
Optimizing Soft Error Reliability Through
Scheduling on Heterogeneous

Multicore Processors
Ajeya Naithani , Stijn Eyerman , and Lieven Eeckhout

Abstract—Reliability to soft errors is an increasingly important issue as technology continues to shrink. In this paper, we show that

applications exhibit different reliability characteristics on big, high-performance cores versus small, power-efficient cores, and that there

is significant opportunity to improve system reliability through reliability-aware scheduling on heterogeneous multicore processors. We

monitor the reliability characteristics of all running applications, and dynamically schedule applications to the different core types in a

heterogeneous multicore to maximize system reliability. Reliability-aware scheduling improves reliability by 25.4 percent on average

(and up to 60.2 percent) compared to performance-optimized scheduling on a heterogeneous multicore processor with two big cores

and two small cores, while degrading performance by 6.3 percent only. We also introduce a novel system-level reliability metric

for multiprogram workloads on (heterogeneous) multicores. We provide a trade-off analysis among reliability-, power- and

performance-optimized scheduling, and evaluate reliability-aware scheduling under performance constraints and for unprotected

L1 caches. In addition, we also extend our scheduling mechanisms to multithreaded programs. The hardware cost in support of our

reliability-aware scheduler is limited to 296 bytes per core.

Index Terms—Reliability, soft errors, heterogeneous architectures

Ç

1 INTRODUCTION

AS technology shrinks and operation voltage decreases,
the amount of charge in a transistor’s gate reduces,

which increases the probability that a charged element or
radiation can flip the content of a bit, a phenomenon referred
to as a soft error [2], [3], [4]. A higher soft error probability
implies a shorter mean time to failure, or reduced depend-
ability. A significant body of work seeks at improving resil-
ience to soft errors, see for example [3], [5], [6], [7], [8], [9].

To the best of our knowledge, how heterogeneous chip-
multiprocessors (HCMPs) affect reliability is a largely unex-
plored topic. HCMPs enable high performance and high
power/energy-efficiency by scheduling applications to big,
high-performance cores versus small, low-power cores
based on the applications’ characteristics [10], [11]. Industry
examples of single-ISA heterogeneous multicores include
ARM’s big.LITTLE [12], NVidia’s Tegra [13], and Intel’s
QuickIA [14]. Prior work in scheduling for HCMPs focused
on optimizing performance [15], energy efficiency [16], and
power efficiency [17], [18]. However, no prior work has
explored scheduling for reliability on HCMPs.

An HCMP features different core types, with each core
type exposing different performance and soft error vulnera-
bility characteristics. A big out-of-order core features sub-
stantially more transistors, and is therefore more vulnerable
to bit flips than a small core. On the other hand, a big core
executes an application faster, reducing its exposure to soft
errors between launching and finishing the application. The
difference in soft error vulnerability across core types and
applications opens opportunities for scheduling to improve
system reliability.

In this paper, we propose reliability-aware scheduling for
HCMPs. The scheduler monitors reliability on either core
type for all of the co-running applications, and schedules the
applications to big and small cores for improved overall sys-
tem reliability. The scheduler adapts to dynamic phase
changes in the workload, while relying on a novel soft error
vulnerability metric, called System Soft Error Rate (SSER), for
quantifying system reliability of multiprogram workloads
on (heterogeneous) multicores. The scheduler leverages a
counter architecture to track occupancy in various hardware
structures. The hardware cost for the counter architecture
amounts to 904 bytes per core for the baseline version; the
area-optimized version requires as little as 296 bytes per
core. Reliability-aware scheduling reduces system soft error
rate by 32 percent on average (and up to 55.6 percent) for
four-programworkloads on an HCMPwith two big and two
small cores compared to random scheduling, while yielding
similar performance. Compared to performance-optimized
scheduling, soft error rate is reduced by 25.4 percent on aver-
age (and up to 60.2 percent), while degrading performance
by 6.3 percent only.

� A. Naithani and L. Eeckhout are with the Department of Electronics
and Information Systems, Ghent University, Ghent, East Flanders 9052,
Belgium. E-mail: {ajeya.naithani, lieven.eeckhout}@ugent.be.

� S. Eyerman is with Intel, Kontich 2550, Belgium. This work was done
while he was at Ghent University‘. E-mail: stijn.eyerman@intel.com.

Manuscript received 9 May 2017; revised 18 Sept. 2017; accepted 8 Nov. 2017.
Date of publication 3 Dec. 2017; date of current version 16 May 2018.
(Corresponding author: Ajeya Naithani.)
Recommended for acceptance by J. Henkel.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2779480

830 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-2587-7541
https://orcid.org/0000-0002-2587-7541
https://orcid.org/0000-0002-2587-7541
https://orcid.org/0000-0002-2587-7541
https://orcid.org/0000-0002-2587-7541
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:
mailto:

This journal paper is an extension upon the previously
published paper at the 2017HPCA conference [1]. In the con-
ference paper, we showed that our scheduler performs well
across core count, number of big versus small cores, and fre-
quency settings. In this journal paper, we explore the trade-
off in reliability-, power- and performance-optimized sched-
uling; we demonstrate how to extend reliability-aware
scheduling under performance constraints, i.e., we optimize
reliability while not degrading performance by more than a
predefined threshold; we evaluate reliability-aware schedul-
ing for multi-threaded workloads and conclude that there is
limited opportunity because of the homogeneous nature of
data-parallel workloads; finally, we demonstrate the applica-
bility of reliability-aware scheduling even in the case where
L1 caches are not protected and scheduling needs to take
into account the vulnerability to soft errors in the L1 caches.

Overall, we make the following contributions in this
work:

� We analyze the difference in reliability characteris-
tics between big and small cores.

� We show the potential for optimizing reliability
through scheduling on HCMPs.

� We define a novel metric, System Soft Error Rate, for
assessing reliability to soft errors for multiprogram
workloads on (heterogeneous) multicores.

� We propose a dynamic online reliability-aware sche-
duler to optimize reliability in HCMPs (under per-
formance constraints).

� We experimentally evaluate reliability-aware sched-
uling and show that our scheduler is able to signifi-
cantly reduce vulnerability to soft errors.

The remainder of this paper is organized as follows.
Section 2 analyzes the reliability characteristics in an HCMP,
and shows that there is significant potential for reliability-
aware scheduling. In Section 3, we propose the SSER metric
for quantifying the soft error rate ofmultiprogramworkloads.
In Section 4, we then describe our reliability-aware scheduler.
After detailing our experimental setup in Section 5, we evalu-
ate and analyze our proposed scheduler in Section 6. We
explore the trade-offs between performance-, power- and
reliability-optimized scheduling in Section 7.We further eval-
uate reliability-aware scheduling under performance con-
straints (Section 8); we evaluate reliability-aware scheduling
using multi-threaded workloads (Section 9); and we incorpo-
rate L1 cache vulnerability in our scheduler (Section 10).
Finally, we describe related work (Section 11) and conclude
(Section 12).

2 MOTIVATION

We first analyze the difference in vulnerability to soft errors
across core types, and then show the potential for reliability-
aware scheduling using an offline oracle approach.

2.1 Terminology

Before doing so, we first introduce some terminology. An
ACE bit (architecturally correct execution) is a bit in the pro-
cessor that will cause an error during program execution
when flipped, affecting user-visible state (program crash or
wrong output). We assume each bit in the processor pipeline
holding state of a correct-path and non-nop instruction to be

ACE; i.e., all bits in the issue queue, load/store queue, reorder
buffer, physical register file, and functional unit holding state
of a correct-path, non-nop instruction are considered ACE.
Structures that improve performance but do not affect func-
tional correctness (e.g., a branch predictor) do not contain any
ACE bits. ACE bit count (ABC) is defined as the total number
of ACE bits over the entire execution of a program.

The architectural vulnerability factor (AVF) [3] is the fraction
of ACE bits to the total number of bits in a structure, core or
the whole processor. AVF is application-dependent, as some
applications occupy more or fewer entries in the core struc-
tures, and/or have more or fewer wrong-path instructions.
Soft error rate (SER) is the average number of errors (on ACE
bits) that occur per unit of time, e.g., 0.01 errors per day, and
is the reciprocal of the mean time to failure (MTTF), e.g., 100
days. Intrinsic fault rate (IFR) is the probability for a single
one-bit error per second, or, in other words, the average
number of errors per unit of time in a single one-bit cell, e.g.,
10�6 per day; IFR depends on the technology and the envi-
ronment. As such, SER can be calculated as the number of
ACE bits per unit of time times IFR. Assuming IFR is con-
stant, ABC is therefore proportional to SER.

Formally, ABC, AVF and SER of a program running on a
processor core with N bits is defined as

ABC ¼
XN

i¼1

ACE cycles for bit ið Þ (1)

AVF ¼ ABC

N � Total cycles
(2)

SER ¼ ABC

Total cycles
� IFR: (3)

2.2 Reliability versus Core Type

It is commonly known that different core types in a hetero-
geneous multicore processor exhibit different performance
and power characteristics. However, different core types
also exhibit differences in reliability.

There are basically three contributors to the reliability of
an application running on a core:

� The size of the structures in the core that hold archi-
tecture state and are required to guarantee functional
correctness. These include the register file, functional
units, issue queue, reorder buffer (for an out-of-order
processor), etc. The larger these structures are, the
higher the probability for an error in those struc-
tures. This first contributor is thus determined by the
design itself.

� The fraction of the architecturally relevant structures
that an application occupies, i.e., AVF. Some applica-
tions occupy only a small fraction of these structures,
or have a lot of non-architecturally relevant instruc-
tions (nops and wrong-path instructions). The smaller
the occupied fraction is, the smaller the error probabil-
ity. This second contributor depends on theworkload.

� The performance of the application on that core type.
If an application executes faster, it will finish sooner,
and therefore it will be less vulnerable to errors.

Now consider a big out-of-order core and a small in-order
core in an HCMP. Obviously, the big core has larger

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 831

structures than the small core. As a result, a big core is likely to
expose more vulnerable state than a small core. However, the
degree of vulnerability also depends on structure occupancy
which is a function of the application and its performance.

2.3 Application Sensitivity

Applications exhibit varying degrees of sensitivity to soft
error vulnerability. AVF is an insightful metric to under-
stand an application’s vulnerability to soft errors. Fig. 1
shows AVF for the SPEC CPU2006 benchmarks on a big
out-of-order core as well as a small in-order cores. (See Sec-
tion 5 for details regarding our experimental setup.) The
benchmarks are sorted by their AVF on the big core. AVF
accounts for all the ACE bits in the processor during the
entire execution. In particular, if an ACE instruction occu-
pies 64 bits in the reorder buffer (ROB) for 16 cycles, this
amounts to 1024 ACE bits. This way of measuring incorpo-
rates structure size, occupancy and execution time. As
expected, AVF is higher for the big out-of-order core com-
pared to the small in-order core; this is because a big core
holds more architecture state. Note however that in spite of
the fact that AVF is higher on the small core than the big
core for the left-most benchmark, gobmk, it is still less vul-
nerable to soft errors on the small core because of the
smaller structure size, i.e., N is smaller.

The applications appearing on the right-hand side of the
graph are most sensitive to reliability-aware scheduling,
i.e., when scheduled on the big core, AVF (and thus SER)
increases significantly compared to running on the small
core. Applications appearing on the left-hand size are less
sensitive, i.e., the increase in SER on the big core is not as
high, and thus if given the choice, scheduling these applica-
tions on a big core rather than a small core will not increase
overall system soft error rate as much. Fig. 1 classifies the
benchmarks into three categories based on their big-core
AVF: high, medium and low. We will use this classification
for analyzing the performance of our reliability-aware
scheduler across workload types in the evaluation section.

It is interesting to relate the AVF graph to the normalized
CPI (cycles per instruction) stacks shown in Fig. 2. A CPI stack
quantifies the fraction of cycles spent doing useful work (i.e.,
the base component) plus a number of adders or components
to represent ‘lost’ cycles because of resource stalls, branch

mispredictions, instruction cache misses, last-level cache
(LLC)misses andmainmemory accesses.Note that the bench-
marks are ordered the sameway as in Fig. 1. The benchmarks
on the left-hand side exhibit low AVF primarily because of
their relatively high front-end miss components. Front-end
miss events, such as branch mispredictions and instruction
cachemisses, cause the pipeline to be drained and hence there
is relatively little vulnerable state in the processor. The bench-
marks on the right-hand side on the other hand have a high
AVF because they exhibit high occupancy in various back-
end structures of the pipeline for a variety of reasons. Some
benchmarks (e.g., milc) are memory-intensive: a load opera-
tion accessing main memory typically blocks the head of the
reorder buffer, which causes the ROB to fill up, and which
leads to significant ACE state while servicing the memory
operation. Other high-AVF benchmarks (e.g., zeusmp) are
compute-intensive: high IPC and high MLP is achieved by
having high occupancy in various back-end queues. Yet other
benchmarks experience resource stalls in the back-end struc-
tures because of L1data cachemisses, L2 cachemisses, limited
ILP (i.e., chains of dependent instructions) which cause the
ROB and issue queues to fill up with instructions. Note that
there are a number of memory-intensive benchmarks (e.g.,
mcf and libquantum) that exhibit low AVF. This is because
these benchmarks suffer from branch mispredictions which
lead to a large number of un-ACE wrong-path instructions in
the ROBunderneathmemory accesses.

The take-away message from this analysis is that there
exists no simple workload characteristic (e.g., compute-inten-
sive versus memory-intensive) to determine how sensitive a
workload is with respect to reliability. Instead, it depends on
howAVF-intensive an application is, which is a result of com-
plex interactions among various workload characteristics and
the underlying microarchitecture. This suggests that reliabil-
ity-aware scheduling needs a dynamic mechanism tomonitor
an application’s reliability on either core type in a heteroge-
neousmulticore and adjust the schedule accordingly.

2.4 Oracle Reliability-Aware Scheduling

To quantify the potential of reliability-aware scheduling,
we perform the following experiment. We simulate each
application on both core types in isolation, and record perfor-
mance and SER. We then consider all combinations of four
applications on a heterogeneous multicore processor with
two big and two small cores. Of the six possible schedules, we
select the one with the highest performance (expressed in

Fig. 1. AVF for the SPEC CPU2006 benchmarks on a big out-of-order
and a small in-order cores. The benchmarks are sorted by their AVF on
the big core.

Fig. 2. Normalized CPI stacks for the SPEC CPU2006 benchmarks on a
big out-of-order core.

832 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

system throughput (STP) [19]), and the one with the lowest
total SER. (See the next section for the metric we use to quan-
tify SER for a multiprogram workload.) We assume no inter-
ference in shared resources, and consider the performance
and SER numbers from the isolated experiments. This leads
to an oracle offline schedule. Fig. 3 shows SER reduction and
performance loss for the SER-optimized schedule normalized
to the performance-optimized schedule. Clearly, the reduc-
tion in SER is much higher than the loss in performance,
resulting in an average 27.2 percent reduction in SER (and up
to 62.8 percent) while degrading performance by 7 percent on
average. This result demonstrates the significant potential
and motivates our study on reliability-aware scheduling for
heterogeneousmulticore processors.

3 RELIABILITY METRIC FOR MULTIPROGRAM

WORKLOADS

Reliability is commonly quantified using soft error rate, i.e.,
the number of errors per unit of time. This works fine for
single-program workloads, but falls short for multiprogram
workloads, as we will explain in this section; we then subse-
quently propose a novel system-level reliability metric for
multiprogram workloads on (heterogeneous) multicores.

With T as the total execution time (total cycles in Equa-
tion (3), let us recap the definition of soft error rate for
single-program workloads

SER ¼ ABC

T
� IFR: (4)

In other words, SER computes the number of ACE bits per
unit of time multiplied by the intrinsic fault rate. As long as
we measure SER for a single-program workload by running
(a well-defined section of) the workload to completion, we
can safely evaluate reliability using SER because the unit of
work is constant.

3.1 System Soft Error Rate

SER breaks down for multiprogram workloads. We cannot
simply add up SER numbers for each of the applications in
a multiprogram workload because some applications are
inherently more vulnerable to soft errors than others—add-
ing raw SER numbers would give too much weight to fast
running applications and too little weight to slow running
applications. This is similar to performance metrics for mul-
tiprogram workloads, i.e., adding plain IPC numbers gives
more weight to high-IPC applications. The fundamental

problem here is that SER does not take into account the
impact of performance on the error rate: lower performance
makes the application run longer, increasing the probability
for an error during its execution.

The solution is to weight per-application SER with the
slowdown incurred because of multiprogram execution.
Application slowdown is defined as the execution time of
an application on the (heterogeneous) multicore divided by
its execution time on a reference machine (e.g., an isolated
big core). A slowdown of 1 means that the application exe-
cutes equally fast as on the reference machine; a slowdown
of 2 means that the application takes twice as long under
multiprogram execution compared to isolated execution.
We then define weighted SER (wSER) of an application in a
multiprogram workload as follows:

wSER ¼ ABC

T
� T

Tref
� IFR ¼ ABC

Tref
� IFR; (5)

with ABC and T the ABC and execution time of the applica-
tion in the multiprogram workload, respectively; and Tref

the execution time of the application on an isolated reference
core (e.g., a big core in a heterogeneous multicore). In other
words, wSER weights the application’s SER during multi-
program execution with its slowdown compared to isolated
execution. This is to account for the fact that if the application
runs longer during multiprogram execution (which is what
you would expect because of interference in shared resour-
ces), it gets exposed to soft errors for a longer time.

Summing the weighted SER values for the individual
applications in a multiprogram workload then yields our
novel system soft error ratemetric

SSER ¼
Xn

i¼1

wSERi ¼
Xn

i¼1

ABCi

Ti;ref
� IFR; (6)

which quantifies the total weighted SER across all the appli-
cations in the multiprogram workload. SSER gives bigger
weights to slow-running applications in the multiprogram
workload mix, and smaller weights to fast-running applica-
tions. This is to account for the fact that slow-running appli-
cations will be exposed to soft errors for a longer time,
hence we scale their per-application SER proportionally
with their relative slowdown.

3.2 Illustrative Examples

We now illustrate the intuitive and system-level meaning of
SSER using a couple examples, see also Table 1. Consider a
homogeneous multicore with two big cores, and assume
that the two co-running applications do not interfere with
each other, i.e., they both run equally fast on the homoge-
neous multicore compared to isolated core execution, see
example (a) in Table 1. Assume further that per-application
SER is not affected by multiprogram execution. SSER equals
2 in this case, which makes perfect sense: the system’s vul-
nerability is twice as high on the homogeneous multicore
compared to isolated execution because we now have two
co-running applications.

Assume now that one application slows down by a factor
of 2 (e.g., because of hardware interference) and the other
application is not affected at all, see example (b) in Table 1. In
this case, SSER equals 3, i.e., a weighted SER of 1 for the

Fig. 3. Percentage STP loss andSERgain for an oracle reliability-optimized
scheduler relative to a performance-optimized scheduler for four-program
workloads on anHCMPwith two big cores and two small cores.

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 833

application that does not slowdown, plus aweighted SER of 2
for the application that slows down by a factor two. This
makes intuitive sense because it takes two times as long for
the slow application to get the same amount of work done,
and therefore the slow application is twice as vulnerable.

Consider now a heterogeneous multicore, see example (c)
in Table 1. Assume that the application that runs on the small
core experiences a slowdown of 4 while its SER reduces by a
factor of 8 compared to running on the big core (we expect
lower SER on the small core because it holds less state than on
the big core). As a result, its weighted SER equals 0.5, i.e., the
application is slowed down by a factor of 4 but it is 8 times
less vulnerable to soft errors per unit of time, hence it is only
half as vulnerable for getting thework done. SSER thus equals
1.5. Note that SSER in example (c) is smaller than for the
homogeneous multicore examples (a) and (b); this is due to
the fact that even though the benchmark running on the small
core slows down substantially, it exposes far fewer ACE bits,
which leads to a net reduction in overall system vulnerability.

4 RELIABILITY-AWARE SCHEDULING

Having demonstrated the potential for reliability-aware
scheduling and having derived the SSER metric for quanti-
fying system-level reliability, we now describe our sam-
pling-based reliability-aware scheduler for heterogeneous
multicores. We assume that we can measure the perfor-
mance of each application on each core (e.g., the number of
instructions executed during the last scheduler quantum),
and the number of ACE bits in each structure (i.e., ACE bit
count or ABC over the past quantum), which we both need
to compute SSER. We quantify the hardware overhead for
measuring ABC later in this section; we start by explaining
the scheduling algorithm.

4.1 Scheduling Algorithm

The scheduler starts with an initial sampling phase to collect
performance and ABC information for each application on
either core type. If the number of big cores equals the num-
ber of small cores, this requires two sampling quanta: we
first put one half of the applications on a big core and put
the other half on a small core in the first sampling quantum,
and we invert this schedule in the next sampling quantum,
i.e., the applications running on a big core are moved to a

small core, and vice versa. If the number of big cores is not
equal to the number of small cores, e.g., 1 big core and 3
small cores, more quanta are needed to sample each appli-
cation on each core type (4 sampling quanta in this exam-
ple). After this initial sampling phase, the scheduler follows
the algorithm described in Algorithm 1.

Algorithm 1. Sampling-Based Reliability-Aware
Scheduler. (n is the Number of Applications.)

1: sampleRequired ¼ false
2: quantumNumber ¼ 0
3: lastSampledAt ¼ 0
4: while true do
5: if quantumNumber � 2

or (quantumNumber � lastSampledAt) ¼¼ 10 then
6: sampleRequired ¼ true
7: end if
8: if sampleRequired ¼¼ true then
9: startSamplingPhase()

10: lastSampledAt ¼ quantumNumber

11: sampleRequired ¼ false
12: continue
13: end if
14: for i ¼ 1 to n do
15: reduction[i] = getWeightedSERReduction(i)

16: coreAssigned[i] ¼ false
17: for j ¼ iþ 1 to n do
18: maxReduction[i,j]¼ 0
19: end for
20: end for
21: for i ¼ 1 to n do
22: for j ¼ iþ 1 to n do
23: if coreType[i] ¼¼ coreType[j] then

24: continue
25: endif

26: if(reduction[i] � reduction[j]) >
maxReduction[i,j]then

27: maxReduction[i,j] =

reduction[i] - reduction[j]

28: endif

29: end for
30: end for

{sortedReductions contains an array of n
maxReductions[i,j] in their decreasing order}

31: sortedReductions[n] ¼ sortMaxReductions()

32: for k ¼ 1 to n do
33: currReduction[i,j] = sortedReductions[k]

34: if currReduction[i,j] > 0
andcoreAssigned[i] == false
andcoreAssigned[j] == false then

35: switchCoreTypes(i,j)

36: coreAssigned[i]¼ true
37: coreAssigned[j]¼ true
38: endif

39: end for
40: for i ¼ 1 to n do
41: ABC[i] ¼ getCurrentQuantumABC(i)

42: IPC[i] ¼ getCurrentQuantumIPC(i)

43: end for
44: quantumNumber++

45: end while

TABLE 1
Examples Illustrating the SSER Metric

(a) homogeneous multicore: SSER = 2

SER slowdown wSER

benchmark A on big 1 1 1
benchmark B on big 1 1 1

(b) homogeneous multicore: SSER = 3

SER slowdown wSER

benchmark A on big 1 2 2
benchmark B on big 1 1 1

(c) heterogeneous multicore: SSER = 1.5

SER slowdown wSER

benchmark A on small 1/8 4 0.5
benchmark B on big 1 1 1

834 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

The algorithm first verifies whether the sampled data is
recent. If an application has run for 10 consecutive schedul-
ing quanta on the same core type, a sampling phase is trig-
gered: the application is scheduled on the other core type
by swapping it (during a short sampling quantum) with the
application that is running for the most consecutive quanta
on the other core type. By doing so, the scheduler ensures
that the sample data is up-to-date, adapting to potential
phase changes.

If all applications have recently sampled data for both
core types, the scheduler calculates the weighted SER
(wSER) for each application if we were to schedule them on
the other core type than they are currently scheduled on. It
then selects the application with the highest wSER reduc-
tion and the application with the smallest wSER increase,
and checks whether swapping the two applications leads to
a net overall SSER reduction. If so, the applications are
swapped, and the next couple is checked. If no global SSER
reduction can be obtained, the current schedule is main-
tained for the next quantum. After finishing a quantum, the
sample data is automatically updated.

We need to sample both performance and ABC, because
the SSER metric needs both. Sampling ABC requires hard-
ware support to compute occupancy in all relevant proces-
sor structures, as we will describe in the next section.
Sampling performance can be done by counting the number
of instructions executed per quantum—we sample at fixed
time quanta (1 ms in our setup). This involves a basic per-
formance counter that is implemented in most recent pro-
cessors. To compute an application’s slowdown, we take
the big core as the reference core. Because we have no refer-
ence performance data of an isolated big core execution, we
assume that the sampled big core performance is a good
proxy for reference core performance. Note that the sam-
pled value is subject to interference in the shared resources
(e.g., shared cache and memory) because other programs
are co-running while sampling.

It is important for a sampling-based scheduler to limit
sampling overhead. On the other hand, we need to sample
for a sufficiently long period of time to obtain stable sam-
pling information. This is why we make a distinction
between a sampling quantum and a scheduler quantum.
We set the scheduler quantum to 1 ms in all of our experi-
ments, and the sampling quantum to one tenth the sched-
uler quantum or 0.1 ms. All results in the evaluation section
include sampling overhead.

Fig. 4 illustrates how our reliability-aware scheduler
reacts to time-varying execution behavior; each dot repre-
sents ABC per 1 ms. The left graph shows ABC over time
for calculix and povray when executed in isolation on a
big core; the right graph shows ABC when executed concur-
rently on an HCMP with one big and one small core. When
run in isolation, povray experiences almost constant ABC;
calculix on the other hand experiences a big drop in
ABC towards the end of its execution. When co-executed on
the HCMP, calculix is scheduled on the small core ini-
tially due to its high big-core ABC compared to povray.
Upon the phase change in calculix, the scheduler
responds by migrating the two applications. The multi-pro-
gram workload case also illustrates sampling overhead:
sampling is initiated once every 10 scheduler quanta for one

tenth of the quantum, so we sample one percent of the time.
Sampling incurs the drops and spikes in the ABC curves for
povray and calculix, respectively. (Note that the curves
include data points for the scheduling quanta and the sam-
pling quanta, i.e., ten scheduling quanta of 1 ms each fol-
lowed by a sampling quantum of 0.1 ms.)

4.2 Hardware Overhead

As mentioned in the previous section, computing ABC in
support of our reliability-aware scheduler requires hard-
ware support. For an out-of-order core, we need counters
for the five major structures, including the ROB, issue
queue, load/store queue, register file and functional units.
Furthermore, we also need to factor out wrong-path and
nop instructions. We propose the following hardware addi-
tions. Per ROB entry, we keep two extra counters: one for
recording the dispatch time of an instruction (i.e., the time it
is inserted into the ROB), and one for recording the issue
time (i.e., the time the instruction starts executing). These
counters should be large enough to cover the maximum
number of cycles an instruction resides in the ROB; we set
the size of the counter to be 12 bits (maximum of 4,096
cycles). At the time the instruction commits—which ensures
that it is a correct-path instruction—we can deduce the time
this instruction spent in each of the architecturally relevant
structures:

� The time spent in the ROB is the commit time minus
the dispatch time.

� The time spent in the issue queue is the issue time
minus the dispatch time.

� For a load or store instruction, the time spent in the
load/store queue is the commit time minus the dis-
patch time—we model an architecture where load/
store queue entries are allocated at dispatch time.

� The time the physical output register of an instruc-
tion is ACE is the commit time minus the finish time
(which is the issue time plus its execution latency).
Note that all architectural registers are ACE all of the
time.

� The time spent in a functional unit is the functional
unit’s execution latency.

At the commit stage, where we keep one counter for each of
the five structures, we add the per-instruction occupancy in
each of the five structures to the respective overall counters.

Fig. 4. ABC over time for calculix and povraywhen executed in isola-
tion on a big core (on the left) and as a two-program workload on one big
core and one small core under reliability-aware scheduling (on the right).

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 835

By doing so, the counters keep track of the accumulated
occupancy in the respective structures. At the end of a quan-
tum, total ABC is calculated as the accumulated occupancy
times the number of bits per entry—the multiplication is
done by the scheduler in software.

The total hardware overhead amounts to:

� Two 12-bit counters per ROB entry, which amounts
to 3,072 bits for a 128-entry ROB.

� One 32-bit counter per profiled structure, which
amounts to 160 bits for 5 counters (with one counter
per structure). 32 bits is sufficient for the quantum
size in our setup (2.6 million cycles at 2.6 GHz, and
at most 128 entries per structure).

� Additional functional units for calculating occu-
pancy and adding them to the counter. We need 5
adders per instruction in the data path (one per
structure), and since up to 4 instructions can commit
per cycle, this requires 20 adders in total.

Total hardware overhead thus equals 3,232 bits plus 20 add-
ers. Extrapolation from [20] suggests that a 32-bit adder con-
sumes about 1,200 transistors. One SRAM cell contains 6
transistors, so a rough equivalence relation is 200 SRAM bits
for one 32-bit adder. So, in total the hardware overhead of
this baseline implementation equals 7,232 bits or 904 bytes.

To reduce the hardware overhead for the big core, the
scheduler can use ACE bit information of the ROB only. We
choose the ROB, because it is a central structure, containing
a lot of useful state, and all other structures contain a subset
of the instructions in the ROB. This is confirmed by the ACE
bit count stacks shown in Fig. 5 for the one-billion instruc-
tion workloads considered in this study. ABC stacks repre-
sent the breakdown of the total occupancy of a core in its
microarchitecture structures. ROB ABC correlates very well
with overall core ABC (correlation coefficient of 0.99) and
contributes to almost half of the total occupancy of the core
across all benchmarks. In other words, ROB ABC can serve
as a proxy for the overall core ABC, which allows for correct
scheduling decisions to be made using relative ABC num-
bers across applications. (When using ROB-ABC instead of
core-ABC in our final scheduler, we find it to be within 0.7
percent for four-program workloads running on 2 big and 2
small cores. Therefore, this is a worthwhile optimization.)
For this implementation, we only need the dispatch time
per ROB entry (12 bits times 128 entries equals 1,536 bits),
one ROB ACE counter (32 bit) and 4 adders, resulting in a
total of 2,368 bit equivalents or 296 bytes in total for this
area-optimized implementation.

For the small in-order core, we only keep track of the fetch
time. Because all instructions need to go through all stages,
and each stage has a similar buffer for each instruction, we
can calculate the time between fetch and writeback of each
instruction as a way to account for the number of ACE bits in
the pipeline buffers. In addition, we add the functional unit
ACE bits by multiplying the latency of the operation by the
size of the functional unit. This requires 10 fetch time coun-
ters (5 stages times 2 instructions per stage) at 10 bits per
counter (the time an instruction spends in the in-order core is
usually less than in an out-of-order core), and one 32-bit total
ACE counter. This amounts to 132 bits and two adders in
total, resulting in 532 bit equivalents or 67 bytes.

5 EXPERIMENTAL SETUP

Because there is no way of evaluating architectural vulnera-
bility on real hardware, we evaluate our scheduler through
simulation. We use Sniper 6.0 [21], a parallel, high-speed,
and cycle-level x86 simulator for multicore systems that has
been validated against real hardware; we assume the most
detailed simulation model available in Sniper. We augment
Sniper with ACE bit counters to count the number of ACE
bits in the different structures. For the big out-of-order core,
we count ACE bits in the ROB, issue queue, load/store
queue, register file and functional units. Similarly, for the
small in-order core, we count ACE bits in the fetch, decode,
register read, execute and write-back stages. Nops and
wrong-path instructions are assumed to be non-ACE. Table 2
shows the configurations of the big out-of-order and the
small in-order core types, as well as the bit counts per entry
in each structure (taken from Nair et al. [22]). Note that we
assume the same cache hierarchy for the small and big cores;
however, in Section 10 where we focus on L1 cache vulnera-
bility, we will vary the cache size of the small core to study
the sensitivity to the cache hierarchy.

Fig. 5. ABC stacks for the out-of-order core.

TABLE 2
Big and Small Core Configurations

Big core Small core

Frequency 2.66 GHz 2.66 GHz
Type out-of-order in-order
ROB size 128, 76 bit/entry -
Issue queue size 64, 32 bit/entry 4, 32 bit/entry
Load queue size 64, 80 bit/entry -
Store queue size 64, 144 bit/entry 10, 144 bit/entry
Pipeline width 4 2
Pipeline depth 8 stages 5 stages

(front-end only) 2 � 76 bit/stage
Functional units 3 int add (1 cyc) 2 int add (1 cyc)

1 int mult (3 cyc) 1 int mult (3 cyc)
1 int div (18 cyc) 1 int div (18 cyc)
1 fp add (3 cyc) 1 fp add (3 cyc)
1 fp mult (5 cyc) 1 fp mult (5 cyc)
1 fp div (6 cyc) 1 fp div (6 cyc)

Register file 120 int (64 bit) 16 int (64 bit)
96 fp (128 bit) 16 fp (128 bit)

L1 I-cache 4-way 32 KB, 2 cyc 4-way 32 KB, 2 cyc
L1 D-cache 8-way 32 KB, 4 cyc 8-way 32 KB, 4 cyc
Private L2 cache 8-way 256 KB, 8 cyc 8-way 256 KB, 8 cyc

Shared L3 cache 16-way 8 MB, 30 cyc
Memory BW 25.6 GB/s, lat 45 ns

836 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

The overhead for saving and restoring microarchitectural
state to support core migration plus the overhead of
weighted speedup/SER calculation is conservatively mod-
eled as 20 ms. The impact of cache warming (including
cache-to-cache transfer latency) is modeled faithfully in the
simulator. The overall impact of the different overheads on
system throughput is less than 0.5 percent for both the per-
formance- and reliability-optimized schedulers.

We create multiprogram workloads from the SPEC
CPU2006 benchmarks. We construct 1 billion instruction
SimPoints [23] for each benchmark. We categorize bench-
marks into three groups, based on their big-core AVF, see
also Fig. 1. The eight benchmarks with the highest AVF are
classified in the high sensitivity group (H); the eight bench-
marks with the lowest AVF are classified as low sensitivity
(L); and the 13 remaining benchmarks have medium sensi-
tivity (M). For the two-program combinations, we make 6
categories of mixes: HH, HM, HL, MM, ML and LL. We ran-
domly generate 6 workloads in each category, while making
sure that each benchmark occurs at least once; this results in
36 evaluated workloads. For the four-program combina-
tions, we take the same 6 mix categories by doubling the
benchmark categories: HHHH, HHMM, HHLL, MMMM,
MMLL and LLLL, and again generate 6 workloads in each
category. We do not duplicate individual benchmarks, i.e.,
HHHH contains four different benchmarks. We do another
doubling round for the eight-program combinations.

We evaluate the four-program workloads on a symmetric
HCMP configuration consisting of 2 big and 2 small cores
(2B2S). The standard quantum time is 1 ms. For each experi-
ment, the longest running application executes its full 1 billion
instruction SimPoint, and the faster running applications are
restarted until the end of the experiment. For the applications
that restart, we record performance andwSER across all repe-
titions of that application. The reason is that the longer run-
ning application could enter a new phase near the end of its
execution, causing the schedule to change, which in turn
impacts the other applications. Taking results from the first
execution only for the repeating applications would not cover
these changes in the schedule.

Note that in this work we assume a fixed DRAM access
latency. We evaluate the impact of this assumption on the
results reported in this paper by also considering a variable
latency DRAM model that includes different banks and
ranks, an open-page policy, and different latencies for
accessing an open versus closed page. We notice that the
variable-latency DRAM model leads to significant differen-
ces in absolute IPC and ABC for the individual benchmarks.
However, there was no significant difference in terms of the
overall reliability and performance for the evaluated sched-
ulers when executing multiprogram workloads on an
HCMP. The reason is that the relative differences between
the evaluated schedulers remains unaffected when chang-
ing the details of the DRAMmodel.

6 EVALUATION

We evaluate the following three schedulers:

� The random scheduler, for each time slice, randomly
selects the applications to run on the big core(s).

� The reliability-optimized scheduler optimizes SSER
using the algorithm described in Section 4.

� The performance-optimized scheduler optimizes system
throughput [19] or weighted speedup, using the
same sampling-based scheduling algorithm optimiz-
ing for STP rather than SSER.

In this section, we focus on the results for the 2B2S configu-
ration. We refer the interested reader to the conference
paper [1] for more detailed analysis and results across dif-
ferent core counts, asymmetric HCMP configurations and
different clock frequencies for the big versus small cores. In
addition, we also studied the impact of using only ROB
ACE bits to steer scheduling as well as the impact of the
sampling period.

6.1 2B2S Results

Fig. 6 evaluates system soft error rate and system through-
put for the reliability- and performance-optimized schedu-
lers, normalized to the random scheduler, for four-program
workloads running on a 2B2S HCMP. SSER is a lower-is-
better metric, while STP is a higher-is-better metric. Each
dot represents a workload; the workloads are sorted by
SSER and STP, respectively.

The reliability-optimized scheduler significantly and
consistently improves reliability, i.e., SSER reduces by 32
percent on average and up to 55.6 percent compared to the
random scheduler; and by 25.4 percent on average and by
up to 60.2 percent compared to the performance-optimized
scheduler. Reliability-aware scheduling effectively deter-
mines which applications are most vulnerable to soft errors
and puts those applications on the small cores to improve
overall system reliability.

The performance-optimized scheduler also reduces SSER
over the random scheduler (by 7.3 percent on average). This

Fig. 6. System soft error rate (a) and system throughput (b) for reliability-
and performance-optimized scheduling normalized to random schedul-
ing for all four-program workloads on an HCMP with 2 big cores and 2
small cores.

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 837

improvement is substantially smaller and, moreover, it is not
consistent, i.e., reliability decreases for a number of work-
loads. The reason for the (average) improved reliability is the
apparent correlation between performance and reliability.

In terms of performance, the reliability-optimized sched-
uler yields similar performance to the random scheduler (half
of the workloads are worse, half are better, resulting in an
average near 0 percent difference), and degrades performance
by only 6.3 percent on average (and by 18.7 percent at most)
compared to the performance-optimized scheduler. The per-
formance improvement of performance-optimized schedul-
ing over random scheduling is in linewith prior work [15].

6.2 Analysis by Workload Category

Fig. 7 shows the same results as Fig. 6 but now groups the
results per workload category, with the categories defined
based on big-core AVF, see Section 2.3. The largest improve-
ment in system reliability is observed for the workload cate-
gory that includes high-AVF applications and low-AVF
applications (see HHLL). This does not come as a surprise:
the high-AVF applications are scheduled on the small cores
to reduce overall system reliability, while scheduling the
low-AVF applications on the big cores. Theworkload catego-
ries with less divergent application behavior (HHMM and
MMLL) also show substantial improvements in reliability,
though not as high as for the HHLL category. Here, again,
reliability-aware scheduling is able to schedule the applica-
tions with high AVF (relative to the other applications in the
mix) on the small cores and vice versa. For theworkload cate-
gories with similarly AVF-sensitive applications (all H, M or
L applications), we observe modest improvement in reliabil-
ity. The reliability-aware scheduler makes the correct sch-
eduling decisions in terms of AVF, i.e., it schedules
applications with the highest AVF on the small cores and

vice versa. Nevertheless, this leads to a small improvement
in system reliability because of the lower system perfor-
mance compared to performance-optimized scheduling,
which tempers the improvement in soft error rate—remem-
ber that SSERweights relative per-application slowdown.

7 PERFORMANCE VERSUS POWER CONSUMPTION

VERSUS RELIABILITY

There is an important trade-off between performance,
power and reliability, as corroborated by a recent study [24].
In the previous section, we focused on performance and
reliability. However, changing the workload schedule on a
heterogeneous multicore also affects power consumption.
Therefore, in this section, we first evaluate how reliability-
aware scheduling affects power consumption. We then sub-
sequently explore the trade-off between scheduling for per-
formance, power and reliability.

7.1 Impact of Reliability-Aware Scheduling
on Power

Fig. 8 quantifies the impact on chip-level power (including L3)
and total system power (processor plus DRAM) with increas-
ing core count. We use McPAT [25] to quantify power con-
sumption. The bottom line is that reliability-optimized
scheduling reduces chip-level and system power by 6 and 6.2
percent on average, respectively, relative to performance-opti-
mized scheduling. The reason is that performance-optimized
scheduling puts applications on a big core for performance
reasons although this may increase power consumption. For
example, a memory-intensive application with high degrees
of MLP will be scheduled on the big core to improve perfor-
mance [15]; this will lead to an increase in power consump-
tion. The reliability-aware scheduler on the other hand
schedules this workload on the small core to reduce soft error
vulnerability, also reducing power.

7.2 Trade-Offs in Performance-, Power- and
Reliability-Optimized Scheduling

We implemented a power-optimized scheduler to evaluate the
impact of optimizing for power on reliability. The power-
optimized scheduler, alike our reliability- and performance-
optimized schedulers, is a sampling-based scheduler. The
scheduling decision is based on the energy consumed by
each core per quantum. Note that an ideal power- or reli-
ability-optimized schedule can be achieved by scheduling
workloads on small cores in a sequential manner. However,
all our scheduling policies maintain the fundamental

Fig. 7. SSER (a) and STP (b) on a 2B2S system per workload category.

Fig. 8. Impact on chip-level and total system power consumption.

838 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

assumption that no core remains idle while an HCMP is
executing a multiprogram workload. Fig. 9 shows the rela-
tionship among power, performance and reliability when
we execute four-program workloads on 2 big and 2 small
cores. Optimizing power always leads to performance deg-
radation, and also leads to an overall improvement in reli-
ability (by 12.2 percent on average) compared to random
scheduling. Benchmarks such as cactusADM and hmmer

expose a large state inside the big core, causing high vulner-
ability and power consumption. Such benchmarks are
scheduled on a small core to improve both power and reli-
ability. For such benchmarks, optimizing for power also
leads to an improvement in reliability, and vice versa, opti-
mizing reliability also improves power.

There are several workloads for which a reliability-opti-
mized schedule is different from a power-optimized sched-
ule. For example, milc and sjeng run on different core
types for reliability and power when they co-run. Com-
pared to milc, sjeng incurs much higher power on the big
core compared to the small core. Therefore, for power, it is
always scheduled on the small core. On the other hand,
milc is a memory-intensive benchmark that maintains a
large vulnerable state inside the core while waiting for long-
latency memory requests to complete. Since the difference
in SER for sjeng is small between the big and small cores,
the reliability-optimized scheduler runs milc on the small
core and sjeng on the big core.

The key take-away from the results reported in Fig. 9 is
that there is a trade-off between performance-, power- and
reliability-optimized scheduling. Performance-optimized
scheduling leads to high performance, but also leads to high
power consumption and soft error vulnerability. Power-opti-
mized scheduling minimizes power consumption, however
this comes at a cost in performance. Reliability to soft errors
slightly improves under power-optimized scheduling com-
pared to performance-optimized scheduling. Reliability-
optimized scheduling improves reliability by a significant
margin while being on par with random scheduling in terms
of performance and power consumption.

8 RELIABILITY-AWARE SCHEDULING UNDER

PERFORMANCE CONSTRAINTS

So far, we assumed that the goal is to optimize reliabilitywhile
considering performance after the fact, i.e., we schedule

applications to core types to optimize for reliability and we
pay the cost this may incur in terms of performance. In many
systems however, performance is more important than reli-
ability, and one may not be willing to pay an average 6.3 per-
cent performance degradation compared to performance-
optimized scheduling, even if this improves reliability by 25.4
percent on average, as previously reported. Although reliabil-
ity is an important concern, one may not want to incur a per-
formance hit by more than a predefined limit, say 2 percent,
but within this constraint one may yet want to improve reli-
ability. In this section, we explore reliability-aware scheduling
under performance constraints.

With a minimum acceptable performance level specified,
we propose to augment the scheduler with a mechanism to
dynamically switch between the reliability- and performance-
optimized modes at runtime. The decision to choose either of
the two modes depends on the requirements of the system
and the workload under execution. If reliability is of utmost
importance—for example, in systems working at higher alti-
tudes in space—the goal should be to optimize for reliability.
In such cases, running in the reliability-optimized mode suits
the best. However, when performance is the key concern and
performance is not allowed to drop below a certain perfor-
mance level relative to performance-optimized scheduling,
the scheduler should switch to the performance-optimized
mode once the performance is about to drop below the speci-
fied level.

8.1 Scheduling Mechanism

To achieve performance above a specified level, we need to
keep track of performance while improving reliability. At
the end of every scheduling quantum, we estimate perfor-
mance (i.e., STP) for all possible schedules and discard the
schedules not meeting our performance criterion. Of the
remaining schedules, we choose the schedule with the low-
est SSER as the schedule for the next quantum. If an applica-
tion continues to run on a particular core type for 10
consecutive scheduling quanta (1 ms each), a sampling
phase (0.1 ms) is triggered to account for the possibility of a
phase change in the application behavior.

8.2 Evaluation

To evaluate reliability-aware scheduling under performance
constraints, we consider reliability and performance for
four-program workloads on a 2B2S system under various
performance constraints, see Fig. 10. We start with the per-
formance-optimized scheduler (shown on the left) and
gradually increase the allowable performance degradation.
Eventually, when there is no performance constraint, we
end up with the reliability-optimized scheduler (shown on
the right). When the performance limit is set at x%, the STP
of the four-program workload must never be degraded by
more than x% at any point during the execution compared
to the performance-optimized schedule. For example, when
the performance limit is set at 4 percent, and the highest
possible STP of a four-program workload in a scheduler
quantum is 3.0 on a 2B2S system, then the scheduler should
map applications in such a manner that the STP does not
degrade below 2.88 (4 percent degradation of 3.0). This con-
straint is met every quantum and ensures that the workload
will not experience an overall performance degradation by

Fig. 9. Comparing performance-, reliability- and power-optimized sched-
ulers for all four-program workloads on an HCMP with 2 big cores and 2
small cores. All results are normalized to the random scheduler.

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 839

more than 4 percent; in fact the average performance degra-
dation is typically smaller than the performance limit that
was set.

The results in Fig. 10 indicate a clear trend—increasing
the allowable performance limit increases the performance
degradation while at the same time improving reliability, as
expected. At small performance limits, the improvement in
reliability is limited and so is the impact on performance.
The reason for the small impact is the limited number of
opportunities for choosing an alternative schedule. In par-
ticular, there are six possible mappings for a four-program
workload on two big and two small cores: BBSS, SSBB,

BSBS, SBSB, BSSB and SBBS; where a B and S represents
the respective application running on the big versus small
core, respectively. One of these schedules is the perfor-
mance-optimized schedule. The scheduler has limited
opportunity to choose a schedule other than the one that
optimizes performance while remaining within 2 percent of
the performance-optimal schedule. However, it may still
successfully pick such a schedule in very few cases.

Increasing the performance limit providesmore flexibility
to the scheduler and the improvement in reliability is also
higher. In particular, the average gain in SSER for a limit of 5
and 10 percent equals 13.5 and 23.5 percent, respectively.
Note that performance is still better than the random sched-
uler for these performance levels. As the limit is further
increased, the scheduler starts to choose schedules that are
more similar to the ones chosen by the reliability-optimized
scheduler. For the 20 and 50 percent performance limits, the
numbers are very close to the reliability-optimized sched-
uler—an average improvement in reliability of 32 percent at
the cost of a 1 percent performance degradation compared to
the random scheduler. Overall, we conclude that the
improvement in reliability is always much higher than the
degradation in performance. The higher the allowable per-
formance degradation, the higher is the improvement in reli-
ability; the actual limit, however, can be adjusted by the
system administrator or end user based on the requirements.

9 MULTI-THREADED WORKLOADS

So far, we considered multiprogram workloads composed
out of single-threaded programs, for which we observed the
highest improvements in reliability for workload mixes con-
sisting of diverse applications, i.e., high-AVF applications

running concurrently with low-AVF applications; the small-
est improvements are observed for workload mixes com-
posed out of applications with similar AVF characteristics.
We now consider multi-threaded workloads. Most multi-
threaded workloads are data-parallel in which all threads
execute the same code on different portions of the data. As a
result, all threads exhibit similar execution behavior. We
refer to these workloads as homogeneous workloads. Some
multi-threaded workloads however expose pipelined paral-
lelism, i.e., the outcome produced by one thread is the input
for another thread. These workloads are heterogeneous, i.e.,
different threads execute different code. Based on the results
obtained for the multi-program workloads, we expect lim-
ited improvement for the multithreaded workloads that are
homogeneous, but we expect a higher improvement for the
heterogeneousworkloads.

9.1 Metrics

For multiprogram workloads, the necessity for metrics such
as STP for performance and SSER for reliability arises from
the fact that co-executing programs affect each other’s per-
formance. However, formultithreadedworkloads, execution
time or start-to-finish time correctly measures performance,
i.e., this is the time it take to get a unit of work done. Simi-
larly, since the amount of work performed by a multi-
threaded program is fixed, SER is an appropriate metric to
quantify the vulnerability of a multi-threaded program to
soft errors. ABC of a multithreded program is the sum of the
ABC values for all threads. Once we know the overall ABC,
SER can be calculated as described in Section 2.

9.2 Performance-Optimized Scheduling

Identifying bottlenecks and improving performance of mul-
tithreaded workloads on multicore hardware is a challeng-
ing task, especially on heterogeneous multicore processors,
and a number of prior works have focused on this problem,
see for example [26], [27], [28]. The challenge when execut-
ing multi-threaded workloads on multicore hardware is to
make sure that all threads make equal progress, i.e., all
threads need to reach the end of the execution or the next
barrier at roughly the same time, or in other words, the exe-
cution needs to be balanced. This may be complicated
because of negative interference in shared resources, e.g.,
one thread may kick out another thread’s data from the
shared cache. Heterogeneous multicore processors further
complicate this, i.e., the thread(s) running on the big core(s)
make much faster progress than the one(s) running on the
small core(s). One solution is to make sure all threads get an
equal share of the big core cycles, i.e., by allowing all
threads to run on a big core alternately. This leads to a bal-
anced execution, improving overall application perfor-
mance. This is typically a viable solution for homogeneous
multi-threaded workloads, however, heterogeneous work-
loads need a more involved solution, i.e., we need to make
sure all threads make equal progress, as described by Van
Craeynest et al. [29]. There is a subtle but important differ-
ence between equal share and equal progress. Equal share
guarantees the same number of big core cycles for all
threads; equal progress on the other hand guarantees that
all threads benefit equally from running on the big cores,
e.g., if one thread benefits twice as much from running on

Fig. 10. Average reliability (SSER) and performance (STP) relative to the
random scheduler for reliability-aware scheduling under performance
constraints, for four-program workloads on a 2B2S system.

840 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

the big core, it will receive only half as many cycles. Equal
progress enables balanced execution even for heteroge-
neous multi-threaded workloads. Van Craeynest et al. [29]
find that equal-progress scheduling is the best performing
performance-optimized scheduler, which we adopt accord-
ingly in this section.

9.3 Results

For our evaluation, we compare the reliability- and perfor-
mance-optimized schedulers on an HCMP with two big
and two small cores (2B2S). The two schedulers minimize
SER and total execution time, respectively. We also compare
against a random scheduler that randomly selects threads to
run on the big cores.

9.3.1 Methodology

We need to consider a few subtle changes in the experimental
methodology for the multi-threaded workloads in compari-
son to themultiprogramworkloads. The scheduling quantum
can be fixed for the multiprogram workloads (e.g., 1 ms).
However, this is not appropriate for multi-threaded programs
for which the number of running threads may vary dynami-
cally at runtime because of sequential code sections and syn-
chronization activity. Therefore, a scheduler should only take
into account the threads performing useful work. When the
number of active threads does not change during the course
of a 1 ms time interval, we fix the scheduling quantum to 1
ms. In addition, a quantum starts (or ends) when a thread
changes from running towaiting and vice versa. In such cases,
the size of a quantum will be less than 1 ms. This flexibility in
quantum size is required to consider all running threads for
scheduling. Sampling is performed in a manner similar to
what is done for the multiprogram workloads—when a
thread continues to run for ten consecutive quanta on one
core type,we trigger the sampling phase for a period of 0.1ms.

Another difference is that the number of active threads at
runtime can be less than the number of cores available in an
HCMP. This may lead to certain cores remaining idle for
some time during program execution. When there is a possi-
bility of a core remaining idle during a scheduler quantum,
we utilize as many big cores as possible to take advantage
of their high performance. For example, in a 2B2S system, if
there are only three active threads during a quantum, the
two big cores will always be running two threads and one

small core will run the third thread leading to one small
core remaining idle.

We use benchmarks from the Rodinia [30] and PAR-
SEC [31] suites to evaluate our reliability-aware scheduler
for multithreaded workloads, see Table 3. We simulate the
benchmarks that we were able to successfully run on our
simulator. We consider the parallel portion of the bench-
marks in the evaluation; the sequential phases are run on
the big core for highest performance. All benchmarks except
for ferret were executed on a 2B2S system. ferret

requires at least six threads (cores) for execution and there-
fore we simulated six threads for ferret on an HCMP
with three big and three small cores (3B3S).

9.3.2 Rodinia

Fig. 11 shows reliability and performance for the Rodinia
benchmarks for reliability-aware scheduling compared to
random and performance-optimized scheduling. The highest
improvement in soft error rate compared to both random and
performance-optimized scheduling is achieved for bfs (10
percent), followed by kmeans (8.8 percent). The improve-
ment is less significant for the other benchmarks. Looking at
performance, we observe that reliability-aware scheduling is
either performance neutral or degrades performance. We
note a one-to-one trade-off between reliability and perfor-
mance formost benchmarks. For example, for bfs, reliability-
aware scheduling improves reliability by 10 percent while at
the same time degrading performance by 10 percent. The rea-
son is that the Rodinia benchmarks are homogeneous data-
parallel workloads, and hence there is limited opportunity to

TABLE 3
Multithreaded Benchmarks from

PARSEC and Rodinia

Suite Benchmark Input size

Rodinia backprop large
bfs large
cfd large
hotspot large
kmeans large

PARSEC bodytrack large
canneal large
dedup medium
ferret medium
fluidanimate large
swaptions large

Fig. 11. Reliability (a) and performance (b) for the Rodinia benchmarks
on a 2B2S system.

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 841

improve reliability, as expected and argued above. The data-
parallel nature of the workloads is also the reason for similar
performance between the random and performance-opti-
mized scheduling. For some workloads (for example, cfd
and srad), the performance-optimized scheduler performs
slightly worse than the random scheduler because of sam-
pling overhead. Our sampling-based scheduler ensures that
every thread gets to run on both core types in the beginning,
followed by periodic sampling every 10 quanta. This leads to
slight disturbances and a small degradation in performance
compared to the random scheduler.

9.3.3 PARSEC

Fig. 12 shows similar results for the PARSEC benchmarks.
Two of the PARSEC benchmarks are heterogeneous work-
loads, namely ferret and dedup; all other benchmarks
are homogeneous data-parallel workloads. We observe
similar results for the homogeneous PARSEC benchmarks
as for the Rodinia benchmarks: the improvement in
reliability through reliability-aware scheduling leads to an
almost equally high degradation in performance (and both
are small). For one of the heterogeneous workloads,
namely ferret, we do observe an interesting result: the
improvement in reliability (11 percent) is higher than the
degradation in performance (7 percent), which is in line
with the results and conclusion obtained for the multipro-
gram workloads. Unfortunately, we do not observe a simi-
lar result for dedup, the other heterogeneous benchmark.
Through detailed analysis using bottle graphs [32] of
dedup’s execution behavior (not shown because of space
constraints), we observe that there is a very high degree of

parallel imbalance among the threads. One critical thread
runs for a longer time than all other threads put together.
This leads to the other non-critical threads remaining
idle for most of the execution. Since our scheduling policy
never leaves a big core idle, the critical thread is always
running on the big core for all three schedulers, thus
leading to similar reliability and performance figures
for all of them.

The overarching conclusion from this section is that reli-
ability-aware scheduling has limited benefit for multi-
threaded workloads. The primary reason is that different
threads typically execute the same code and hence there is
limited opportunity to exploit diversity in AVF characteris-
tics across the different threads. We typically observe a one-
to-one trade-off between reliability and performance. Only
in a limited number of cases, i.e., heterogeneous workloads
with different threads that execute different code and that
exhibit different AVF characteristics, do we observe an
opportunity to improve reliability at the expense of a rela-
tively small performance degradation.

10 INCORPORATING UNPROTECTED L1 CACHES

Protection techniques based on Error Detecting Codes
(EDC) and Error Correcting Codes (ECC) incur chip area,
power and possibly latency overheads, and are typically
applied to the cache levels beyond the L1 caches [33]. Sev-
eral prior works estimate and mitigate soft errors of on-chip
caches in general, and L1 caches in particular, see for exam-
ple [5], [33], [34], [35], [36], [37]. Recent work also focuses on
dynamically reconfiguring last-level caches and improving
reliability across cache hierarchy in the presence of multibit
soft errors [38], [39], [40]. Reliability-aware scheduling as
proposed in this paper works for the case in which the L1
caches are protected (which is what we assumed so far) as
well as for the case in which the L1 caches are not protected
(which is the subject of this section). In order for reliability-
aware scheduling to be able to incorporate L1 cache soft
error vulnerability, we need to also estimate and measure
L1 cache soft error vulnerability. In this section, we first
explain our methodology to dynamically compute the ACE
Bit Count for the L1 caches and then evaluate how well reli-
ability-aware scheduling performs taking into account reli-
ability of the core and L1 caches.

10.1 Estimating Cache Soft Error Vulnerability

Our methodology for calculating ACE Bit Count in the data
and tag arrays is based on the work done by Biswas
et al. [5]. A cacheline is ACE if its correctness is required for
the correct execution of a program. (Note we assume both
the L1 D-cache and L1 I-cache to be write-back caches.) For
the data array, ABC can be estimated as follows. There are
four time intervals during which a cacheline is ACE: fill-to-
read, read-to-read, write-to-read and write-to-evict. For the tag
array, the correctness of a program is affected only by the
false-positive case, when an incorrect cacheline is returned
due to an error in the tag bits. Therefore, to estimate ABC in
this case, we implement the hamming-distance-one analysis
and conservatively assume that all (tag) entries of a set are
at a hamming-distance of 1 from the tag bits of the
requested memory address.

Fig. 12. Reliability (a) and performance (b) for the PARSEC benchmarks.

842 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

10.2 Hardware Overhead

The hardware cost for computing ABC for the L1 caches is
limited. There are 512 64 B cachelines in a 32 KB L1 cache.
Assuming a quantum size of 1 ms, this amounts to 375,940
cycles when running at 2.66 GHz. This is also the maximum
number of cycles a cacheline can be ACE. Accounting for
this many cycles requires 18.5 bits; assume 20 bits per cache-
line. For each cacheline, we keep track of the last access
time. This amounts to 20 bits per cacheline ABC counter, or
a total of 1,280 bytes.

Whenever a cacheline is read/written/evicted, we
update one global cache-wide ABC counter. In the ‘worst’
case, the entire cache can be ACE for one quantum, which
implies that this cache-wide ABC counter requires 36 bits.
When a cacheline is read or evicted, we add the differ-
ence between the current cycle count (since the beginning
of the scheduling quantum) and the cacheline ABC
counter to the global counter, and we replace the cache
ABC counter value with the current cycle count upon a
read, eviction and write. A 36-bit adder is equivalent to
250 bits, similar to what is described in Section 4.2. The
addition of ABC counters across quanta can be done in
software. The overall hardware cost for an L1 cache
amounts to 1,314 bytes.

10.3 Impact of Caches on Soft Error Vulnerability

The impact L1 caches have on soft error vulnerability is
quantified in Fig. 13: cache-AVF and total-AVF (that is,
AVF for core plus L1 caches; total-ABC is defined simi-
larly) are shown for the SPEC CPU2006 benchmarks; the
benchmarks are sorted in the same order as in Fig. 1.
(Note that the reported AVF values are much smaller in
Fig. 13 compared to Fig. 1; this is because the L1 caches
are now included in the total structure size.) It is clear
from the figure that there is a strong correlation between
total-AVF and cache-AVF. This is primarily because total-
ABC is dominated by the L1 caches. The size of, or more
precisely the architecture state contained in, the L1 caches
is ten times higher than the out-of-order core—64 KB ver-
sus almost 6 KB. In spite of the strong correlation between
cache-AVF and total-AVF, we observe that the gap
between both curves widens going from left to right in
Fig. 13. This is because the benchmarks on the right-hand
side of the graph have higher core-AVF, as previously
reported.

10.4 Results

Fig. 14 shows results for reliability-aware scheduling
when ABC for the L1 caches is also taken into account.
That is, total-ABC is used in Algorithm 1 as well as in
Equation 6 for estimating SSER. We evaluate three cases
while varying the size of the L1 caches for the small core.
In the first case, the L1 caches for both the big and small
cores are equal in size. In other two cases, we reduce the
size of the L1 caches for the small core by a factor of 2
and 4, respectively. When the L1 cache size is equal
between the big and small core, the impact on reliability
and performance is small. The reason is twofold: (i) the
total amount of vulnerable state is dominated by the L1
caches, as described above, and (ii) execution time on the
small core takes longer and as a result cachelines get
exposed to soft errors for a longer duration, further nar-
rowing the difference in vulnerable state between the big
and small cores. Reducing the size of the L1 caches in the
small core, the difference in vulnerable state increases
between the big and small cores, which leads to signifi-
cant average improvements in SSER by 5 and 11 percent
for half the cache size and a quarter the cache size for the
small cores, respectively. Note that performance is largely
unaffected compared to random scheduling. These results
demonstrate that reliability-aware scheduling is beneficial
even if the L1 caches are unprotected and need to be
taken into account as part of the scheduling policy. In
addition, reliability-aware scheduling is more effective as
cache size differs between the big and small cores.

11 RELATED WORK

We now discuss related work in processor reliability, as
well as recent work in scheduling for HCMPs.

Fig. 13. Cache-AVF and total-AVF for the SPEC CPU2006 benchmarks
on a big out-of-order core.

Fig. 14. SSER (a) and STP (b) of four-program workloads on a 2B2S
system with decreasing L1 cache size for the small cores.

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 843

11.1 Monitoring, Modeling and Improving Reliability

Processor reliability is a growing concern, and a significant
body of prior work targets decreasing the occurrence of soft
errors, either through radiation-hardened circuit design [6],
error detection and correction mechanisms [7], or architec-
tural techniques [8], [9]. Our scheduling technique is orthog-
onal to these approaches, and provides additional reliability
improvements.

Other researchers have studied monitoring and model-
ing reliability for processor design (e.g., where to add
error detection) and online reliability estimation (e.g., to
find out when to enable an architectural error reduction
technique that may also incur a performance hit). One
way to evaluate soft error reliability is through fault injec-
tion, and to monitor what fraction of faults lead to incor-
rect program executions [41]. Mukherjee et al. [3] propose
ACE bit analysis as an alternative to fault injection to eval-
uate the reliability in architecture studies. They also intro-
duce the concept of AVF. Biswas et al. [5] show how to
measure AVF for address-based structures. Sridharan and
Kaeli [42] propose to split AVF into PVF (program vulner-
ability factor) and HVF (hardware vulnerability factor),
which can be determined independently. Other prior
work models AVF through regression on performance
counters [43], [44], or through analytical mechanistic
modeling [22]. Nair et al. [45] develop a methodology for
creating AVF-stressing benchmarks, providing a proces-
sor AVF upper bound.

No prior work has studied reliability characteristics of
HCMPs, or has considered HCMP scheduling as a way to
improve reliability. We are also the first to propose a
system-level reliability metric for multiprogram workloads.

11.2 Scheduling Heterogeneous Multicores

Kumar et al. [10], [11] advocate single-ISA heterogeneous
multicores to improve energy and power efficiency. Many
proposals advocate scheduling compute-intensive applica-
tions on the big cores, because they show the highest per-
formance improvement [46], [47], [48]. Van Craeynest
et al. [15] show that memory-intensive applications can
also show important performance gains on big cores if
they are able to exploit more memory-level parallelism.
Other proposals focus on optimizing energy efficiency [16]
or power efficiency [17], [18]. Recent proposals [49] exploit
redundant multithreading to improve overall dependabil-
ity of multicore systems by mapping tasks onto different
cores. We are the first to improve reliability on HCMPs
through scheduling.

12 CONCLUSION

Applications exhibit different soft error reliability character-
istics on big, out-of-order cores versus small, in-order cores.
This provides considerable opportunity to improve system
reliability through scheduling on HCMPs. We propose a
reliability-aware scheduler that samples the reliability char-
acteristics of running applications on either core type, and
dynamically schedules applications on big versus small
cores to improve overall system reliability. We propose a
novel system-level reliability metric, system soft error rate,
that weights per-application SER by their relative

slowdown to account for the difference between small and
big core performance. The proposed scheduler leverages a
low-overhead (296 bytes per core) counter architecture to
track hardware occupancy.

Reliability-aware scheduling improves system reliability
by 25.4 percent on average and up to 60.2 percent compared
to performance-optimized scheduling, while degrading per-
formance by 6.3 percent only. Moreover, as a side effect,
reliability-aware scheduling reduces power consumption
by 6.2 percent on average compared to performance-
optimized scheduling. We evaluate the trade-off between
reliability-, power- and performance-optimized scheduling;
we demonstrate reliability-aware scheduling under perfor-
mance constraints; we evaluate reliability-aware scheduling
for multi-threaded workloads; and we demonstrate the abil-
ity to take unprotected L1 caches into account.

ACKNOWLEDGMENTS

This paper is an extension of “Reliability-Aware Scheduling
on Heterogeneous Multicore Processors” by the same
authors [1], presented at the 2017 International Symposium
on High-Performance Computer Architecture (HPCA). This
paper includes several novel contributions over the HPCA
paper including (i) trade-off analysis between reliability-,
power- and performance-optimized scheduling, (ii) reliabil-
ity-aware scheduling under performance constraints, (iii)
reliability-aware scheduling for multi-threaded workloads,
and (iv) reliability-aware scheduling while taking into
account soft error vulnerability in the L1 caches.

REFERENCES

[1] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-aware
scheduling on heterogeneous multicore processors,” in Proc. 23rd
IEEE Symp. High Perform. Comput. Archit., 2017, pp. 397–408.

[2] R. C. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Trans. Device Mater. Rel.,
vol. 5, no. 3, pp. 305–316, Sep. 2005.

[3] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin, “A systematic methodology to compute the architec-
tural vulnerability factors for a high-performance microproc-
essor,” in Proc. 36th Annu. IEEE/ACM Int. Symp. Microarchit., 2003,
pp. 29–40.

[4] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. Int. Conf. Dependable Syst. Netw.,
2002, pp. 389–398.

[5] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee,
and R. Rangan, “Computing architectural vulnerability factors for
address-based structures,” in Proc. 32nd Annu. Int. Symp. Comput.
Archit., 2005, pp. 532–543.

[6] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory
design for submicron CMOS technology,” IEEE Trans. Nucl. Sci.,
vol. 43, no. 6, pp. 2874–2878, Dec. 1996.

[7] M. Nicolaidis, “Design for soft error mitigation,” IEEE Trans.
Device Mater. Rel., vol. 5, no. 3, pp. 405–418, Sep. 2005.

[8] N. K. Soundararajan, A. Parashar, and A. Sivasubramaniam,
“Mechanisms for bounding vulnerabilities of processor
structures,” in Proc. 34th Annu. Int. Symp. Comput. Archit., 2007,
pp. 506–515.

[9] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt,
“Techniques to reduce the soft error rate of a high-performance
microprocessor,” in Proc. 31st Annu. Int. Symp. Comput. Archit.,
2004, pp. 264–275.

[10] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen, “Single-ISA heterogeneous multi-core architec-
tures: The potential for processor power reduction,” in Proc. 36th
Int. Symp. Microarchit, 2003, pp. 81–92.

844 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas, “Single-ISA heterogeneous multi-core architectures
for multithreaded workload performance,” in Proc. 31st Annu. Int.
Symp. Comput. Archit., 2004, pp. 64–75.

[12] P. Greenhalgh, “Big.LITTLE processing with ARM Cortex-A15 &
Cortex-A7: Improving energy efficiency in high-performance
mobile platforms,” 2011. [Online]. Available: http://www.arm.
com/files/downloads/big_LITTLE_Final_Final.pdf

[13] NVidia, “Variable SMP – a multi-core CPU architecture for low
power and high performance,” 2011. [Online]. Available: http://
www.nvidia.com/content/PDF/tegra_white_papers/Variable-
SMP-A-Multi-%Core-CPU-Architecture-for-Low-Power-and-
High-Performance.pdf

[14] N. Chitlur, et al., “QuickIA: Exploring heterogeneous architec-
tures on real prototypes,” in Proc. Int. Symp. High Perform. Comput.
Archit, 2012, pp. 1–8.

[15] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance
impact estimation (PIE),” in Proc. 39th Annu. Int. Symp. Comput.
Archit., 2012, pp. 213–224.

[16] A. Lukefahr, et al., “Composite cores: Pushing heterogeneity into
a core,” in Proc. ACM/IEEE Int. Symp. Microarchit., 2012, pp. 317–
328.

[17] T. S. Muthukaruppan, A. Pathania, and T. Mitra, “Price theory
based power management for heterogeneous multi-cores,” in
Proc. 19th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2014, pp. 161–176.

[18] Y. Zhu, M. Halpern, and V. J. Reddi, “Event-based scheduling for
energy-efficient QoS (eQoS) in mobile web applications,” in Proc.
21st Int. Symp. High Perform. Comput. Archit., 2015, pp. 137–149.

[19] S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–
53, May./Jun. 2008.

[20] R. Uma, V. Vijayan, M. Mohanapriya, and S. Paul, “Area, delay
and power comparison of adder topologies,” Int. J. VLSI Des. Com-
mun. Syst., vol. 3, no. 1, pp. 153–168, 2012.

[21] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An evaluation of high-level mechanistic core models,” ACM
Trans. Archit. Code Optim., vol. 11, no. 3, 2014, Art. no. 28.

[22] A. A. Nair, S. Eyerman, L. Eeckhout, and L. K. John, “A first-order
mechanistic model for architectural vulnerability factor,” in Proc.
39th Annu. Int. Symp. Comput. Archit., 2012, pp. 273–284.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program behavior,” in
Proc. 10th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2002, pp. 45–57.

[24] K. Swaminathan, N. Chandramoorthy, C. Cher, R. Bertran,
A. Buyuktosunoglu, and P. Bose, “Bravo: Balanced reliability-
aware voltage optimization,” in Proc. 23rd IEEE Symp. High Per-
form. Comput. Archit., 2017, pp. 97–108.

[25] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in Proc. IEEE/ACM Int. Symp. Microarchit., 2009, pp. 469–480.

[26] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors
for dynamic performance, power, and resource management in
chip multiprocessors,” in Proc. Int. Symp. Comput. Archit., 2009,
pp. 290–301.

[27] J. Joao, M. Suleman, O. Mutlu, and Y. Patt, “Bottleneck identifica-
tion and scheduling in multithreaded applications,” in Proc. Int.
Conf. Archit. Support Program. Languages Operating Syst., 2012,
pp. 223–234.

[28] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality
stacks: Identifying critical threads in parallel programs using syn-
chronization behavior,” in Proc. Int. Symp. Comput. Archit., 2013,
pp. 511–522.

[29] K.VanCraeynest, S. Akram,W.Heirman,A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-
cores,” in Proc. 22nd Int. Conf. Parallel Archit. Compilation Techn.,
2013, pp. 177–188.

[30] S. Che, et al., “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44–54.

[31] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proc. Int. Conf. Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[32] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout, “Bottle
graphs: Visualizing scalability bottlenecks in multi-threaded
applications,” in Proc. ACM SIGPLAN Int. Conf. Object Oriented
Program. Syst. Languages Appl., 2013, pp. 355–372.

[33] D. Sorin, Fault Tolerant Computer Architecture. San Rafael, CA,
USA: Morgan and Claypool Publishers, 2009.

[34] A. Biswas, et al., “Explaining cache SER anomaly using DUE AVF
measurement,” in Proc. 16th IEEE Symp. High Perform. Comput.
Archit., 2010, pp. 1–12.

[35] S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt, “Cache
scrubbing in microprocessors: Myth or necessity?” in Proc. 10th
IEEE Pacific Rim Int. Symp. Dependable Comput., 2004, pp. 37–42.

[36] G.-H. Asadi, V. S. Mehdi, B. Tahoori, and D. Kaeli, “Balancing
performance and reliability in the memory hierarchy,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., 2005, pp. 269–279.

[37] S. Wang, J. Hu, and S. G. Ziavras, “On the characterization and
optimization of on-chip cache reliability against soft errors,” IEEE
Trans. Comput., vol. 58, no. 9, pp. 1171–1184, Sep. 2009.

[38] F. Kriebel, S. Rehman, A. Subramaniyan, S. J. B. Ahandagbe,
M. Shafique, and J. Henkel, “Reliability-aware adaptations for
shared last-level caches in multi-cores,” ACM Trans. Embedded
Comput. Syst., vol. 15, no. 4, pp. 1–26, Aug. 2016.

[39] F. Kriebel, A. Subramaniyan, S. Rehman, S. J. B. Ahandagbe,
M. Shafique, and J. Henkel, “R2cache: Reliability-aware reconfig-
urable last-level cache architecture for multi-cores,” in Proc. Int.
Conf. Hardw. Softw. Codesign Syst. Synthesis, 2015, pp. 1–10.

[40] A. Subramaniyan, S. Rehman, M. Shafique, A. Kumar, and
J. Henkel, “Soft error-aware architectural exploration for design-
ing reliability adaptive cache hierarchies in multi-cores,” in Proc.
Int. Conf. Des., Autom. Test Eur., 2017, pp. 37–42.

[41] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online estimation of
architectural vulnerability factor for soft errors,” in Proc. 35th
Annu. Int. Symp. Comput. Archit., 2008, pp. 341–352.

[42] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability fac-
tors to enhance AVF analysis,” in Proc. 37th Annu. Int. Symp. Com-
put. Archit., 2010, pp. 461–472.

[43] K. R. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic
prediction of architectural vulnerability from microarchitectural
state,” in Proc. 34th Annu. Int. Symp. Comput. Archit., 2007,
pp. 516–527.

[44] D. Lide, L. Bin, and P. Lu, “Versatile prediction and fast estima-
tion of architectural vulnerability factor from processor perfor-
mance metrics,” in Proc. 15th Int. Symp. High Perform. Comput.
Archit., 2009, pp. 129–140.

[45] A. A. Nair, L. K. John, and L. Eeckhout, “AVF stressmark:
Towards an automated methodology for bounding the worst-case
vulnerability to soft errors,” in Proc. 43rd Annu. Int. Symp. Micro-
archit., 2010, pp. 125–136.

[46] J. Chen and L. K. John, “Efficient program scheduling for hetero-
geneous multi-core processors,” in Proc. 46th Annu. Des. Autom.
Conf., 2009, pp. 927–930.

[47] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heteroge-
neous multi-core architectures,” in Proc. 5th Eur. Conf. Comput.
Syst., 2010, pp. 125–138.

[48] D. Shelepov, et al.,“HASS: A scheduler for heterogeneous multi-
core systems,” ACM SIGOPS Operating Syst. Rev., vol. 43, no. 2,
pp. 66–75, 2009.

[49] K. Chen, J. Chen, F. Kriebel, S. Rehman, M. Shafique, and
J. Henkel, “Task mapping for redundant multithreading in multi-
cores with reliability and performance heterogeneity,” IEEE Trans.
Comput., vol. 65, no. 11, pp. 3441–3455, Nov. 2016.

Ajeya Naithani received the MS degree in com-
puter science from the University of Arizona, in
2011. He is working toward the PhD degree with
Ghent University, Belgium. His research interests
include the area of computer architecture with an
emphasis on designing techniques to improve
soft error reliability of processors.

NAITHANI ET AL.: OPTIMIZING SOFT ERROR RELIABILITY THROUGH SCHEDULING ON HETEROGENEOUS MULTICORE PROCESSORS 845

http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-%Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-%Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-%Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-%Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf

Stijn Eyerman received theMSc and PhD degree
from Ghent University, in 2004 and 2008, respec-
tively. He is currently working as a research
scientist for Intel. He has published more than
40 papers at conferences and journals, two of
which have been awarded with an IEEEMicro Top
Picks selection. His interests include processor
performancemodeling and scheduling on (hetero-
geneous) multicore processors.

Lieven Eeckhout received the PhD degree in
computer science and engineering from Ghent
University, in 2002. He is professor with Ghent
University, Belgium. His research interests include
the area of computer architecture, with a specific
interest in performance analysis, evaluation and
modeling. He is the current editor-in-chief of the
IEEEMicro (2015-2018), and is the recipient of the
2017 ACM SIGARCH Maurice Wilkes Award. His
research is funded by the European Research
Council under the European Communitys Horizon

2020 Programme/ERC Advanced Grant agreement no. 741097, as
well as Research Foundation – Flanders (FWO) grants no. G.0434.16N
andG.0144.17N.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

846 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

