference on Parallel Architecture and Compilation (PACT). 188–200.

[52] Mike O’Connor. 2014. Highlights of the high-bandwidth memory (hbm) standard. In Memory Forum Workshop.
[53] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis. 2017. Exploring the Performance Benefit of Hybrid

Memory System on HPC Environments. In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 683–692.

[54] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel Loh, and Dean M. Tullsen. 2017. MemPod: A Clustered
Architecture for Efficient and Scalable Migration in Flat Address Space Multi-level Memories. In Proceedings of the 23rd
IEEE International Symposium on High Performance Computer Architecture (HPCA). 433–444.

[55] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Ignatowski, and Gabriel H. Loh. 2015.
Heterogeneous memory architectures: A HW/SW approach for mixing die-stacked and off-package memories. In
Proceedings of the 21st International Symposium on High Performance Computer Architecture (HPCA). 126–136.

[56] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and Yan Solihin. 2009. Scaling the Bandwidth
Wall: Challenges in and Avenues for CMP Scaling. In Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA). 371–382.

[57] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd Austin. 2003. A systematic
methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 29–40.

[58] Jennifer B. Sartor, Wim Heirman, Stephen M. Blackburn, Lieven Eeckhout, and Kathryn S. McKinley. 2014. Cooperative
Cache Scrubbing. In Proceedings of the International Conference on Parallel Architectures and Compilation (PACT). 15–26.

[59] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. 2009. DRAM Errors in the Wild: A Large-scale Field
Study. ACM SIGMETRICS Performance Evaluation Review 37, 1 (2009), 193–204.

[60] Rifat Shahriyar, Stephen M. Blackburn, Xi Yang, and Kathryn S. McKinley. 2013. Taking Off the Gloves with Reference
Counting Immix. In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA). 93–110.

[61] Jaewoong Sim, Gabriel H. Loh, Hyesoon Kim, Mike OConnor, and Mithuna Thottethodi. 2012. A Mostly-Clean
DRAM Cache for Effective Hit Speculation and Self-Balancing Dispatch. In Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 247–257.

[62] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hyesoon Kim. 2014. Transparent Hardware
Management of Stacked DRAM as Part of Memory. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 13–24.

[63] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon Stearley, John Shalf, and Sudhanva
Gurumurthi. 2015. Memory Errors in Modern Systems: The Good, The Bad, and The Ugly. In Proceedings of the
20th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
297–310.

[64] Vilas Sridharan and Dean Liberty. 2012. A study of DRAM failures in the field. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (SC). 1–11.

[65] David Ungar. 1984. Generation Scavenging: A Non-disruptive High Performance Storage Reclamation Algorithm. In
Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments (SDE). 157–167.

[66] David Ungar and Frank Jackson. 1992. An Adaptive Tenuring Policy for Generation Scavengers. ACM Transactions on
Programming Languages and Systems (TOPLAS) 14, 1 (1992), 1–27.

[67] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho Navarro,
Adrian Cristal, and Osman S. Unsal. 2011. DiDi: Mitigating the Performance Impact of TLB Shootdowns Using a Shared
TLB Directory. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques

Page 24 of 25Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories 1:25

(PACT). 340–349.
[68] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur Mutlu, Fang Lv, Xiaobing Feng, and Guo-

qing Harry Xu. 2019. Panthera: Holistic Memory Management for Big Data Processing over Hybrid Memories.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
347–362.

[69] Xi Yang, Stephen M. Blackburn, Daniel Frampton, and Antony L. Hosking. 2012. Barriers Reconsidered, Friendlier
Still!. In Proceedings of the ACM SIGPLAN International Symposium on Memory Management (ISMM). 37–48.

[70] Xi Yang, Stephen M Blackburn, Daniel Frampton, Jennifer B. Sartor, and Kathryn S McKinley. 2011. Why Nothing
Matters: The Impact of Zeroing. In Proceedings of the ACM Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 307–324.

[71] Vinson Young, Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2018. ACCORD: Enabling Associativity
for Gigascale DRAM Caches by Coordinating Way-Install and Way-Prediction. In Proceedings of the 45th Annual
International Symposium on Computer Architecture (ISCA). 328–339.

[72] Yi Zhao, Jin Shi, Kai Zheng, Haichuan Wang, Haibo Lin, and Ling Shao. 2009. Allocation Wall: A Limiting Factor
of Java Applications on Emerging Multi-core Platforms. In Proceedings of the ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA). 361–376.

Page 25 of 25 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

