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Abstract—Developing fast chip multiprocessor simulation techniques is a challenging problem. Solving this problem is especially

valuable for design space exploration purposes during the early stages of the design cycle where a large number of design points need

to be evaluated quickly. This paper studies statistical simulation as a fast simulation technique for chip multiprocessor (CMP) design

space exploration. The idea of statistical simulation is to measure a number of program execution characteristics from a real program

execution through profiling, to generate a synthetic trace from it, and simulate that synthetic trace as a proxy for the original program.

The important benefit is that the synthetic trace is much shorter compared to a real program trace, which leads to substantial simulation

speedups. This paper enhances state-of-the-art statistical simulation: 1) by modeling the memory address stream behavior in a more

microarchitecture-independent way and 2) by modeling a program’s time-varying execution behavior. These two enhancements

enable accurately modeling resource conflicts in shared resources as observed in the memory hierarchy of contemporary chip

multiprocessors when multiple programs are coexecuting on the CMP. Our experimental evaluation using the SPEC CPU benchmarks

demonstrates average prediction error of 7.3 percent across a range of CMP configurations while varying the number of cores and

memory hierarchy configurations.

Index Terms—Performance of systems (modeling techniques, simulation).

Ç

1 INTRODUCTION

ARCHITECTURAL simulation is a crucial tool in a computer
designer’s toolbox because of its flexibility, its ease of

use, and its ability to drive design decisions early in the
design cycle. The downside, however, is that architectural
simulation is very time-consuming. Simulating an industry-
standard benchmark for a single microprocessor design
point easily takes a couple of weeks to run to completion,
even on today’s fastest machines and simulators. Culling a
large design space through architectural simulation of
complete benchmark executions thus simply is infeasible.
And this problem keeps on increasing over time given
Moore’s law which projects that the number of cores in chip
multiprocessors, also called multicore processors, will
double with every new generation. Given the current era
of chip multiprocessors, there is a big quest for fast
simulation techniques for driving the design process of chip
multiprocessors.

Researchers and computer designers are well aware of

the multicore simulation problem and have been proposing

various methods for coping with it, such as sampled

simulation [1], [8], [27], [29], parallelized simulation, and/

or hardware-accelerated simulation using FPGAs [5], [22],

[30], or analytical modeling [10], [16], [26]. In this paper, we

take a different approach through statistical simulation. The

idea of statistical simulation is to first measure a statistical

profile of a program execution through (specialized)
functional simulation or profiling; a statistical profile
collects a number of program execution characteristics, such
as instruction mix, interinstruction dependency distribu-
tions, statistics concerning control flow behavior, branch
behavior, and data memory access patterns. These statistics
are then used to build a synthetic trace; this synthetic trace
exhibits the same execution characteristics as the original
program trace, by construction, but is much shorter than the
original program trace. Simulating this synthetic trace then
yields a performance estimate. Given its short length (on the
order of a couple millions of instructions), simulating a
synthetic trace is done very quickly.

Previous work has been exploring the statistical simula-
tion paradigm extensively for uniprocessor simulation [6],
[11], [18], [20], and one earlier study [19] and one more
recent study [13] applied statistical simulation to multi-
threaded workloads running on shared memory multi-
processor systems. None of this prior work addresses the
modeling of shared resources in chip multiprocessors
though. This paper extends the statistical simulation
methodology to model shared resources in the memory
subsystem of chip multiprocessors such as shared caches,
off-chip bandwidth, and main memory. This makes
statistical simulation a viable fast simulation technique for
quickly exploring chip multiprocessor design spaces. We do
not envision statistical simulation as a substitute for detailed
simulation though. We rather consider statistical simulation
as a useful complement to detailed simulation at the earliest
stages of the design cycle: the design space can be culled
using statistical simulation, and when a region of interest is
identified, detailed but slower simulation can be used to
explore the region of interest in greater detail, which will
reduce the overall design space exploration time.

1668 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 12, DECEMBER 2009

. The authors are with the Department of Electronics and Information
Systems (ELIS), Ghent University, Sint-Pietersnieuwstraat 41, B-9000
Gent, Belgium. E-mail: {dgenbrug, leeckhou}@elis.ugent.be.

Manuscript received 14 Jan. 2009; revised 12 Apr. 2009; accepted 29 Apr.
2009; published online 21 May 2009.
Recommended for acceptance by R. Gupta.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-01-0022.
Digital Object Identifier no. 10.1109/TC.2009.77.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society



This paper makes the following contributions:

. We extend the statistical simulation methodology to
chip multiprocessors running multiprogram work-
loads. To enable the accurate modeling of shared
resources in a chip multiprocessor’s memory hier-
archy, we collect statistics to model memory address
patterns such as reuse distances, and LRU stack
distance probabilities instead of cache miss rate
probabilities as done in prior work. Microarchitec-
ture-independent memory address stream modeling
enables modeling conflict behavior by coexecuting
synthetic traces on the chip multiprocessor.

. We show that in order to accurately model conflict
behavior in shared memory hierarchies, it is impor-
tant to accurately model time-varying program
execution behavior. To this end, we collect a statistical
profile and generate a synthetic mini-trace per
instruction interval, and then, subsequently coalesce
these mini-traces to form the overall synthetic trace.

. The memory address modeling is done in a micro-
architecture-independent way. A single statistical
profile for the largest cache of interest during the
design space exploration can now be used to explore
various cache configurations with varying degrees of
associativity and number of sets, whereas previous
work requires a statistical profile for each cache
configuration of interest.

. We demonstrate that the overall framework pre-
sented in this paper is accurate and efficient for
quickly exploring the chip multiprocessor design
space: the performance prediction error is less than
7.3 percent, on average, while achieving a one-order
magnitude simulation speedup compared to detailed
simulation.

This paper is organized as follows: Section 2 describes
the statistical simulation methodology for chip multipro-
cessors. After detailing the experimental setup in Section 3,
we then evaluate its accuracy, speed, and use for CMP
design space exploration in Section 4. Finally, we describe
related work in Section 5, and conclude and discuss future
research directions in Section 6.

2 STATISTICAL CMP SIMULATION

Statistical simulation is done in three steps: statistical
profiling, synthetic trace generation, and synthetic trace
simulation. In the following sections, we discuss all three
steps in great detail.

2.1 Statistical Profiling

Statistical profiling collects a number of program execution
characteristics in a statistical way. This can be done efficiently
through specialized functional simulation or through profil-
ing, e.g., using (dynamic) binary instrumentation tools. Fig. 1
illustrates what a statistical profile looks like; we will now
discuss each component in more detail.

2.1.1 Statistical Flow Graph

The key structure in the statistical profile is the statistical flow
graph (SFG) [6] which represents a program’s control flow
behavior in a statistical manner. In an SFG, the nodes are the
basic blocks along with their basic block history, i.e., the
basic blocks being executed prior to the given basic block.
The order of the SFG is defined as the length of the basic
block history, i.e., the number of predecessors to a basic
block in each node in the SFG—in this paper, we consider
third order SFGs. For example, consider the following
dynamic basic block sequence “ABBAABAABBA.” The
third order SFG then makes a distinction between basic
block “A” given its basic block history “ABB,” “BBA,”
“AAB,” and “ABA;” this SFG will thus contain the following
nodes: “AjABB,” “AjBBA,” “AjAAB,” and “AjABA.” The
edges in the SFG interconnecting the nodes represent
transition probabilities between the nodes. Fig. 1 gives an
example third order SFG with four nodes “BjBAA,” its
successors “AjAAB” and “BjAAB,” and “AjABB” which is
the successor of “BjAAB.”

The idea behind the SFG now is to model all the other
program characteristics along the nodes of the SFG. This
allows for modeling program characteristics correlated with
(or conditionally dependent on) execution path behavior.
This means that for a given basic block, different statistics
are computed for different basic block histories, i.e., we
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collect different statistics for basic block “A” given its
history “AAB” and “ABB.”

2.1.2 Instructions and Their Dependencies

For each instruction in each basic block in the SFG, we
record its instruction type. We make a distinction between
loads, stores, conditional branches, indirect branches,
integer ALU operations, integer multiply operations,
integer divide operations, floating-point ALU operations,
floating-point multiply operations, etc. This distinction is
made based on the instruction’s semantics and execution
latencies. For each instruction, we also record the number of
input registers or operands.

For each input register, we also compute a distribution of
the dependency distance. The dependency distance is defined
as the number of dynamically executed instructions between
the production of a register value (register write) and its
consumption (register read). We consider only read-after-
write (RAW) dependencies since our focus is on out-of-order
architectures in which write-after-write (WAW) and write-
after-read (WAR) dependencies are dynamically removed
through register renaming as long as enough physical
registers are available. We also collect an RAW memory
dependency distribution; this is to model store-to-load
dependencies. Although very large dependency distances
can occur in real program traces, we can limit these register
and memory dependency distributions for our purposes to
the maximum reorder buffer size of interest. In our study,
we limit the dependency distribution to 512.

2.1.3 Branch Characteristics

For each branch in the SFG, we compute the probability for
the branch: 1) to be taken; 2) to be fetch redirected (target
misprediction in conjunction with a correct taken/not-taken
prediction for conditional branches); and 3) to be mis-
predicted. These branch characteristics are specific to a
particular branch predictor.

2.1.4 Memory Address Stream Characteristics

Prior work in statistical simulation models the memory
address stream through cache miss statistics, i.e., the
statistical profile captures the cache miss rates of the
various levels in the cache hierarchy. Although this is
sufficient for the statistical simulation of single-core
processors, it is inadequate for modeling chip multiproces-
sors with shared resources in the memory hierarchy, such
as shared L2 and/or L3 caches, shared off-chip bandwidth,
interconnection network, and main memory. Coexecuting
programs on a chip multiprocessor affect each other’s
performance through conflicts in the shared resources, and
the level of interaction between coexecuting programs is
greatly affected by the microarchitecture—the amount of
interaction can be very different from one microarchitecture
compared to another. As such, cache miss rates profiled
from single-threaded execution are unable to model conflict
behaviors in shared chip multiprocessor resources when
coexecuting multiple programs. We, therefore, take a
different approach in this work: our aim is to model
memory access behavior in the synthetic traces in a way
that is independent of the memory hierarchy so that conflict

behavior among coexecuting programs can be derived
during the simulation of the synthetic traces.

Modeling memory address stream locality behavior
requires that we model the correlation between individual
memory accesses—in our prior work [11], we found that
intermemory reference correlation is necessary for accu-
rately modeling memory-level parallelism as well as
delayed hits in statistical simulation. In this prior work,
we modeled intermemory reference correlation through
correlating hit/miss histories. We now instead use the
notion of reuse distances which is a cache hierarchy-
independent program characteristic. We, therefore, compute
a distribution of the reuse distance for each memory access in
the SFG; we do this for the instruction addresses, as well as
for the load’s and store’s effective addresses. The reuse
distance is defined as the number of memory references
between two references to the same memory location. (The
reuse distance differs from the LRU stack distance in that the
LRU stack distance counts unique memory references only,
whereas the reuse distance counts all memory references.)
We compute the reuse distance distribution as follows: for
each dynamic execution of a given instruction, we compute
its memory reference reuse distance and update the
corresponding entry in the instruction’s reuse distance
distribution. We measure this distribution conditionally
dependent on the reuse distances of the 50 prior memory
references—this is to model memory reference locality [11].
The reuse distance distribution thus captures the temporal
locality in the memory address stream. The distribution is
limited in size and is measured in buckets (of size power of
2) in order to limit the size of the reuse distance distribution
that needs to be stored as part of the statistical profile.

We also compute a distribution of virtual memory
addresses conditionally dependent on the reuse distance,
i.e., for each memory access (instruction pointer and load/
store address), we keep track of the memory locations that it
touches and how frequently it touches each memory
location. (Measuring the virtual memory address distribu-
tion conditionally dependent on the reuse distance models
correlation among memory references.) Conditionally de-
pendent on the virtual memory address, we then compute
three additional memory address stream characteristics,
namely, the distributions of the LRU stack depth for the
L1 cache, L2 cache, and main memory. The LRU stack depth
for main memory is computed as the number of unique
DRAM page accesses since the last access to that same
DRAM page, assuming a single-bank DRAM design. (We
will consider multibank DRAM configurations later.)
Similarly, the LRU stack depths for the L1 and L2 caches
are computed as the number of unique cache block
references to the same set since the last reference to that
same cache block. (Note that throughout the paper, we refer
to the shared cache as the L2 cache; extending our
framework to model shared L3 caches is straightforward.)
For computing the LRU stack depths for the L1 and
L2 caches, we assume the largest L1 and L2 caches one
may be potentially interested in during design space
exploration. The maximum LRU stack depth kept track of
during profiling is ðaþ 1Þ with a being the associativity of
the largest cache of interest. Accessing the LRU stack at
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depth ðaþ 1Þ means that a miss occurred in the largest

cache of interest. The LRU stack depth profile can be used to
estimate cache miss rates for caches that are smaller than

the largest cache of interest. In particular, all accesses to

an LRU stack depth larger than a will be cache misses in an
a-way set-associative cache.

We measure two additional DRAM access characteristics,

namely, the bank hit and page hit statistics. These DRAM

access characteristics assume a particular DRAM organiza-
tion in terms of the number of banks and their organization

(interleaved or linear), as well as page size. The bank hit

statistics quantify the probability for a bank hit. The page hit

statistics quantify the probability for a page hit for each bank.

2.2 Synthetic Trace Generation

The second step in the statistical simulation methodology is
to generate a synthetic trace from the statistical profile. The

synthetic trace generator takes as input the statistical profile

and outputs a synthetic trace that is fed into the statistical
simulator. Synthetic trace generation uses random number

generation; a random number in the interval ½0; 1� is used

with the cumulative distribution function to determine the
particular value for the program characteristic (see Fig. 2).

In particular, synthetic trace generation walks the SFG in a

statistical way, i.e., for each node in the SFG, it determines
the next node based on the internode transition probabil-

ities. For each node, we output the instructions. For each

input operand, we then determine the dependency dis-
tance, i.e., we determine on what prior instruction this

instruction depends through an RAW dependency. In case

of a load, we also determine on what prior store instruction
this load depends. In case of a branch, we probabilistically

label the branch as a taken branch, fetch-redirected branch,

or branch misprediction. For loads and stores as well as for
all instruction addresses, we also determine their virtual

memory addresses, their LRU stack depths for the L1, and

L2 caches as well as main memory, as well as whether they
result in a DRAM bank and page hit or miss.

2.3 Synthetic Trace Simulation

Simulating the synthetic trace is done as follows.

2.3.1 Instruction Scheduling and Execution

Instruction scheduling and execution is done in a similar way
as conventional architectural simulation. Instructions are

scheduled for execution on a functional unit when their

dependencies have been cleared, and they are steered toward
a specific functional unit based on their instruction type.

2.3.2 Branches

Branches are labeled in the synthetic trace. The label
determines whether the branch is taken, fetch redirected,
or mispredicted. The label determines the action the
statistical simulator should take, similar to conventional
architectural simulation. In particular, depending on the
aggressiveness of the instruction cache fetch policy, fetch
may stop upon a taken branch, or fetch may be redirected.
On a branch misprediction, synthetic instructions are fed
into the pipeline as if they were from the correct path. When
the branch is resolved, the pipeline is squashed and refilled
with synthetic instructions from the correct path.

2.3.3 I-Cache Misses

In case of an L1 I-cache miss, the fetch engine stops
fetching for a number of cycles equal to the L2 access
latency. L2 I-cache and I-TLB misses are handled similarly.

2.3.4 Virtual Address to Physical Address Translation

The virtual addresses that appear in the synthetic traces
need to be translated into physical addresses during
statistical trace simulation in order to accurately model
conflict behavior in physically indexed caches and main
memory—the L2/L3 caches are typically physically in-
dexed, whereas the L1 is often virtually indexed to speed
up the L1 access time. A naive solution would simply
employ the first-come-first-served strategy in statistical
simulation as done under detailed simulation, i.e., the next
available physical memory page is allocated when a new
virtual address page is touched (bump pointer allocation).
This, however, leads to inaccurate modeling. The reason is
that the synthetic trace is a miniature version of the original
program trace and does not touch all memory pages as
does the real program trace—this is exactly where the
simulation speedup comes from through statistical simula-
tion—and therefore, the virtual to physical address map-
ping is very different for the synthetic trace than for the
original trace. This changes the conflict behavior in the
memory hierarchy during statistical simulation compared
to detailed simulation, yielding very different performance
pictures. To solve this problem, we propose a simple but
effective strategy, as illustrated in Fig. 3. Say that the last
virtual memory page touched by a program is page x, and
the next memory access (for the same program) touches
virtual memory page y, see program A in Fig. 3. Then, the
virtual to physical address mapper will allocate virtual
memory pages xþ 1 up to y in the next available physical
memory, i.e., the bump pointer is advanced by
y� x memory pages. This assumes that the original
program accesses memory pages xþ 1 up to y� 1 prior
to accessing memory page y; we found this simple heuristic
to be a reasonable approximation because of spatial locality.

2.3.5 Load and Store Instructions

As mentioned before, we generate a virtual address and L1/
L2/DRAM LRU stack depths for each memory reference.
Simulating the synthetic trace on a CMP then requires that
we effectively simulate the entire memory hierarchy. In
statistical simulation for a uniprocessor system, on the other
hand, the memory hierarchy does not need to be simulated
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since cache misses are simply flagged as such in the synthetic
trace; based on these cache miss flags, appropriate latencies
are assigned [6], [11], [18], [20]. Statistical simulation of a
CMP with shared memory hierarchy resources, on the other
hand, requires that the caches, DRAM, and their intercon-
nections be simulated in order to model conflict behavior.

Each cache line in each cache contains the following
information:

. The ID of the program that most recently accessed
the cache line; we will refer to this ID as the program
ID. This enables the statistical simulator to keep
track of the program “owning” the cache line.

. The set index of the set in the largest cache of interest
that corresponds to the given cache line; we will
refer to this set index as the stored set index. In case,
the cache being simulated has as many sets as the
largest cache of interest, the stored set index is the
set index of the simulated cache. The stored set
index will enable the statistical simulator to model
cache lines conflicting for a given set in case the
number of sets is reduced for the simulated cache
compared to the largest cache of interest.

. A valid bit stating whether the cache line is valid.

. A cold bit stating whether the cache line has been
accessed. The cold bit will be used for driving cache
warm-up, as will be discussed later.

. In case of a write-back cache, we also maintain a
dirty bit stating whether the cache line has been
written by a store operation.

. And finally, we also keep track of which instruction
in the synthetic trace accessed the given cache line;
this is done by storing the position of the instruction
in the synthetic trace which we call the instruction ID.

Simulating a cache then proceeds as follows assuming
that all memory references are annotated with set informa-
tion s (is obtained from the virtual or physical memory
address) and LRU stack depth information d for the largest
cache of interest. We first determine the set s0 being
accessed in the simulated cache; this is done by selecting
the log2S least significant bits from the set index s with S
being the number of sets in the simulated cache. The cache
access is considered a cache hit in case there are at least
d valid cache lines in set s0 for which: 1) the stored set
indices equal s and 2) the stored program IDs equal the ID

of the program being simulated. In case, the above
conditions do not hold, the cache access is considered a
cache miss. The most recently accessed cache block is put on
top of the LRU stack for the given set.

An appropriate warm-up approach is required for the
large caches, such as the unified L2 caches; without
appropriate warm-up, the large caches would suffer from a
large number of cold misses. Making the synthetic trace
longer could solve this problem; however, this would
definitely affect the usefulness of statistical simulation which
is to provide performance estimates from very fast simula-
tion runs. As such, we take a different approach and use a
warm-up approach for warming the L2 cache. The warm-up
technique that we use first initializes all cache lines as being
cold by setting the cold bit in all cache lines. The warm-up
approach then applies a hit-on-cold strategy, i.e., upon the
first access to a given cache line, we assume that it is a hit and
the cold bit is set to zero. In other words, if the cold bit is set,
we assume that it is a hit. This hit-on-cold warm-up strategy
is simple to implement and is fairly accurate.

During this work, we also found that it is important to
model L1 D-cache write-backs during synthetic trace
simulation; write-backs can have a significant impact on
the conflict behavior in the shared L2 cache. This is done by
simulating the L1 D-cache similar to what is described above;
L1 D-cache write-backs then access the L2. The L2 cache
access is a miss in case all instruction IDs in the given set
(with the same program ID) are larger than the instruction ID
of the cache line written in the L2; if not, it is a hit.

2.3.6 Simulation Speed

The important benefit of statistical simulation is that a
synthetic trace is very short, typically, a couple million
instructions. The reason for these short synthetic traces is that
the performance metrics quickly converge to a steady-state
value when simulating a synthetic trace. As such, synthetic
traces containing no more than a few million of instructions
are sufficient for obtaining stable and accurate performance
estimates. We quantify the simulation speedup compared to
detailed simulation in the evaluation section.

2.4 Modeling Time-Varying Execution Behavior

A critical issue to the accuracy of statistical simulation for
modeling CMP performance is that the synthetic trace has to
capture its time-varying execution behavior. The reason is
that overall performance is affected by the phase behavior of
the coexecuting programs: the relative progress of a program
is affected by the conflict behavior in the shared resources.
For example, extra cache misses induced by cache sharing
may slow down a program’s execution. A program running
relatively slow because of cache sharing may result in
different program phases coexecuting with the other
program(s), which, in turn, may result in different cache
sharing behavior, and thus, faster or slower relative progress.

To model time-varying behavior, we divide the entire
program trace into a number of instruction intervals; an
instruction interval is a sequence of consecutive instruc-
tions in the dynamic instruction stream. We then collect a
statistical profile per instruction interval and generate a
synthetic mini-trace. Coalescing these mini-traces yields the
overall synthetic trace. The synthetic trace then captures the
original trace’s time-varying behavior.
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The importance of modeling a program’s time-varying
behavior is illustrated in Fig. 4. The four graphs show
relative progress graphs when coexecuting two programs on a
multicore processor: equake-wupwise, sixtrack-equake, gcc-
parser, and fma3d-bzip2. A point ðx; yÞ on a relative
progress curve denotes that the first program has executed
x instructions and the second program has executed
y instructions. In other words, a slow slope denotes that
the first program makes fast relative progress compared to
the second program; a steep slope denotes that the first
program makes slow relative progress compared to the
second program. All graphs in Fig. 4 demonstrate the
importance of modeling a program’s time-varying behavior.
Without time-varying behavior modeling, statistical simula-
tion is unable to track relative progress rates, which leads to
inaccurate multicore processor performance predictions (see
Fig. 5). The reason for this inaccuracy is that very different
phases are coexecuted under statistical simulation com-
pared to detailed simulation. If a program’s time-varying
execution behavior is modeled, on the other hand, statistical
simulation is capable of accurately tracking relative pro-
gress rates, which yields substantially more accurate

multicore performance predictions. The important insight
here is that modeling the time-varying behavior in statistical
simulation does not attribute to the accuracy for single-core
processor performance estimation, but it does have a
substantial impact on the accuracy when coexecuting
programs on a multicore processor.
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modeling a program’s time-varying behavior.



2.5 Design Space Exploration Using Statistical
Simulation

The statistical profile contains a collection of microarchi-
tecture-dependent and microarchitecture-independent
characteristics. This has an important implication in
practice: the use of a single statistical profile is limited by
the set of microarchitecture-dependent characteristics. For
example, given that the branch statistics are specific to one
particular branch predictor configuration, a new statistical
profile needs to be computed in case the branch predictor is
changed. However, a single statistical profile can be used to
explore a large range of microarchitecture parameters such
as the number of cores, the reorder buffer size, issue width,
pipeline depth, etc., because there is no statistic in the
statistical profile that is tied to any of these microarchitec-
ture parameters, i.e., the relevant program characteristics
are microarchitecture-independent. This is an important
property because it implies that a very large fraction of the
design space can be explored using a single statistical
profile. Table 1 summarizes which microarchitectural
parameters can or cannot be changed during design space
exploration without the need for recomputing the statistical
profile. An important improvement over prior work in
statistical simulation [6], [11], [13], [18], [19], [20] is that the
cache statistics are largely microarchitecture-independent.
As such, we can explore most of the memory hierarchy
design space from a single statistical profile. The only
parameter that requires a new statistical profile to be
computed is the number of cache levels and their line sizes.
The number of cache sets, cache associativity, bandwidth,
and latencies can be changed without recollection of the
statistical profile.

3 EXPERIMENTAL SETUP

We use the SPEC CPU2000 benchmarks with the reference
inputs in our experimental setup (see Table 2); this table also
displays the global L2 cache miss rates for the various
benchmarks in our baseline 16MB 16-way set-associative
cache. The binaries of the CPU2000 benchmarks are taken
from the SimpleScalar Web site. We consider 100M single
(and early) simulation points as determined by SimPoint
[23], [24] in all of our experiments. The synthetic traces are
10M instructions long, unless mentioned, otherwise—we
evaluate the impact of the synthetic trace length on accuracy
and simulation speedup in Section 4.2. For measuring the
statistical profiles capturing time-varying behavior, we
measure a statistical profile per 10M-instruction interval.
From these 10 statistical profiles, we then generate
10 1M-instruction mini-traces that are subsequently coa-
lesced to form the 10M-instruction synthetic traces.

We use the M5 simulator [2] in all of our experiments. Our
baseline per-core microarchitecture is a four-wide super-
scalar out-of-order core (see Table 3). When simulating a
CMP, we assume that all cores share the L2 cache as well as
the off-chip bandwidth for accessing main memory. Simula-
tion stops as soon as one of the coexecuting programs
terminates, i.e., as soon as one of the programs has executed
100M instructions in case of detailed simulation, or
10M instructions in case of statistical simulation. We then
record how many instructions were executed so far for each
coexecuting program, and we compute single-threaded IPC
for executing that many instructions. Having obtained
IPC numbers under both multicore execution and single-
threaded execution enables computing system throughput
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(STP) [9], also called weighted speedup [25], which is
defined as

STP ¼
Xn

i¼1

IPCi;multi core
IPCi;single threaded

;

with n the number of coexecuting programs.

4 EVALUATION

We now evaluate the statistical simulation methodology
proposed in this paper in three dimensions: 1) accuracy both
in terms of a single design point as in terms of exploring a
wide design space; 2) simulation speed; and 3) storage
requirements for storing the statistical profiles on disk.

4.1 Accuracy

4.1.1 Homogeneous Workloads

The top graph in Fig. 6 evaluates the accuracy of statistical
simulation for a single program running on a single-core
processor. The average IPC prediction error is 2.4 percent;
this is in line with previously reported results by Genbrugge
and Eeckhout [11]. The other three graphs in Fig. 6 evaluate
the accuracy when running homogeneous multiprogram
workloads on a multicore with a shared L2 cache, i.e.,
multiple copies of the same program are executed simulta-
neously. The average prediction errors for the two-core, four-
core, and eight-core machines are 5.6, 6.3, and 7.3 percent,
respectively. Statistical simulation is capable of accurately
tracking the impact of the shared L2 cache on overall
application performance. For some programs, cache sharing
has almost no impact, see, for example, mesa: the IPC for
mesa remains unaffected by L2 cache sharing. For other
programs, on the other hand, cache sharing has a large
impact, see, for example, art, mgrid, and swim. Statistical
simulation is accurate enough for identifying which

programs are susceptible to L2 cache sharing; moreover,
statistical simulation yields an accurate prediction of the
extent to which cache sharing affects overall performance.

4.1.2 Heterogeneous Workloads

Fig. 7 evaluates the accuracy of statistical simulation for
heterogeneous workloads. The four sets of graphs, Figs. 7a,
7b, 7c, and 7d, represent different sets of workloads. The left
column shows results through detailed simulation, and the
right column shows results through statistical simulation. In
each graph, there are four bars for each benchmark. The “one-
core” bars represent per-benchmark IPC when run alone. The
“two-core” bars represent per-benchmark IPC when corun
with another benchmark; the “four-core” bars represent per-
benchmark IPC when corun with three other benchmarks,
etc. The corun workloads are determined as such, see, for
example, the top-left graph: we corun art with applu, mcf with
lucas, etc., on a two-core configuration; for the four-core
configuration, we corun art, applu, mcf, and lucas, and corun
equake, wupwise, swim, and facerec; for the eight-core
configuration, we corun all benchmarks in the workload.

Not surprisingly, per-benchmark IPC decreases with
increasing multicore processing. This is due to resource
conflicts in the shared memory hierarchy, i.e., the more
conflicts, the more the coexecuting programs interact and
affect each other’s performance. The degree to which
coexecuting benchmarks affect each other’s performance
heavily depends on the benchmarks’ characteristics, i.e., the
more memory-intensive the benchmarks are, the more they
affect each other’s performance. For example, the coexecut-
ing benchmarks affect each other’s performance very
heavily in the (a) workload—these benchmarks are all
memory-intensive; on the contrary, the benchmarks in
workload (c) barely affect each other’s performance because
none of the benchmarks are memory-intensive. The im-
portant observation from these graphs is that statistical
simulation accurately tracks the performance trends ob-
served through detailed simulation.

4.1.3 Design Space Exploration

We now demonstrate the accuracy of statistical simulation
for driving design space exploration, which is the ultimate
goal of the statistical simulation methodology. To do so, we
consider a design space of 80 design points with varying
L2 cache configurations and a varying number of cores. We
vary the L2 cache size from 128 KB to 16 MB with varying
associativity from 2- to 16-way set associative; the cache line
size is kept constant at 64 bytes. And we vary the number of
cores from 1, 2, 4 up to 8. This design space consisting of
80 design points is very small compared to a realistic design
space; however, the reason is that we are validating the
accuracy of statistical simulation against detailed simula-
tion. The detailed simulation for all those 80 design points
was very much time-consuming, which is the motivation
for statistical simulation in the first place.

Fig. 8 shows a scatter plot with system throughput
through detailed simulation on the horizontal axis versus
system throughput through statistical simulation on the
vertical axis. The four graphs in Fig. 8 show four different
heterogeneous eight-program mixes. The average system
throughput prediction error equals 3.5 percent. We observe
that the prediction error increases slightly with an increasing
number of cores: an average prediction error of 1.9 percent
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for a two-core processor, 3.7 percent for a four-core processor,
and 5 percent for an eight-core processor. Overall, we
conclude that for all four workload mixes, the system
throughput estimates through statistical simulation correlate
very closely with the system throughput numbers obtained
from detailed simulation.

4.1.4 Cache Design Space Exploration

Fig. 9 illustrates the accuracy of statistical simulation for

exploring the shared L2 cache design space. In these graphs,
we consider the IPC for a single benchmark, twolf, that we

found to be sensitive to both the cache configuration

parameters and the amount of parallel processing; we
obtained similar results for other benchmarks though,

however, less pronounced as for twolf. In these experiments,
twolf is run solely on a unicore processor, with sixtrack on

the two-core machine, with fma3d-bzip2-sixtrack on the
four-core machine, and with vpr-ammp-gcc-parser-fma3d-

bzip2-sixtrack on the eight-core machine. Again, the overall

conclusion is that statistical simulation accurately tracks
performance differences across cache configurations and
across a different number of cores. Note that these results
were obtained from a single statistical profile, namely, a
statistical profile for the largest cache of interest, a 16 MB
16-way set-associative cache. In other words, a single
statistical profile is sufficient to drive a cache design space
exploration.

4.1.5 3D Stacking Case Study

For demonstrating the value of statistical simulation for
exploring new architecture paradigms, we now consider a
case study in which we evaluate performance of a multicore
processor in combination with 3D stacking [15]. In this case
study, we compare the performance of a four-core processor
with a 16 MB L2 cache connected to external DRAM
memory through a 16-byte wide memory bus against an
eight-core processor with integrated on-chip DRAM
memory (through 3D stacking) and no L2 cache and a
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Fig. 6. Evaluating the accuracy of statistical simulation for single-program and homogeneous multiprogram workloads.



128-byte wide memory bus. We assume a 150-cycle access

time for external memory and a 125-cycle access time for

3D-stacked memory. Fig. 10 quantifies system throughput

for these two design points for four different eight bench-

mark mixes. The eight-core processor with 3D-stacked

memory achieves substantially higher system throughput

than the four-core processor with the on-chip L2 cache. The

improvement in system throughput varies across workload

mixes, and statistical simulation can accurately track

performance differences between both design alternatives:

the maximum error in predicting the system throughput

delta between the four core with on-chip L2 versus the eight

core with 3D-stacked DRAM is 12 percent.

4.2 Simulation Speed

Having shown the accuracy of statistical simulation for CMP
design space exploration, we now evaluate the simulation
speed. Fig. 11 shows the average IPC prediction error as a
function of the synthetic trace length. For a single-program
workload, the prediction error stays almost flat, i.e., increas-
ing the size of the synthetic trace beyond 1M instructions
does not increase prediction accuracy. For multiprogram
workloads, on the other hand, the prediction accuracy is
sensitive to the synthetic trace length, and sensitivity
increases with the number of programs in the multiprogram
workload. This can be understood intuitively: the more
programs there are in the multiprogram workloads, the
longer it takes before the shared caches are warmed up and
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Fig. 7. Evaluating the accuracy of statistical simulation for four heterogeneous workload mixes. The two-core configuration results show per-

benchmark IPC when corun with another benchmark, e.g., in the top-left graph, we corun art with applu, mcf with lucas, etc. For the four-core

configuration, we corun art, applu, mcf, and lucas, and we corun equake, wupwise, swim, and facerec; for the eight-core configuration, we corun all

benchmarks in the workload.



the longer it takes before the conflict behavior is appro-
priately modeled between the coexecuting programs. The
results in Fig. 11 demonstrate that 10M-instruction synthetic
traces yield accurate performance predictions, even for
eight-core processors. In our experiments, we, therefore,
went from 100M instruction real program traces to
10M instruction synthetic traces. This is a 10� decrease in
the dynamic instruction count which yields an approximate
10� reduction in the overall simulation time.

4.3 Storage Requirements

As a final note, the storage requirements are modest for
statistical simulation. The statistical profiles when com-
pressed on disk are 87 MB, on average, per benchmark.

5 RELATED WORK

We now discuss related work in statistical modeling and
fast multithreaded processor simulation techniques.

5.1 Statistical Modeling

Statistical simulation for modeling uniprocessors has re-
ceived more and more interest over the last few years.

Noonburg and Shen [17] model a program execution as a
Markov chain in which the states are determined by the
microarchitecture and the transition probabilities by the
program. Iyengar et al. [14] use a statistical control flow
graph to identify representative trace fragments; these trace
fragments are then coalesced to form a reduced program
trace. The statistical simulation framework considered in this
paper is different in its setup: we generate a synthetic trace
based on a statistical profile. The initial models proposed
along this line were fairly simple [3], [7]: the entire program
characteristics in the statistical profile are typically aggregate
metrics, averaged across all instructions in the program
execution. Oskin et al. [20] propose the notion of a graph with
transition probabilities between the basic blocks while using
aggregate statistics. Nussbaum and Smith [18] correlate
various program characteristics to the basic block size in
order to improve accuracy. Eeckhout et al. [6] propose the
SFG which models the control flow in a statistical manner;
the various program characteristics are then correlated to the
SFG. In our own prior work [11], we further improve the
overall accuracy of the statistical simulation framework
through accurate memory data flow modeling: we model
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Fig. 8. Evaluating the accuracy of statistical simulation for exploring CMP design spaces: measured system throughput through detailed simulation
versus estimated system throughput through statistical simulation. The four graphs represent four eight-program workload mixes.



cache miss correlation, store-load dependencies, and delayed
hits, and report an average IPC prediction error of 2.3 percent
for a wide superscalar out-of-order processor compared to
detailed simulation.

Nussbaum and Smith [19] extend the uniprocessor
statistical simulation method to multithreaded programs
running on shared-memory multiprocessor (SMP) systems.
To do so, they extended statistical simulation to model
synchronization and accesses to shared memory. Hughes
and Li [13] more recently introduced synchronized statis-
tical flow graphs that incorporate interthread synchroniza-
tion. Cache behavior is still modeled based on cache miss
rates though; by consequence, they are unable to model
shared caches as observed in modern CMPs.

Chandra et al. [4] propose performance models to predict
the impact of cache sharing on coscheduled programs. The

output provided by the performance model is an estimate of
the number of extra cache misses for each thread due to
cache sharing. These performance models are limited to
predicting cache sharing effects and do not predict overall
performance. Moreover, the performance models assume
that coscheduled programs make fixed progress, i.e., the
models ignore the effect that cache sharing may have on
how programs affect each other’s performance.

5.2 Fast Multithreaded Processor Simulation

The approaches that have been proposed for speeding up
multithreaded processor simulation can basically be classi-
fied in two main categories: sampled simulation and
parallelized simulation, which we discuss below.

Van Biesbrouck et al. [27], [28], [29] propose the cophase
matrix for guiding sampled simultaneous multithreading
(SMT) processor simulation running multiprogram work-
loads. The idea of the cophase matrix is to keep track of the
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Fig. 10. 3D stacking case study: comparing system throughput for a

four-core CMP with L2 cache and external DRAM memory versus an

eight-core CMP with on-chip DRAM memory (through 3D stacking) and

without an L2 cache.

Fig. 9. Evaluating the accuracy of statistical simulation for tracking shared cache performance as a function of the cache configuration (number of

sets and associativity) and the number of cores on the CMPs; the example benchmark here is twolf; “DS” denotes detailed simulation, and “SS”

denotes statistical simulation.

Fig. 11. Percentage average IPC prediction error as a function of

synthetic trace length for single-program and multiprogram homoge-

neous workloads.



relative progress of the programs on a per-phase basis
when executed together. By doing so, cophases need to be
simulated only once; the performance of recurring cophase
executions can then simply be read from the cophase
matrix, which speeds up simulation.

Ekman and Stenström [8] use random sampling to speed
up multiprocessor simulation. They observe that the
variability of the overall system throughput decreases with
an increasing number of processors when running multi-
program workloads. This means that fewer random
samples need to be taken to estimate overall performance
for larger MP systems than for smaller MP systems in case
one is interested in aggregate performance only. Wenisch
et al. [31] obtained similar conclusions for throughput
server workloads.

Barr et al. [1] propose the Memory Timestamp Record
(MTR) to store microarchitecture state (cache and directory
state) at the beginning of a sample as a checkpoint. This
checkpoint can then be used to quickly restore and estimate
hardware state at the beginning of each sample for different
microarchitecture configurations.

Penry et al. [22] build a structural model of a CMP that
enables them to automatically parallelize the simulator. The
individual components in the structural CMP model are
designed to execute concurrently in hardware and are thus
candidates to run in parallel in simulation. Penry et al. also
simulate components in hardware using FPGAs. FPGA-
based simulation acceleration has received increased atten-
tion over the recent years, see, for example, [5], [21], [30].

6 CONCLUSION AND FUTURE WORK

Simulating chip multiprocessors is extremely time-consum-
ing. This is especially a concern in the earliest stages of the
design cycle where a large number of design points need to
be explored quickly. This paper proposed statistical
simulation as a fast simulation technique for chip multi-
processors running multiprogram workloads. In order to do
so, we extended the statistical simulation paradigm: 1) to
collect cache set access and per-set LRU stack depth profiles
and 2) to model time-varying behavior in the synthetic
traces. These two enhancements enable the accurate
modeling of the conflict behavior observed in shared caches.
Our experimental results showed that statistical simulation
is accurate with average IPC prediction errors of less than
7.3 percent over a broad range of CMP design points, while
being one order of magnitude faster than detailed simula-
tion. This makes statistical simulation a viable fast simula-
tion approach to CMP design space exploration.

There are several avenues along which we can take this
research for future work. First, we plan on extending the
statistical simulation methodology to multithreaded work-
loads. This paper considered multiprogram workloads only
and showed that given the enhancements proposed in this
paper, CMP resource sharing can be modeled accurately in
statistical simulation for multiprogram workloads. Com-
bining it with the Nussbaum and Smith [19] and Hughes
and Li [13] approaches will make statistical simulation
viable for modeling multithreaded workloads running on
CMPs with shared resources. Second, this paper made a
first but important step toward making the statistical profile
microarchitecture-independent. The cache statistics are

independent of the number of sets in the cache and the
cache’s associativity. They are dependent on the cache line
size though; also, the branch prediction statistics are
dependent on a particular branch predictor configuration.
Making the statistical profile completely, microarchitecture-
independent would make the framework even more
efficient and applicable. For example, statistically simulat-
ing SMT processors would then be possible to do. Third, we
found the accuracy of the shared cache performance
estimation through statistical simulation to be subject to
warm up in the shared cache. This paper assumed hit-on-
cold. In future work, we will consider potentially more
accurate and efficient cache warm-up strategies.
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This paper is an extended version of the paper
“Statistical Simulation of Chip Multiprocessors Running
Multiprogram Workloads” by D. Genbrugge and L. Eeckh-
out published at the 2007 International Conference on
Computer Design. The journal paper extends the conference
paper in the following ways:

. The conference paper assumes a simplified DRAM
model, i.e., it assumes a fixed memory access latency.
This paper models a realistic DRAM configuration in
its experimental setup with nonconstant access
latencies, and the statistical simulation framework
is extended accordingly to accurately model DRAM
accesses in a statistical way.

. The conference paper models the L1 cache behavior
through cache miss rates. This paper models the
memory address stream in a microarchitecture-
independent way which enables exploring a large
memory hierarchy design space from a single
statistical profile.

. This paper provides an extended description of the
framework and an extended evaluation on more and
larger chip multiprocessor design spaces, including
a 3D stacking case study.
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