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Abstract—Graphic processing units (GPUs) are widely used
for general-purpose computing—so-called GPGPU computing.
GPUs feature a large number of architecture parameters, result-
ing in a huge design space. To quickly explore this design space
and identify the optimum architecture for a group of widely
used computing kernels, it is critical to know how important
each parameter is and how strongly these parameters interact
with each other. This paper proposes an ensemble-learning-based
approach, called quantifying the importance and interaction of
Gpgpu architecture parameters (QIG), to quantify the impor-
tance of architecture parameters and their interactions with
respect to performance. QIG employs a stochastic gradient
boosted regression tree to construct performance models using
performance data from a random set of GPU architectures.
Leveraging these models, QIG observes the impact of each archi-
tecture parameter on performance, and calculates its importance
and interaction intensity with other parameters. Using 25 widely
used GPGPU kernels, we demonstrate that QIG accurately ranks
the importance and interaction of GPU architecture parame-
ters while the previously proposed Plackett–Burman design does
not. Moreover, we show that QIG leads to a substantially more
accurate performance model compared to prior work, including
Starchart and approaches using artificial neural networks and
supported vector machines: average error of 4.2% for QIG versus
23+% for prior work. Finally, QIG reveals a number of interest-
ing insights for GPU architectures running GPGPU workloads.

Index Terms—Architecture, design space exploration,
modeling, performance evaluation.

I. INTRODUCTION

GRAPHIC processing units (GPUs) deliver massive com-
putational power by employing many cores to run
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hundreds of thousands of concurrent threads. Programming
models, such as CUDA [1], ATI Stream Technology [2],
and OpenCL [3] enable leveraging powerful graphics hard-
ware to perform general-purpose computing, so-called GPGPU
computing. As a sharply increasing number of emerging work-
loads, such as deep learning and big data analytics start to run
on GPUs, quickly devising an optimized GPU architecture for
a set of widely used GPGPU kernels is desirable.

A GPU architecture has up to several hundreds of design
parameters, resulting in a huge design space. To further com-
plicate matters, these parameters interact with each another in
various complex ways. As a result, quickly designing an opti-
mized GPU architecture for a given set of kernels is extremely
challenging. Fortunately, the architecture parameters of GPUs
are generally not equally important to performance, and nei-
ther are the interaction intensities between them. This offers an
opportunity to accelerate the GPU architecture design process
by only focusing on the important architecture parameters and
their dominant interactions. In other words, knowing the key
architecture parameters and interactions avoids wasting design
effort and time on suboptimal parts of the design space.

Quantifying the importance and interaction intensity of GPU
architecture parameters is quite challenging. Architectural sim-
ulation, while trivial to use, is not a viable solution, simply
because it is too slow. Doing a number of parameter sweeps
to understand parameter importance and interactions easily
results in a huge number of simulations with each simula-
tion taking a long time to complete. This easily results in
unbearably long simulation times. Analytical and predictive
modeling can significantly speed up this process, replacing
slow simulation with fast prediction. Recent work in analyt-
ical modeling [4]–[6], as well as statistical reasoning [7]–[9]
and machine learning [10] has made significant progress
toward predicting GPU performance. Unfortunately, they are
not accurate enough and do not readily identify the impor-
tant parameters and interactions to accelerate design space
exploration.

In this paper, we propose a novel approach, called quan-
tifying the importance and interaction of Gpgpu architecture
parameters (QIG), using stochastic gradient boosted regres-
sion trees (SGBRTs) [11] to quantify the importance and
interaction intensity of GPU architecture parameters with
respect to performance. SGBRT builds an ensemble model,
i.e., it builds multiple empirical models which it then com-
bines to form an overall model. SGBRT involves a training
phase in which performance numbers need to be collected for
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a range of GPU architecture configurations running GPGPU
kernels of interest; SGBRT then builds an empirical model
using the training data. QIG builds on top of SGBRT and
computes the importance for each architecture parameter and
all of their pairwise interactions.

QIG has several advantages over existing statistical rea-
soning and machine learning-based approaches. First, QIG
does not build a single (complex) performance model as prior
work in GPU performance modeling does. Instead, it combines
many simple models to form an ensemble model. This leads to
a more accurate overall model while requiring far fewer train-
ing examples. Second, QIG quantifies the importance of GPU
architecture parameters and their interactions, which none of
the prior work in GPU performance modeling provides and
which is of critical importance for architects to efficiently
explore the design space. Third, QIG not only accurately pre-
dicts performance but also reveals interesting insights based
on the importance of and the interactions among architecture
parameters, which helps architects understand and optimize
GPU performance.

We apply QIG to a set of 25 GPGPU benchmarks and
find that different benchmarks are sensitive to different GPU
architecture parameters. The (by far) most dominant GPU
architecture parameters are core frequency and the maximum
number of thread blocks per core. Several benchmarks are
sensitive to other architecture parameters, such as L1 data
cache size and interconnect frequency. Moreover, we find that
8 out of 25 benchmarks are predominantly sensitive to a single
pairwise parameter interaction; the other 18 benchmarks are
sensitive to two to five pairwise parameter interactions. This
reinforces the observation that the GPU architecture space is
complex and requires efficient techniques to identify important
parameters and interactions to efficiently cull the large design
space toward the optimal design.

Prior work in CPU design space exploration proposed the
Plackett–Burman (PB) design of experiment to identify impor-
tant architectural parameters and their interactions [12]. PB is
limited though to quantifying select pairwise interactions, i.e.,
it does not systematically explore all possible pairwise inter-
actions, in contrast to QIG. Moreover, we find PB to yield
misleading results in some cases, as we show in this paper.

In summary, this paper makes the following contributions.
1) We use ensemble learning, in particular SGBRT, to

construct accurate GPU performance models.
2) We propose QIG to quantify the importance of GPU

architecture parameters and their pairwise interactions.
3) We employ 25 GPGPU kernels to evaluate QIG and

compare its accuracy against prior work. QIG is shown
to be substantially more accurate (average error of 4.2%)
compared to Starchart [8] and artificial neural network
(ANN)/supported vector machine (SVM)-based mod-
els with an average error around 23+% for the same
of training data. Moreover, QIG accurately identifies
the important GPU architecture parameters and pairwise
interactions, while the PB design approach does not.

4) Using QIG, we reveal three interesting insights: a)
GPGPU performance is dominated by only a hand-
ful architectural parameters; b) although a number of

benchmarks are sensitive to a single pairwise parameter
interaction, many more benchmarks are sensitive to sev-
eral pairwise parameter interactions; and c) the strongest
interactions may not necessarily take place between the
(two) most important architecture parameters.

The rest of this paper is organized as follows. Section II
presents background in ensemble learning, and provides a
description of SGBRT. Section III describes how we leverage
SGBRT to build performance models and quantify the impor-
tance of GPU architecture parameters and their interactions.
Section IV depicts our experimental methodology. Section V
provides results and analysis. Section VII describes related
work, and Section VIII concludes this paper.

II. BACKGROUND

We first describe ensemble modeling, and then describe its
two essential components (regression trees and boosting).

A. Ensemble Model

Statistical reasoning approaches, such as linear regression
assume a parametric model and infer the model parameters
using a set of training data (so-called parametric models). In
contrast, machine learning techniques, such as ANNs do not
employ a parametric model but instead infer a nonparametric
data model to relate the independent and dependent variables
(so-called nonparametric models). Both statistical reasoning
and machine learning build a single model from the train-
ing data set. These techniques generally yield very accurate
models but may require a lot of training data to do so.

Ensemble models have been proposed to increase the
prediction accuracy across a wide range of data sets by com-
bining many single models. The key intuition is that it is
typically easier to build accurate models by combining many
simple models than to build a single sophisticated highly
accurate model. However, how to combine models signifi-
cantly affects the accuracy of the final model as well as the
efficiency of the model building process. A number of combi-
nation techniques have been proposed, including bagging [13],
stacking [14], and model averaging [15]. Because there are no
invalid GPU architecture parameter values (noise) in this paper
and because boosting [16] generally produces more accurate
results than other combination techniques in the absence of
noise [17], we employ boosting in this paper.

B. Regression Tree

The ensemble model used in QIG uses regression trees for
constructing the “simple” models. A regression tree partitions
the parameter space (e.g., the GPU architecture design space)
into rectangles, as shown in Fig. 1. In the first step, the whole
design space is divided into two parts according to split point
sp1 for architecture parameter pv1. (Note that a design space
can be divided into more than two parts if two or more split
points are used per architecture parameter.) The left part is
further split into two subrectangles based on split point sp2
for architecture parameter pv2; the right part is split according
to split point sp4 for architecture parameter pv4; etc. This
procedure is performed recursively until a stop criterion is met.
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Fig. 1. Illustration of how regression trees work: “pv” represents a GPU
architecture parameter; “sp” refers to a split point.

Fig. 2. Illustration of how boosting combines multiple regression trees into
a single overarching performance model.

The smallest rectangles are called the leaves of the tree. For
example, the two rectangles represented by leaf 6 and leaf 7
are two leaves generated by split point sp6 for parameter pv6.

The split points are chosen such that the data values in
each group are most similar. For example, the data values in
rectangle leaf 6 are more similar to each other than to the
data values in leaf 7; in other words, architecture parameter
pv6 and its split point sp6 are chosen, such as to maxi-
mize the similarity within each subrectangle. Regression trees
use the mean performance within a leaf rectangle to predict
performance for all designs in that rectangle, e.g., mean
performance across all training examples in leaf 6 is used
as the performance prediction for all designs that end up in
leaf 6 during model evaluation. The regression tree is built
such that the prediction error is minimized. In other words, at
each step during the model building process are the architec-
ture parameter and its corresponding split point selected, such
as to maximize similarity within each subrectangle, thereby
maximizing accuracy.

C. Boosting

Boosting combines multiple regression trees into an ensem-
ble model, see Fig. 2. In the first step, a regression tree is
grown under a given tree complexity or tree size (the num-
ber of nodes in the tree) to minimize its prediction error,
e.g., instructions per second (IPS) prediction error in the con-
text of the GPU design space. In the second step, a different
regression tree is grown to reflect the variation in GPGPU
performance that is not reflected by the first tree. Subsequently,
an initial ensemble model is created by combining the first two
regression trees: α1T1 +α2T2, with T1 and T2 the performance

Fig. 3. QIG workflow.

predictions by the two regression trees, respectively, and α1
and α2 the respective coefficients. This procedure is performed
recursively, i.e., more regression trees are added to the ensem-
ble model, until a specific criterion, such as a target accuracy
of 90% is met.

As depicted, boosting is a sequential process in which the
original model remains unchanged at each step. Moreover,
the performance variation needed to explain gradually reduces
as the ensemble model construction proceeds and the model
becomes more accurate. Randomness is typically introduced
into a boosted model to improve accuracy and speed, and
to mitigate over-fitting [11]. Therefore, the ensemble learn-
ing technique used in this paper also includes a stochastic
component, which leads to the overall model being SGBRT.

The overall model produced by SGBRT can be thought of
as a linear combination of regression trees, as follows:

IPS = α1T1 · · · + αiTi + · · · + αnTn (1)

with n the number of regression trees in the model, Ti the
performance predicted by the ith regression tree model, and αi

the contribution of Ti to the model. Two parameters are crucial
for SGBRT construction. The first one is the learning rate αi,
which we assume to be constant in this paper. The second is
tree complexity or tree size which controls the maximum level
of interaction between GPU architecture parameters that can
be considered. We will elaborate on the determination of these
two SGBRT parameters in the next section.

III. QIG

We now describe how we leverage SGBRT in QIG to quan-
tify the importance of GPU architecture parameters and their
interactions.

A. QIG Workflow

QIG is designed to quantify the importance of GPU archi-
tecture parameters and their interactions with respect to
performance; we use IPS to represent performance in this
paper. Fig. 3 shows a block diagram of the QIG workflow
which consists of the following four modules: 1) configura-
tion; 2) measurement; 3) modeling; and 4) quantification. The
configuration module generates a set of GPU architectures by
randomly choosing a value for each architecture parameter in
its value range. Randomly choosing parameter values guaran-
tees a uniform sampling distribution across the design space
for constructing the training set. For each randomly selected
configuration, we simulate a set of GPGPU kernels, see step
1© in Fig. 3. We repeat step 1© a number of times for each
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Algorithm 1 SGBRT Training Algorithm
Input: the M measurements (matrix S)
Output: IPS
1: Initialize f̂0(xi) = IPS, with IPS the average of {IPSi}
2: for m = 1 to M do
3: (a) compute the current residuals
4: rim = IPSi − f̂0(xi), i = 1, ..., p
5: (b) partition the predictor space into H disjoint regions
6: {Rhm}H

h=1 based on {rim, xi}p
i=1

7: (c) compute the constant fit for each region
8: γhm = argminγ

∑
x∈Rhm

(rim − γ )2

9: (Note: we randomly select some predictor variables from each region
to compute the constant fit. This is controlled by the bag fraction.)

10: (d) update the fitted model
11: f̂m(x) = f̂m−1(x) + ν × ∑

h γhmI(x ∈ Rhm)

12: Exit
13: end for

kernel, depending on the model accuracy we want to achieve
in the later steps.

The measurement module collects performance (IPS) and
the respective architecture parameter values during step 1©.
The results are stored in a vector

vi = {IPSi, pv1i, . . . , pvji, . . . , pvni}, i = 1, . . . , M (2)

with vi the vector generated from the measurements of the
ith GPU architecture configuration; IPSi is the performance
of the ith configuration; and pvji is the jth GPU architecture
parameter value of the ith measurement; n is the number of
architecture parameters, and M is the total number of training
measurements performed. Note that M is the product of the
number of kernels times the number of GPU architectures.

The modeling module constructs performance models per
kernel using SGBRT. To build the models, we need to con-
struct a training set S which is a matrix, with each row being
a vector vi as defined by (2). As step 2© in Fig. 3 shows, S is
the input data set for SGBRT to build a performance model
for a specific kernel (shown in step 3©). Algorithm 1 formally
describes SGBRT model construction. Note that at line 11, I(·)
is an indicator function that returns 1 if its argument is true; if
not, it returns 0. The ν represents the learning rate of SGBRT
which is between 0 and 1. The learning rate is used to weight
the contribution of each tree as it is added to the model, as
previously described. Decreasing learning rate increases the
number of trees required in the ensemble model. In general, a
smaller learning rate results in higher accuracy because more
trees contribute to the final result although longer computation
time is required.

The resulting performance model can be represented as

perf = f (pv1, pv2, . . . , pvi, . . . , pvn) (3)

with pvi the value of the ith architecture parameter, and n
the total number of architecture parameters. We can con-
struct a model for each GPGPU kernel or for a group of
kernels, depending on the requirements. (In this paper, we
consider per-kernel models.) Based on these models, the quan-
tification module then quantifies the importance of the GPU
architecture parameters and their interactions, as shown by
steps 4© and 5©, respectively, and which we describe in more
detail in the following sections.

Validating the model’s accuracy is done by considering a
GPU architecture configuration, and predicting performance
using the per-kernel performance model using (3). Simulating
the kernel for that same GPU architecture configuration then
yields a point of comparison to validate the model’s accu-
racy. When validating the model, we randomly generate a
number of GPU architecture configurations which we then
simulate, and predict performance for using the per-kernel
models. Comparing the model predictions against the simu-
lation results provides the required validation. Note we make
sure the evaluation set of GPU architecture configurations for
validating the model is disjoint from the training set of GPU
architecture configurations to construct the models.

Example: We now illustrate the QIG workflow using an
example for the breadth-first-search (BFS) benchmark and
the GPGPU-sim simulator. The baseline GPU architecture is
modeled after the NVidia GTX480 (see Table I); the architec-
ture parameters that we explore are shown in Table III. (see
Section IV for details about our experimental setup.) We first
randomly choose a value for each parameter within its value
range. For example, we choose 2 for ccta, 0.6 GHz for cfrq,
0.7 GHz for infrq, etc. We then use these values to config-
ure the GPGPU-sim simulator, after which we simulate BFS.
When the simulation completes, we collect the IPC value and
in turn calculate IPS. By doing so, we obtain one vector as
specified by (2). We repeat this procedure N times and we
hereby get N vectors. We use these N vectors as a training
set to build a performance model for BFS as a function of the
architecture parameters listed in Table III.

B. Quantifying Parameter Importance

Once the SGBRT-based performance model is constructed,
as just described, we can leverage the model to quantify the
importance of GPU architecture parameters and their interac-
tions. As aforementioned, we build an ensemble model which
is a combination of multiple simple regression trees. For a sin-
gle tree T , one can use I2

j (T) as a measure of importance for
each architecture parameter pvj, which is based on the num-
ber of times pvj is selected for splitting a tree weighted by
the squared improvement to the model as a result of each of
those splits [18]. This measure of importance is calculated as
follows:

I2
j (T) = nt ·

nt∑

i=1

P2(k) (4)

with nt the number of times pvj is used to split tree T , and
P2(k) the squared performance improvement to the tree model
by the kth split. In particular, P(k) is defined as the relative IPS
error (IPSk − IPSk−1)/IPSk−1 after the kth split. If pvj is used
as a splitter in R trees in the ensemble model, the importance
of pvj to the model equals

I2
j = 1

R

R∑

m=1

I2
j (Tm). (5)

To ease understanding, the importance of a GPU architec-
ture parameter is normalized so that the sum across all
parameters adds up to 100. A higher percentage indicates
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stronger influence of the corresponding architecture parameter
on performance.

C. Quantifying Parameter Interactions

While tree complexity or tree size determines the maximum
level of interaction between architectural parameters that can
be studied in the ensemble model, no metric is readily avail-
able to quantify how strongly a pair of architectural parameters
interacts with each other. To address this issue, we construct a
linear regression model per pair of architecture parameters and
consider the residual variance of the model as an indication
for interaction intensity. The intuition is that if two archi-
tecture parameters are orthogonal (i.e., they do not interact),
the residual variance will be small because the linear model
will be able to accurately predict the combined effect of both
parameters. If on the other hand, the architecture parameters
interact substantially, this will be reflected in the residual vari-
ance being significantly larger than zero, because the linear
model is unable to accurately capture the combined effect of
the parameter pair. The linear regression model is trained for
each pair of architectural parameters while setting the values
of all other parameters to their respective means. This process
is repeated for each possible parameter pair. The residual vari-
ance or interaction intensity for a particular parameter pair is
computed as

v =
n∑

i=1

(pi − p)2 (6)

with pi the performance predicted by the linear regression
model, p the observed performance, and n the number of pre-
dictions. Zero indicates that there is no interaction between
two architecture parameters, and a higher value indicates a
stronger interaction.

Because interaction intensity as just defined does not
directly show its importance among all possible pairs, we
therefore normalize against the other pairs. This is done as
follows:

Ii =
(

vi
∑n

j=1 vj

)

× 100% (7)

with Ii the importance of the ith parameter-pair interaction
and vi the ith parameter-pair interaction intensity. As such,
we can tell how much more/less important a parameter pair is
compared to another parameter pair, which reflects the relative
interaction intensity of parameter pairs.

IV. EXPERIMENTAL SETUP

In this section, we describe the simulator, benchmarks, GPU
architecture design space, real hardware platforms, and tools
used to evaluate QIG.

A. Simulator and Benchmarks

We employ a cycle-level GPGPU simulator, GPGPU-sim
v3.2 [19] to validate the efficacy of QIG. The baseline GPU
architecture is modeled after NVIDIA’s GTX480; the key
architecture parameters are listed in Table I. Note that we
have to resort to simulation as it is impossible to explore

TABLE I
BASELINE GPU ARCHITECTURE CONFIGURATION INITIALIZED IN

GPGPU-SIM. SM—STREAMING MULTIPROCESSOR

TABLE II
EXPERIMENTED BENCHMARKS

the GPU design space on real hardware. The experimented
GPGPU benchmarks are taken from the three most popular
CUDA benchmark suites, CUDA SDK [20], Rodinia [21],
and Parboil [22], along with a number of benchmarks taken
from recent papers, see Table II. We select these benchmarks
because they cover a wide range of application domains:
encryption (AES), finance (BS), scientific computing (FWT,
MM, MT, LPS, LIB, SP), graph processing (BFS, NE),
artificial intelligence [back propagation (BP)]. We observe sig-
nificant diversity in the performance characteristics at the GPU
architecture level across this diverse set of benchmarks.

B. GPU Architecture Parameters

We consider a GPU design space in which we vary 15
architecture parameters, each with 5 or 6 different values, see
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TABLE III
GPU ARCHITECTURE DESIGN SPACE. NOTE THAT THERE ARE 12
L2_DCACHE PARTITIONS OUR BASELINE GPU ARCHITECTURE

Table III. We keep the values for the other GPU architecture
parameters the same as the NVIDIA GTX480 configura-
tion. The design space explored in this paper includes 91
billion design points in total. core_cta specifies the max-
imum number of thread blocks that a core can support. The
next four parameters specify clock frequency of the shader
cores, interconnection network, L2 cache, and dynamic ran-
dom access memory (DRAM), respectively; we use six values
for each, ranging from 0.5 to 1.0 GHz with a step size of
0.1 GHz. The next five parameters relate to the L1 data
cache, instruction cache, texture cache, constant cache, and
L2 data cache size. A cache has at least four design options
including the number of sets, associativity, cache line size,
and replacement policy. For simplicity but without loosing
generality, we only vary the number of sets to form five
different cache sizes. core_registers specifies the num-
ber of registers of a GPU core. max_warp_core controls
the maximum number of warps that can concurrently run
on a core. shared_memory is the size of shared memory
of a GPU core, used to share data between warps within
a thread block. The last two parameters relate to DRAM
queue sizes. DRAM_queue specifies the size of the DRAM
request queue, and DRAM_return_queue sets the size of
the DRAM return queue. These two queues provide a buffer
to sustain memory-level parallelism.

Note that although we consider a GPU design space by
varying the above 15 architecture parameters, this does not
imply that QIG is limited to this particular design space. On
the contrary, QIG can handle many more GPU architecture
parameters as long as enough training data can be collected.

C. Modeling Tools

We use R, an open-source software environment [27], to
perform SGBRT modeling, SVM, and ANN. Within this
environment, we use the “gbm” package published in May
2013 [28] to build our SGBRT-based performance models.
In addition, we compare QIG against Starchart [8] using
the software publicly released along with the prediction tool.

We provide the same training set to all prediction models
(ANN, SVM, Starchart, and QIG). Finally, we reimplement
and evaluate the PB design of experiment and compare it
against QIG.

V. RESULTS AND ANALYSIS

We first evaluate model accuracy of QIG compared to
Starchart, SVM, and ANN. We then evaluate QIG’s sensitiv-
ity to the training set size. We subsequently show and analyze
the importance of architecture parameters and their interac-
tions. Next, we conduct a case study to demonstrate how to
use QIG. Finally, we compare QIG against the PB design.

We define performance prediction error as follows:

IPSerr =
∣
∣IPSpred − IPSmeas

∣
∣

IPSmeas
(8)

with IPSpred the IPS predicted by the performance model, and
IPSmeas the IPS measured using the GPGPU simulator.

A. Model Accuracy

We first compare QIG against prior work in terms of model
accuracy. We compare against Starchart [8], as well as machine
learning techniques using ANN and SVM, as previously used
in GPU performance prediction [10]. It is important to note
that all models are given the same set of 240 training examples.
The evaluation is done using the same set of 60 randomly
generated GPU architecture configurations; the evaluation set
is disjoint from the training set.

Fig. 4 reports per-benchmark IPS prediction errors. Clearly,
QIG achieves the lowest IPS prediction error (average error of
4.2%). Starchart, ANN, and SVM yield substantially higher
average prediction errors: 23.4%, 23.9%, and 24.5%, respec-
tively, with maximum errors up to 48.9%, 53%, and 72.8%,
respectively. QIG yields consistently more accurate predictions
with an IPS prediction error below 10% for 24 out of 25 bench-
marks; the maximum error of 13.3% is observed for the NE
benchmark. The reason for the much higher accuracy obtained
using QIG is a result of employing several simple models in
an ensemble model rather than a single complex model, which
leads to higher accuracy for the given (relatively small) set of
training examples.

B. Training Set Size

Ensemble learning relies on training data to build a
performance model. The number of training examples needs
to be determined upfront, during the training phase, and needs
to be balanced: a large number of training configurations
increases profiling and training time, whereas a small num-
ber of configurations may compromise model accuracy. To
understand this tradeoff quantitatively, we have done the fol-
lowing experiment. We start to train the performance models
for each kernel using 80 GPU architecture configurations and
we increase the training set by 40 each time. All GPU archi-
tecture configurations are randomly generated by randomly
generating a value for each architecture parameter within its
value range (ranges are shown in Table III). To evaluate model
accuracy, we randomly generate a set of n GPU architecture
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Fig. 4. Model accuracy for QIG compared to Starchart, ANN, and SVM.

Fig. 5. Maximum, minimum, and average IPS prediction error as a function
of training set size.

configurations that is disjoint from the set of training exam-
ples; n is a quarter of the number of the corresponding training
examples.

Fig. 5 quantifies how accuracy is affected by the num-
ber of training examples; we show the maximum, minimum,
and average IPS prediction error across the 25 experimented
GPGPU kernels. As expected, prediction error decreases with
an increasing number of training examples. We find the
performance model’s accuracy to converge once given at least
160 training examples. When given more than 160 training
examples, model accuracy continues to improve, albeit at a
slower rate. In the remainder of this paper we consider 240
training examples, which yields an average error of 4.2% and
maximum error of 13.3%.

Building an ensemble performance model incurs modest
time overhead. Simulation time, i.e., collecting performance
numbers for the 240 training examples, takes four days on our
experimental platform. We run simulations in parallel on four
servers, with each server an 8-core hyper-threaded processor;
we run 16 simulations in parallel per server, or 64 simula-
tions in parallel in total. Once the profiling data is collected,
building the performance model takes only 1–2 s.

C. Parameter Importance

We now quantify parameter importance for the experi-
mented benchmarks. Fig. 6 shows the importance of each

experimented GPU architecture parameter for each bench-
mark. There are a number of interesting observations to be
made here.

Observation 1 (There Are Few Dominant GPU Architecture
Parameters): Although we consider fifteen GPU architecture
parameters, only six of them show up as being the most
important parameter across all the experimented benchmarks:
number of thread blocks per core, L1 constant cache size,
L1 data cache size, shared memory size, core frequency,
and interconnect frequency. The other nine parameters never
appear as the most important one. The two parameters that are
most important across all benchmarks are core_frequency
(most important parameter for 10 out of 25 benchmarks) and
core_cta (most important parameter for 11 benchmarks).
This indicates that very few GPU architecture parameters
have a major impact on performance across the broad set
of workloads; a slightly larger group of parameters have
a major impact for at least one workload; and the major-
ity of parameters does not have a major impact on any
workload.

Observation 2 (There Is a Rank Order in Parameter
Importance): Fig. 7 quantifies what we just qualitatively
observed: it shows (cumulative) parameter importance. This
graph reconfirms our observation that core_frequency
and core_cta are the most important architecture param-
eter with respect to GPGPU performance, with a relative
importance of 20.7% and 16.2%, respectively. This observation
reveals at least three insights: 1) increasing clock frequency
and/or the amount of parallelism within a core is generally
very effective to improve GPGPU performance; 2) among the
frequency components, apart from core frequency, increas-
ing frequency of the interconnection network and DRAM
will improve performance more than increasing L2 cache
frequency; and 3) among the caches, shared memory, and
core registers, changing the size of L1 data cache impacts
performance more than the other storage units. This rank order
in parameter importance may help GPU architects to focus
their design optimizations.

Observation 3 (GPGPU Parallelism Varies Widely): If the
importance of core_frequency is much higher (>40%)
compared to the importance of core_cta (<5%) for a given
kernel, we observe the average IPS across different GPU
architectures to be less than 50 giga IPS (GIPS), which is
very small for GPGPU workloads, see also Fig. 8. Example
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Fig. 6. Importance quantification rank of the experimented GPU architecture parameters for all experimented GPU benchmarks.

Fig. 7. Average importance of GPU architecture parameters across all the
benchmarks.

benchmarks are CL, HS, MUM, NQU, and PF. The com-
mon feature for these kernels is that most of the work is
done by only a few threads even when a larger number of
threads are launched, indicating that it is difficult to effec-
tively parallelize these kernels. In other words, these GPGPU
kernels are unable to efficiently leverage the GPU paral-
lel computing resources as they expose limited thread-level
parallelism.

On the other hand, an importance of core_cta higher than
10% indicates that the respective benchmark exposes more
parallelism. This is the case for all the other 20 benchmarks.
Note though high levels of thread-level parallelism is not a
sufficient reason for high GPGPU performance, see for exam-
ple BFS, LIB, NE, and SLA which show relatively modest
performance according to Fig. 8. This is due to memory inten-
sity (e.g., DRAM frequency is relatively important for BFS
and LIB), poor data locality (L1 D-cache size is relatively

important for NE), and interconnection network performance
(interconnect frequency is relatively important for SLA).

D. Parameter Interactions

We now quantify and analyze pairwise interactions
between GPU architecture parameters. Fig. 9(a) shows that
core_frequency and core_cta interact most strongly
among all pairwise interactions for the BFS benchmark.
Changing these two parameters at the same time affects
performance more than changing only one of them at a time.
On the other hand, we can definitely ignore the interactions
between the other parameters because their interaction intensi-
ties are extremely weak. Across our experimented benchmarks,
a number of other benchmarks also show a single domi-
nant pairwise interaction, including BFS, BN, BP, CP, LIB,
MUM, NE, and SLA. It is interesting to note that the most
important pairwise interaction varies across benchmarks, as
shown in the upper part of Table IV. Although parameter pair
core_frequency and core_cta is the most important
one for most benchmarks, this is not the case for MUM and
NE. The most important interaction occurs between DRAM
frequency and interconnect frequency for MUM; and between
L1 D-cache and the maximum number of thread blocks per
core for NE.

It is interesting to note that the most important pairwise
interaction does not necessarily occur between the two most
important parameters, which is different from CPU architec-
tures [29]. This is the case for MUM. The most important
parameters are interconnect frequency and L1 D-cache size,
see Fig. 6, however, the most important interaction occurs
between interconnect frequency and DRAM frequency. Note
though that DRAM frequency is the third most important
parameter—some reverse ordering may happen.

As noted above, only 8 out of 25 benchmarks exhibit a
single dominant pairwise interaction. The other 17 bench-
marks exhibit two or more dominant pairwise interactions.
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Fig. 8. Maximum, minimum, and average per-benchmark performance (measured in IPS) across the range of GPU architectures in our design space.

(a) (b)

(c) (d)

Fig. 9. Example benchmarks showing (a) one, (b) two, (c) three, and (d) four
dominant pairwise interactions.

We define a pairwise interaction to be dominant if its impor-
tance is larger than 10%. Fig. 9(b) shows HY as an example
benchmark with two dominant pairwise interactions; Fig. 9(c)
and (d) shows SAD and LP with three and four dominant
pairwise interactions, respectively. Across the experimented
benchmarks, AES, FWT, HS, HY, MT, NQU, and STO have
two dominant pairwise interactions; 64H, CL, KM, MM, PF,
and SAD have three; BS, LPS, and SP have four; SS has five.
The top most important pairwise interaction per benchmark is
listed in Table IV.

GPU architects can leverage this information to more effi-
ciently explore the design space. Interactions indicate to the
architect that changing one parameter may have limited impact
on overall performance as long as the other parameter is kept
constant. In other words, the architect needs to consider explor-
ing the effect of simultaneously changing both parameters to
see the largest effect on overall performance. Without the anal-
ysis provided by QIG, the architect would not know which
interactions to consider, and may therefore need to explore
and consider parameter sweeps for all possible parameter
interactions, which is obviously infeasible. QIG on the other
hand identifies the dominant parameter interactions, which
is invaluable for the architect to focus on a few parameter
interactions, greatly simplifying the design space exploration.

TABLE IV
STRONGEST PAIRWISE INTERACTIONS FOR OUR

EXPERIMENTED BENCHMARKS

E. Case Study

We illustrate this further using a case study for the BP
benchmark. BP is a machine-learning algorithm that trains the
weights of connected nodes in a layered neural network. BP
is widely used because it is a common algorithm in a vari-
ety of areas, such as face recognition, medication, and deep
learning, and therefore it may be worth optimizing the GPU
architecture for this particular workload.

The two most important GPU architecture parameters
for BP are core_cta and core_frequency. Changing
the value of core_cta from 1 to 8 while keeping all
other GPU architecture parameters unchanged to their default
value, increases performance from 123 GIPS to 408 GIPS.
Changing core_frequency from 0.5 GHz to 1 GHz,
again while keeping all other parameters constant to their
default value, increases performance from 258 GIPS to
487 GIPS. However, changing both parameters at the same
time improves performance up to 571 GIPS, which is a
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Fig. 10. Rank correlation coefficient between the ranking obtained using QIG and PB versus a simulation reference—higher is better.

significant improvement (17%–40%) over optimizing only a
single parameter. More importantly, this case study illustrates
that QIG can assist the GPU architect to identify the most
important architecture parameters and interactions and accel-
erate the design process by having the architect focus on the
few most important parameters and interactions.

F. Validation and Comparison Against PB

We now validate whether QIG is indeed able to identify
the most important GPU architecture parameters. The mod-
els underlying to QIG, while accurate, do not provide perfect
accuracy, hence some validation is needed. This is done as
follows. QIG provides a parameter importance rank per bench-
mark. We pick the most important parameter according to
QIG and run a simulation when changing this one parame-
ter between its maximum and minimum value, while keeping
the other parameters unchanged to their default value. We
compute the performance delta between the maximum and
minimum value. This is done for all parameters in the rank-
ing. We then compute the rank correlation coefficient between
the QIG ranking and the ranking obtained through simula-
tions. A rank correlation coefficient close to one indicates
that QIG is indeed able to accurately rank the architecture
parameters.

This is verified in Fig. 10 which reports this rank cor-
relation coefficient. The rank correlation coefficient exceeds
0.9 for 21 out of 25 benchmarks. The lowest rank cor-
relation coefficient is observed for HY (0.66); the reason
is that this benchmark consists of seven kernels which are
interdependent, and which QIG does not take into account.
The average rank correlation coefficient across all benchmarks
equals 0.93. In other words, QIG is indeed able to accu-
rately rank and identify the most important GPU architecture
parameters.

The PB design of experiment [30], previously proposed for
CPU design space exploration [12], is not as accurate as QIG,
with an average rank correlation coefficient of 0.76. For some
benchmarks the rank correlation coefficient is as low as 0.16
(PF), and for a handful benchmarks we observe a rank cor-
relation coefficient around 0.5. This indicates that PB can be
misleading, which may lead the architect to waste valuable
time and effort in exploring uninteresting areas of the design
space.

TABLE V
GPU CARDS CONSIDERED IN THE HARDWARE VALIDATION SETUP

VI. HARDWARE VALIDATION

So far, we considered a simulation-based validation of the
proposed model. This setup was instigated by the purpose of
the model, which is to guide GPU architects at early stages
during the design cycle. In this section, we validate the model
on real hardware. Because we are unable to consider many
hardware configurations for training and evaluating the model,
we consider a different setup in which we consider many
benchmarks for a single GPU architecture. Instead of building
a performance model to predict performance across different
GPU architectures for a single benchmark, we now consider
a power model to predict power consumtpion across differ-
ent benchmarks for a single GPU architecture. In addition to
validating QIG on real hardware, this case study also illus-
trates QIG’s versatility, as we now use the QIG methodology
to predict power rather than performance, and we do so across
benchmarks rather than across architectures.

A. Experimental Setup

We consider four NVIDIA GPU cards including GTX 480,
580, 680 and 780, see Table V. These four cards cover two
GPU architectures, namely Fermi (GTX 480 and 580) and
Kepler (GTX 680 and 780). GPU cards with the same archi-
tecture differ from each other in the number of cores and clock
frequency. [A core refers to a streaming multiprocessor (SM)
in Fermi, and an SMX in Kepler.] In particular, GTX 480 has
15 cores, with each core running at 700 MHz frequency. While
GTX 580 has 16 cores and each core runs at 825 MHz.



YU et al.: QIG: QUANTIFYING IMPORTANCE AND INTERACTION OF GPGPU ARCHITECTURE PARAMETERS 1221

TABLE VI
GPU HARDWARE PERFORMANCE COUNTERS

We track hardware performance counters using CUPTI [31].
Hardware performance counters vary across GPU architec-
tures. Table VI lists performance counters that are common
across the four architectures.

GPU power is measured as follows. All four GPU cards
have two sources of power supply: 1) a PCIe slot 12 V power
supply and 2) an ATX 12 V power supply. Both power sources
have to be counted to accurately measure GPU power con-
sumption. The PCIe power supply contributes over 40% of
the total GPU power consumption for the GTX 480, but only
less than 10% for the other three cards. We measure instan-
taneous current and voltage to compute power of each source
(PCIe and ATX power supply). We sense the current draw by
measuring the voltage drop across a current sensing resistor.
The current sensing resistors are inserted in a PCIe riser card
for measuring PCIe power and ATX power supply lines for
measuring ATX power. This setup allows us to easily switch
the target GPU for measuring its power. We use an NI DAQ
which is a general-purpose data acquisition card to sample
voltage and current at a rate of 2 million samples per second.

We consider the 25 benchmarks listed in Table II. To obtain
sufficient training examples, we launch each benchmark with
five different thread counts: n the default thread count, as well
as 2n, 4n, 8n, and 16n. This yields 125 benchmark runs in total.
We next choose 100 of these as training examples to build a
power consumption model for that GPU card, and we employ
the remaining 25 items as the testing examples to evaluate the
accuracy of the model. We use an equation similar to (8) to
calculate the model error for each GPU card.

B. Results

Fig. 11 shows the average power prediction errors for QIG
across different benchmarks for the four GPU cards. Our
models are fairly accurate for the GTX 480, 580, and 780
with average prediction errors of 6.9%, 5.4%, and 8.9%,
respectively. However, the error appears to be higher for the
GTX 680—an average error of 18.8%. We believe the rea-
son is that GTX 680 is the first-generation product of the
Kepler architecture which employs very aggressive power
optimizations, substantially reducing its power consumption

Fig. 11. Average power prediction error of QIG for the four GPU cards.

Fig. 12. Importance rank of performance counters on real hardware with
respect to power consumption.

over GTX 580. This, in its turn, leads to wide variations
in power consumption across the different benchmarks. (For
example, the performance and power usage of GTX 680 had
to be capped to prevent overly demanding synthetic bench-
marks from damaging GPU cards [32].) In the GTX 780,
NVIDIA developed GPU Boost, which continuously monitors
and adjusts the clock speed and voltage level, leading to less
variation in power consumption across different workloads.
This leads to a lower prediction error.

Fig. 12 quantifies parameter importance for the various
hardware performance counters with respect to power con-
sumption. The iss_slotu performance counter appears to be
the most important factor. This can be understood intuitively
as the utilization of issue slots is a measure for the amount
of activity within a core, and hence it has a high impact on
dynamic power consumption. Interestingly, QIG reveals that
the wp_laun performance counter is not important to power
consumption. This suggests that the number of warps launched
does not indicate high activity in the core.

Fig. 13 quantifies the important pairwise interactions.
Interestingly, the most important parameter iss_slotu and the
eighth most important parameter L1_gloadm interact the most
strongly. This can be explained by the observation that L1
cache global load misses incur long latencies, which signif-
icantly affects issue slot utilization and logic activity. This
also aligns with our observation for the simulation-based
experiments: the most important pairwise interaction does not
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Fig. 13. Interaction intensity rank of performance counters on real hardware
with respect to power consumption.

necessarily occur between the two most important architec-
tural parameters. Interestingly, the most important parameter
interaction is consistent across all four GPU cards.

VII. RELATED WORK

There exists an extensive body of prior work in empirical
performance modeling for CPUs. Joseph et al. [33] builded
linear regression models from simulation data that relate
microarchitectural parameters and their mutual interactions to
overall processor performance. In their follow-on work [34]
they explore nonlinear regression modeling. Similarly,
Lee and Brooks [35] proposed regression models for both
performance and energy using splines. They leverage
spline-based regression modeling to build multiprocessor
performance models [36] and explore the huge design space of
adaptive processors [37]. Ïpek et al. [38] and Dubach et al. [39]
builded performance models using artificial neural networks.
Lee et al. [40] compared spline-based regression modeling
against artificial neural networks and conclude that both
approaches are equally accurate; regression modeling pro-
vides better statistical understanding, while neural networks
offer greater automation. Vaswani et al. [41] incorporated the
interaction between the compiler and the architecture, and
build empirical application-specific performance models that
capture the effect of compiler optimization flags and microar-
chitecture parameters. Ould-Ahmed-Vall et al. [42] builded
tree-based empirical models: the model chooses a path at each
node in the tree and finds a linear regression model in the
leaves. None of these prior works target predicting parame-
ter importance and their interactions; nor did these works use
ensemble learning.

Yi et al. [12] used the PB design of experiment to identify
the most important architecture parameters in the CPU design
space. Our results show that, at least for the GPU design space,
PB is not as accurate as QIG. Moreover, PB quantifies the
importance of select pairwise interactions only, by construc-
tion; QIG on the other hand analyzes all possible pairwise
interactions.

A number of empirical models have been proposed for
GPUs as well. Stargazer [7] and Starchart [8], [9] use a

statistical tree-based partitioning approach to automatically
explore the workload optimization space to auto-tune GPGPU
applications. Wu et al. [10] employed artificial neural networks
to estimate performance and power of GPU architectures. Our
results show that the performance models constructed by QIG
are more accurate than the machine learning models proposed
in these prior works. Moreover, these prior works do not rank
architecture parameters based on importance and interaction
intensity, which is of critical importance for efficient design
space exploration.

In addition, principal component analysis (PCA) has been
widely used to characterize CPU [43] and GPU architecture
performance characteristics [44]. PCA transforms the possibly
correlated architectural parameters into uncorrelated variables,
called principal components, which are linear combination of
the original parameters. The first component captures the high-
est variance in the data set, followed by the second, and so
forth. PCA provides useful insight by analyzing the domi-
nating architecture parameters in the most dominant principal
components. Unfortunately, PCA does not readily identify
the most important architectural parameters and interactions;
QIG on the other hand provides this information by design.
Moreover, PCA assumes that the data follows a Gaussian dis-
tribution which may require nontrivial preprocessing if the data
is non-Gaussian distributed.

All the above studies explore the design space at the archi-
tecture level. Several studies explore cross-layer design spaces.
In particular, Sarma and Dutt [45] employed a statistical
reasoning technique, namely response surfaces, to construct
performance models while exploring the architecture design
space along with device-level parameters. Response surfaces,
unlike QIG, do not readily identify the important variables and
their interactions in the design space. Exploring cross-layer
design spaces using QIG is subject for future work.

VIII. CONCLUSION

In this paper, we propose QIG, an ensemble-learning-based
approach to quantify the importance of GPU architecture
parameters and their interactions. We show that QIG outper-
forms prior work in the area by a significant margin: QIG’s
average prediction error is as low as 4.2% for a 15-D GPU
architecture design space whereas prior work, such as Starchart
and ANN/SVM-based approaches yield an average error of
23+% on average, for the same (relatively small) training set
consisting of 240 examples.

We leverage QIG to identify the most important architec-
ture parameters and interactions, which is critical for a GPU
architect to efficiently and effectively explore the design space
toward the optimum design. We find the PB design of exper-
iment, previously proposed to rank parameter importance, to
yield misleading parameter rankings for a number of work-
loads in our setup; its accuracy in ranking parameters equals
76% on average. QIG on the other hand ranks parameters
with 93% accuracy. Moreover, PB can only rank select pair-
wise parameter interactions, whereas QIG ranks all pairwise
interactions, which yields a more accurate and complete view
of the design space.
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QIG provides a number of interesting insights regarding
the GPU design space. GPGPU performance is predominantly
determined by a handful architecture parameters including
core frequency and the maximum number of thread blocks
per core. Some workloads are sensitive to other architec-
ture parameters, such as L1 data cache size and interconnect
frequency. Although some workloads are sensitive to a sin-
gle predominant pairwise parameter interaction, the majority
of workloads are sensitive to several (and up to a handful)
pairwise parameter interactions, which reinforces the observa-
tion that GPU design space is complex and therefore requires
efficient techniques, such as QIG to efficiently explore the
design space and not waste valuable architect effort and time
in uninteresting parts of the design space.
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