
MIA: Metric Importance Analysis for Big Data
Workload Characterization

Zhibin Yu , Wen Xiong , Lieven Eeckhout , Zhendong Bei , Avi Mendelson, and Chengzhong Xu

Abstract—Data analytics is at the foundation of both high-quality products and services in modern economies and societies. Big data

workloads run on complex large-scale computing clusters, which implies significant challenges for deeply understanding and

characterizing overall system performance. In general, performance is affected by many factors at multiple layers in the system stack,

hence it is challenging to identify the key metrics when understanding big data workload performance. In this paper, we propose a novel

workload characterization methodology using ensemble learning, called Metric Importance Analysis (MIA), to quantify the respective

importance of workload metrics. By focusing on the most important metrics, MIA reduces the complexity of the analysis without losing

information. Moreover, we develop the MIA-based Kiviat Plot (MKP) and Benchmark Similarity Matrix (BSM) which provide more

insightful information than the traditional linkage clustering based dendrogram to visualize program behavior (dis)similarity. To

demonstrate the applicability of MIA, we use it to characterize three big data benchmark suites: HiBench, CloudRank-D and SZTS. The

results show that MIA is able to characterize complex big data workloads in a simple, intuitive manner, and reveal interesting insights.

Moreover, through a case study, we demonstrate that tuning the configuration parameters related to the important metrics found by MIA

results in higher performance improvements than through tuning the parameters related to the less important ones.

Index Terms—Big data, benchmarking, workload characterization, performance measurement, MapReduce/hadoop

Ç

1 INTRODUCTION

AS our planet is becoming increasingly digitally instru-
mented and connected, we notice that the data volume

of the world has experienced a steep increase over the past
five years, which is predicted to increase even faster in the
future. As a result, big data has become an overnight buzz-
word all over the world. Governments, companies, and
other organizations embrace big data enthusiastically
because they believe precious deposits are hidden in big
data. To mine the precious value, big data workloads need
to run on complex large-scale computing clusters such as
cloud platforms with emerging big data frameworks such
as MapReduce/Hadoop [28], [29] and Hive [6].

It is notoriously challenging, yet crucially needed, to
understand and characterize the performance of large-scale
compute clusters to optimize performance. The challenges
in characterizing big data workloads and systems come
from the large-scale distributed nature of the system and
the multi-layered software stack. On the one hand, big data
hardware platforms typically consist of a couple thousands
of servers. To deeply understand such a platform, a

hierarchical characterization must be done at the node level
(including detailed characterization at the processor level
covering caches, branch predictor, TLBs, etc.), as well as at
the system level including the interconnection network and
storage devices.

On the other hand, software in big data systems not only
contains a large number of application-level jobs but also
consists of a multi-layered system software stack, including
a distributed file system (e.g., HDFS), hypervisor, operating
system, and a big data analysis framework such as Hadoop.
As is the case for hardware, software characterization also
needs to be performed at multiple levels including the job,
stage, and task levels. Moreover, software and hardware of
big data systems interact with each other tightly, indicating
that we need to consider hardware and software metrics at
multiple levels in the system stack together when we want
to gain deep understanding of the overall system. As a
result, typically tens to hundreds of metrics are involved.

More formally, performance can be described as follows:

perf ¼ fðhm1; . . . ; hmi; . . . ; hmk; sm1; . . . ; smj; . . . ; smnÞ; (1)

with perf the performance of an application; hmi and smj

the i-th hardware and j-th software metric, respectively;
and f the function that relates performance to the input
metrics. (k and n are the numbers of available hardware
and software metrics, respectively.) In big data systems,
performance can be quantified using a range of metrics
including data processing speed (DPS), throughput,
latency, or any other metric such as instructions per cycle
(IPC), depending on an end user’s requirements. Obvi-
ously, it is extremely difficult to define a analytical model
(e.g., formula) for function f because there are at least

� Z. Yu, W. Xiong, Z. Bei, and C. Xu are with the Cloud Computing Center,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Science,
Shenzhen 518055, China. E-mail: {zb.yu, wen.xiong, zd.bei, cz.xu}@siat.ac.cn.

� L. Eeckhout is with the Ghent University, Ghent 9000 Belgium.
E-mail: lieven.eeckhout@ugent.be.

� A. Mendelson is with the Technion-Israel Institute of Technology, Haifa
3200003, Israel. E-mail: avi.mendelson@tce.technion.ac.il.

Manuscript received 26 Apr. 2016; revised 28 Aug. 2017; accepted 5 Sept.
2017. Date of publication 4 Oct. 2017; date of current version 11 May 2018.
(Corresponding author: Wen Xiong.)
Recommended for acceptance by C. Carothers.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2758781

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018 1371

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8067-9612
https://orcid.org/0000-0001-8067-9612
https://orcid.org/0000-0001-8067-9612
https://orcid.org/0000-0001-8067-9612
https://orcid.org/0000-0001-8067-9612
https://orcid.org/0000-0003-1930-0049
https://orcid.org/0000-0003-1930-0049
https://orcid.org/0000-0003-1930-0049
https://orcid.org/0000-0003-1930-0049
https://orcid.org/0000-0003-1930-0049
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-6875-5539
https://orcid.org/0000-0001-6875-5539
https://orcid.org/0000-0001-6875-5539
https://orcid.org/0000-0001-6875-5539
https://orcid.org/0000-0001-6875-5539
mailto:
mailto:
mailto:

several hundreds of input parameters that interact with
each other in various complex ways.

One possible alternative is to construct empirical data
models for f using machine learning. However, it is difficult
to construct accurate data models at low cost (e.g., the time
used to collect training data), as we will quantify in this
paper. From a practical viewpoint it is of critical importance
to know which metrics are important and should be consid-
ered when characterizing and optimizing big data work-
loads. Knowing the key metrics affecting performance helps
gear the performance analyst’s attention to fruitful optimi-
zations, and avoids spending time on non-productive analy-
ses. However, without in-depth understanding of the
software and hardware at hand of a big data system, identi-
fying the key metrics is extremely challenging.

In this paper, we propose Metric Importance Analysis
(MIA), a novel workload characterization methodology that
uses ensemble learning to quantify the relative importance
of the metrics or characteristics of a big data system with
respect to system-level performance (DPS: data processing
per second) and node-level performance (IPC: instructions
executed per cycle). MIA ranks the metrics according to
their relative importance. As a result, one can focus on the
important metrics while ignoring the less important ones.
This provides a way to comprehensively characterize big
data systems by focusing on a limited number of important
metrics. Although several characterization studies have
been done on big data systems yielding good insights [1],
[2], [7], [8], [10], [11], [27], these studies considered a few
metrics only based on the experimenter’s intuition. In con-
trast, MIA provides a way to investigate metrics in a sys-
tematic way, quantify their importance, and select the
important ones for further analysis. In other words, MIA
provides a systematic way to fully understand the perfor-
mance of big data systems in an intuitive way at low effort.

We further propose the MIA-based Kiviat Plot (MKP) by
taking the n most important metrics in a descending order
as the axes (in clockwise direction) of a Kiviat plot—n is the
minimum number of metrics for which the cumulative
importance exceeds for example 80 percent. As such, behav-
ioral (dis)similarity between benchmarks can be easily
observed by comparing the corresponding Kiviat plots. If
two plots are (dis)similar, the two corresponding bench-
marks exhibit (dis)similar behavior. Although the tradi-
tional Linkage Clustering-based Dendrogram (LCD) can
visualize behavioral (dis)similarity between benchmarks as
well, the advantages of MKP over LCD are threefold. (1)
MKP facilitates a more direct view on the (dis)similarity
between benchmarks. (2) MKP provides more information
to show the (dis)similarity between benchmarks because it
uses the n most important metrics whereas LCD only
employs a ‘summary’ distance between the corresponding
metrics vectors. (3) MKP does not visualize all metrics but
only the n most important ones, which reduces noise while
guaranteeing the accuracy of the similarity characterization.

In addition, we propose the Benchmark Similarity Matrix
(BSM) to visually summarize the (dis)similarity among a set
of benchmarks. One element of the BSM represents the (dis)
similarity between two benchmarks and the (dis)similarity is
quantified by theManhattan distance between the two corre-
sponding vectors of two benchmarks. A vector consists of

the important metrics of its corresponding benchmark. The
(dis)similarity is visualized using blue scale: the darker the
point is, the more similar the two benchmarks are; the lighter
the point is, themore dissimilar the two benchmarks are.

We use MIA to perform a cross-layer workload charac-
terization of three big data benchmark suites: HiBench [1],
CloudRank-D [2], and SZTS [27]. The results show that
MIA, MKP, and BSM are indeed useful to characterize the
behavior of complex big data systems in an intuitive way
while revealing interesting insights. From a system’s per-
spective, we find that the miss rate of the last-level cache is
the most important factor for IPC, whereas the number of
temporary read/write operations is the most important
metric for DPS. From a methodology perspective, we find it
is necessary to perform MIA using metrics across multiple
layers because a metric at one layer may have impact on a
performance metric at another layer. From a benchmark
perspective, we find that the programs from the SZTS
benchmark suite exhibit significantly different behavior
compared to the other benchmark suites.

As a case study to demonstrate the usefulness of MIA,
we leverage the results from MIA to steer performance opti-
mization. MIA points out that the amount of temporary
data (TMI) is significantly more important than the ratio of
map function time to reduce function time (TMRF). We then
adjust the value of a configuration parameter that is tightly
related to TMI and the number of reducers that is tightly
related to TMRF to optimize performance for terasort.
The results indeed show that adjusting the former parame-
ter achieves significantly higher performance than the latter
one. This indicates that MIA can help one optimize a pro-
gram more efficiently by focusing on the more important
metrics.

Note that although we consider Hadoop in this study,
this does not limit the general applicability of MIA to other
big data frameworks such as Spark [47]. Furthermore, we
believe MIA is generally applicable on any other big data
systems because it does not rely on specific properties of the
big data system at hand.

In summary, we make the following contributions:

� We propose a novel big data workload characteriza-
tion methodology using ensemble learning, called
Metric Importance Analysis, which quantifies the
relative importance of workload metrics.

� We propose the MIA-based Kiviat Plot and Bench-
mark Similarity Matrix to visualize the performance
behavior (dis)similarity among big data workloads
in an intuitive way.

� We employMIA to characterize three big data bench-
mark suites: HiBench, CloudRank-D, and SZTS. We
derive several interesting insights regarding system
performance; methodology for characterizing big
data workloads; and benchmark characteristics.

� We demonstrate through a case study that MIA can
help optimize programs more efficiently by tuning
the most important configuration parameters first.

The rest of this paper is organized as follows. Section 2
describes the Hadoop framework we use in this paper.
Section 3 describes the proposed MIA methodology.
Section 4 introduces our experimental setup. Section 5

1372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018

presents our characterization results and analysis. Section 6
discusses related work, and finally, Section 7 concludes the
paper.

2 BACKGROUND AND MOTIVATION

2.1 MapReduce/Hadoop

MapReduce/Hadoop is a highly scalable programming
model/framework for processing and generating large data
sets formatted in key/value pairs. Users only need to write
map and reduce functions, and the rest is handled by the
Hadoop runtime. Large input data sets are split into small
blocks by the Hadoop Distributed File System (HDFS). As
shown in Fig. 1, the execution of a Hadoop program can be
divided into map and reduce stages. In the map stage, each
map task reads a small block and processes it. When map
tasks complete, the outputs—also known as intermediate
files—are copied to the reduce nodes. At the reduce stage,
reduce tasks fetch the key/value pairs from the output files
of the map stage, which they then sort, merge, and process,
to produce the final output. The map stage itself can be fur-
ther divided into read, map, collect, spill, and merge phases.
Similarly, the reduce stage can be divided into shuffle, merge,
reduce, and write phases.

2.2 Limitations in Prior Modeling Work

As argued above, we need tens to hundreds of metrics to
comprehensively understand big data workload behavior.
Characterizing workloads typically involves building per-
formance models as functions of these metrics. Statistical
reasoning algorithms such as regression trees (RT) [42], [43],
[44] and response surfaces (RS) [45], as well as machine
learning techniques such as artificial neural networks
(ANN) [46] and support vector machines (SVM) [52] have
been used to build performance models for computer sys-
tems. These models can be made very accurate if given a
large number (several hundreds or thousands) of training
examples. Unfortunately, collecting this large a number of
training examples is non-trivial for a big data system.

The errors for the above models when given 106 training
examples are reported in Fig. 2. (Section 4 provides details
regarding the experimental setup.) ‘IPC/DPS single’ means
that the metrics used as input to the performance models
are taken from a single respective layer (either the node
level for IPC and the system level for DPS), whereas ‘IPC/
DPS multiple’ indicates that the metrics are taken from both
layers. As can be seen, the average error exceeds 19 percent
in all cases. This clearly indicates that these widely used sta-
tistical reasoning and machine learning techniques are inac-
curate when given a limited number of training examples in
the context of a big data system. Building a methodology on

top of such an inaccurate technique to identify the most
important workload characteristics is flawed. We hence
need a more advanced modeling technique that can achieve
high accuracy with a relatively small training set. We
employ ensemble learning for this purpose as described in
the next section.

3 MIA METHODOLOGY

3.1 MIA Workflow

Fig. 3 illustrates the MIA workflow which consists of the fol-
lowing four components: profiling, storing, modeling, and
applications. MIA profiling measures performance charac-
teristics at multiple levels of a Hadoop workload. MIA stor-
ing refers to storing the profiling results in a performance
database, see step �1 . We employ different tables to store
the metrics from different layers in the database. For exam-
ple, a table named tbl_micro stores processor-level micro-
achitecture metrics such as the L1 data cache miss rate,
branch misprediction rate, etc.; the tbl_sys table stores
the metrics at the system level. MIA modeling leverages an
ensemble learning algorithm, called stochastic gradient
boosted regression tree (SGBRT), to create performance
models using the performance database as training data,
see step �2 . Based on these models, MIA quantitatively ana-
lyzes the importance of the metrics in terms of a certain per-
formance metric such as IPC or DPS, as step �3 illustrates.
The last component of the MIA workflow shows two cases
using the importance metrics, see step �4 . The first one is to
employ the n most important metrics (see Section 5 for its
determination) as the axes of a Kiviat plot (MKP). The axes
in clockwise direction represent the important metrics in
descending order of importance. As such, MKP can be used
to visualize the behavior of a workload. Moreover, by com-
paring the (dis)similarity between two MKPs, we can easily
observe the behavioral (dis)similarity between the two cor-
responding workloads. The second use case is to use the
values of the important metrics of a benchmark as the ele-
ments of a vector and subsequently construct a Benchmark
Similarity Matrix by employing the Manhattan distance of
two vectors as an element in the matrix. As such, BSM can
visually summarize the (dis)similarity among benchmarks.

Fig. 1. The stages and phases of a MapReduce program. Fig. 2. The error of performance models built by RT (regression tree),
GLM (generalized linear module), RS (response surface), ANN (artificial
neural network), and SVM (supported vector machine).

Fig. 3. The MIA workflow.

YU ETAL.: MIA: METRIC IMPORTANCE ANALYSIS FOR BIG DATA WORKLOAD CHARACTERIZATION 1373

The key component of the MIA methodology is the underly-
ing data model because it determines the accuracy of the
MIA results and the cost for obtaining these results. Inaccu-
rate performance models may jeopardize the accuracy of the
metric importance analysis. On the other hand, high accu-
racy is likely to incur a high cost in terms of profiling to col-
lect many training examples to construct the performance
models. Moreover, many training examples may lead to
over-fitting the models. As argued in Section 2.2, widely
used statistical reasoning and machine learning techniques
fail to be accurate in the context of a big data system.

In this paper, we therefore opt for stochastic gradient
boosted regression tree [23] to perform MIA because it is
shown to be more accurate and incur lower cost compared
to the aforementioned techniques. SGBRT combines multi-
ple single models (regression trees) to create a final predic-
tion or classification whereas the traditional algorithms only
use a single model as their final model. Combining multiple
models not only improves accuracy, it also makes the over-
all model more robust to over-fitting.

3.2 Metrics

To fully understand the behavior of a big data system work-
load, we argue that we need to collect as many metrics as
possible from multiple layers in the system stack, including
the micro-architecture and job level. Quantifying micro-
architecture level metrics helps understanding node (pro-
cessor) performance, while the job-level metrics provide
insight into overall system performance. Although metrics
from other levels such as the Operating System (OS) may
also be included, we focus on job- and microarchitecture-
level metrics in this study.

3.2.1 Job-Level Metrics

The metrics we consider at the job level are enumerated in
Table 1; these metrics are chosen to provide a fairly broad
view on the amount of input and output data, processing
speed and communication at the job level. Data Processing
Speed measures how fast a program processes data, and is
defined as the amount of data processed divided by the exe-
cution time of a program. It provides a system view on per-
formance, and is a higher-is-better metric.

To quantify how the amount of data changes before and
after the map stage, we define Map Output/Input ratio (MOI)
as the ratio of the map output data size to its input. Shuffle/
Map Input ratio (SMI) is defined as the ratio of the amount of

data processed by the shuffle operation to that processed by
the map operation. Time Map/Reduce Stage ratio (TMRS)
quantifies the ratio of the execution time of the map stage to
that of the reduce stage. Time Map/Reduce Function ratio
(TMRF) is defined similarly for the map and reduce func-
tions. (Note that the map stage takes longer than the map
function since themap stage includes operations such as spill
andmerge, as previously mentioned. The same applies to the
reduce stage/function.) Reduce Output/Input ratio (ROI) is the
ratio of the amount of data of the reduce output to that of the
reduce input. Reduce Output to Map Input ratio (ROMI) is
defined as the ratio of the amount of data of the reduce out-
put to that of the map input. Temporal to Map Input ratio
(TMI) is the ratio of the amount of data temporally written
to the local file system to that of the map input. Intra-node to
Map Input (TRAMI) is the ratio of the amount of data trans-
mitted between processes within a node to that of the map
input. Inter-node to Map Input (TERMI) is the ratio of the
amount of data transmitted between nodes to that of the
map input.

3.2.2 Microarchitecture-Level Metrics

Table 2 shows the metrics we use to characterize our bench-
marks at the microarchitecture level; these metrics, collec-
tively, provide a good view on the performance of
individual nodes. We collect these metrics on each node
using hardware performance counters, and then compute
the average across all eight nodes. (See Section 4).

Instructions Per Cycle computes the number of instructions
executed per cycle, and is a reliablemetric for node-level per-
formance (higher is better). Although IPC is not a perfect
measure, it closely correlates with node performance.
L1ICMPKI and L2ICMPKI quantifies the number of L1 and
L2 instruction cache misses, respectively, per thousand
instructions, and is a measure for the instruction footprint
and code locality (lower is better). LLCMPKI quantifies the
number of last-level cache (LLC) misses per thousand
instructions, and is ametric for the data footprint and locality
(lower is better). We do not consider L1 and L2 data cache
misses as most of these latencies can be hidden by out-of-
order execution (as supported by the processors considered
in this paper).BRPKI is the number of branches per one thou-
sand instructions, and BRMPKI is the number of branchmis-
predictions per one thousand instructions (lower is better).
OCBW is the off-chip bandwidth utilization per-core mea-
sured in bytes per second, and is calculated as

TABLE 1
Job-Level Metrics

Metric Description

DPS data processing speed
MOI (map output)/(map input)
SMI (shuffle data)/(map input)
TMRS (map stage time)/(reduce stage time)
TMRF (map function time)/(reduce function time)
ROI (reduce output)/(reduce input)
ROMI (reduce output)/(map input)
TMI (temporal write data)/(map input)
TRAMI (intra-node transmitted data)/(map input)
TERMI (inter-node transmitted data)/(map input)

We treat DPS as the dependent metric and the others as independent metrics.

TABLE 2
Microarchitecture-Level Metrics

Metric Description

IPC instructions/cycle
L1ICMPKI no. L1 icache misses/1K insns
L2ICMPKI no. L2 icache misses/1K insns
LLCMPKI no. last-level cache misses/1K insns
BRPKI no. branches/1K insns
BRMPKI no. branch misses/1K insns
OCBW off-chip bandwidth utilization
FSPKC no. instruction fetch stall cycles/1K cycles
RSPKC no. resource related stall cycles/1K cycles
DTLBPKI no. D-TLB load misses/1K insns

We treat IPC as the dependent metric and the others as independent metrics.

1374 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018

ð64� 2:4� 109Þ � llcm=clkuh;

with 64 the number of bytes fetched, 2.4 GHz the fre-
quency of the processor, llcm the number of LLC misses
and clkuh the number of unhalted clock cycles. IFSKC and
RSKC are defined as the numbers of stall cycles due to
instruction fetch stalls and other resource stalls, respec-
tively. DTLBPKI quantifies the number of D-TLB misses
per 1K instructions.

3.3 Identifying Important Metrics

The total amount of data measured and collected during
this characterization is substantial: 10 job-level metrics and
10 microarchitecture-level metrics for all 133 benchmark-
input pairs. (Note that some programs contain several jobs
and we treat each job as a single program.) In addition, each
program has several input data sets. (See Section 4 for fur-
ther details.) This yields 2,660 data values in total per server.
Considering the eight server nodes in our setup, this
amounts to a total of 21,280 data values.

Analyzing this big a data set is challenging, hence we
propose a novel workload characterization methodology,
called Metric Importance Analysis, which identifies the
most significant workload characteristics. MIA starts off by
identifying a dependent variable that is the primary perfor-
mance metric; this is IPC at the microarchitecture level,
and DPS at the job level. MIA then ranks the independent
variables (the other workload characteristics) by their
importance with respect to the dependent variable. We
employ ensemble learning to infer this ranking, namely
Stochastic Gradient Boosted Regression Trees [23], which
requires relatively few training examples to construct an
accurate empirical model.

SGBRT is an ensemble model that ‘boosts’ the prediction
accuracy of traditional machine-learning algorithms by
leveraging the combination of the predictions produced by
multiple independent regression trees to perform the final
prediction. Therefore, it is expected that the models built by
SGBRT are more accurate and robust than traditional
machine-learning algorithms, which typically rely on a sin-
gle model. SGBRT works well for a range of problem
domains. We refer the interested reader to [23] for more
background information regarding SGBRT.

Now we focus on describing how to build performance
models using SGBRT. First, we collect the values of DPS,
IPC, and all the metrics described in Tables 1 and 2 when
we run each program-input pair. Second, we build a DPS
vector and an IPC vector using the data for each program-
input pair as follows:

DPSVi ¼ fDPSi;mi1; . . . ;mij; . . . ;ming; i ¼ 1; . . . ; N (2)

IPCVi ¼ fIPCi;mi1; . . . ;mij; . . . ;mikg; i ¼ 1; . . . ; N; (3)

with DPSVi and IPCVi the DPS vector and IPC vector
respectively for the i-th program-input pair; DPSi and IPCi

the data processing speed and instruction per cycle, respec-
tively, for the i-th program-input pair; mij the value of the
j-th metric for the i-th program-input pair; n the number of
metrics selected for the DPS vector; k the number of metrics
selected for the IPC vector; and N the number of program-
input pairs.

The DPS and IPC vectors for the N program-input pairs
form the DPS matrix and IPC matrix, respectively

DPSM ¼ fDPSV1; DPSV2; . . .DPSVi; . . . ; DPSVNg (4)

IPCM ¼ fIPCV1; IPCV2; . . . IPCVi; . . . ; IPCVNg: (5)

The DPSM and IPCM matrices are used as input to SGBRT
to train a DPS model and a IPC model, respectively

DPS ¼ fDPSðm1; . . .mj; . . . ;mnÞ (6)

IPC ¼ fIPCðm1; . . .mj; . . . ;mkÞ; (7)

withmj the metrics shown in Tables 1 and 2.
Once a performance model is constructed for the depen-

dent metric, IPC and DPS in our case, one can start ranking
the independent metrics. We call this novel method, Metric
Importance Analysis, which is done as follows. For a single
tree T , one can use I2j ðT Þ as the measure of importance for
each independent metric xj (e.g., MOI—(map output)/(map
input)), which is based on the number of times xj was
selected for splitting the tree weighted by the squared
improvement to the model as a result of each of those
splits [24]. We calculate it as follows:

I2j ðT Þ ¼ nt �
Xnt

i¼1

P 2ðiÞ; (8)

with nt the number of times xj is used to split tree T , and
P 2ðiÞ the squared improvement to the tree model for the
i-th split. For example, P ðiÞ may be the relative IPC error
ðIPCi � IPCi�1Þ=IPCi�1 after the i-th split. If xj is used as a
splitter in M trees of the ensemble model, the importance of
xj to the model equals

I2j ¼ 1

M

XM

m¼1

I2j ðTmÞ: (9)

Once the importance factors are computed for each inde-
pendent metric, we normalize the importance so that the
sum across all independent metrics adds up to 100 percent.
The higher the (normalized) importance, the more signifi-
cant the impact is of the respective independent metric.

In this work, we consider node-level performance (IPC)
and system-level performance (DPS) as the dependent met-
rics, and we build separate models for each. An important
question then arises which independent metrics to consider
for each model. Should we only consider node-level charac-
teristics for the node-level performance model, or should
we also consider job-level metrics? And vice versa, should
we only consider job-level metrics in the job-level perfor-
mance model, or should we also consider node-level charac-
teristics? Interestingly, we find that the node-level
performance model is more accurate when considering
both node-level and job-level characteristics as the indepen-
dent characteristics. The same applies to the system-level
performance model. (More details are provided in Section 5.)
This indicates that there is a strong interplay between the
microarchitecture- and job-level characteristics. We there-
fore use both in MIA.

YU ETAL.: MIA: METRIC IMPORTANCE ANALYSIS FOR BIG DATA WORKLOAD CHARACTERIZATION 1375

3.4 MIA-Based Kiviat Plot

Visualization can greatly facilitate workload characteriza-
tion when analyzing program behavior. Eeckhout et al. [17]
proposed linkage clustering and dendrograms to visualize
(dis)similarity between workloads based on their respective
behavior vectors. A large linkage distance between two
workloads indicates dissimilar behavior, whereas a short
distance indicates similar behavior. While this is an intuitive
way to visualize workload (dis)similarity, it does not visual-
ize why workloads are (dis)similar, because the linkage dis-
tance is based on a ‘summary’ distance across the
behavioral vectors characterizing the respective workloads.
To address this issue, we propose the MIA-based Kiviat
Plot to better visualize the (dis)similarity between bench-
marks. MKP is used to reveal detailed information regard-
ing the (dis)similarity between two benchmarks.

MKP is constructed as follows. MIA first quantifies the
importance of each metric and sorts all metrics in a descend-
ing order according to their importance. We then choose the
first nmost important metrics to summarize program behav-
ior. n is theminimumnumber ofmetrics forwhich the cumu-
lative importance exceeds for example 80 percent. Finally,
we draw a Kiviat plot for each benchmark using the n met-
rics as its axes; the most important metric is shown at the 12
o’clock position, and the importance of metrics decreases fol-
lowing the clockwise direction, as shown in Fig. 4.

Thus far, we have determined the number and the order
of axes of MKPs for all benchmarks but have not set the
value of each axis yet. (Note that the MKPs for all bench-
marks have the same axes in the same order but the same
axis for different benchmarks might have different values.)
One option may be to represent the raw value of the corre-
sponding metric. However, the values may be very different
across metrics, making it hard to visualize and compare
MKPs. We therefore normalize the value for each metric as
follows:

Mnor ¼ Mori �Mmin

Mmax �Mmin
; (10)

with Mnor the normalized value of metric M; Mori the origi-
nal value of M; Mmax and Mmin the maximum and mini-
mum value of M across all benchmarks. Hence, normalized
values range between 0 and 1, which simplifies the analysis.
For example, the polygon A-B-C-D-E in Fig. 4 visualizes the
behavior of a given benchmark with values 0.8, 0.6, 0.4 and
1 for metricsm1,m8,m7 andm2, respectively.

MKP has three advantages over the dendrogram pro-
vided by linkage clustering [17]. (1) It provides a more intui-
tive and informed view of the (dis)similarity between
benchmarks by comparing the corresponding shapes and
their direction. (2) MKP reveals more information related to
the (dis)similarity between benchmarks because it compares
at least n important metrics. (3) MKP visualizes the most
important n metrics, which reduces noises while guarantee-
ing the accuracy of the characterization. Previously pro-
posed Kiviat plots [41] select metrics based on the
experimenter’s intuition, which may affect the validity and
accuracy of the characterization, i.e., some of these metrics
may have no or limited impact on performance, which
would mislead a performance analyst.

3.5 Benchmark Similarity Matrix

Having described MKP, we can now define the Benchmark
Similarity Matrix which eases the visualization of (dis)simi-
larity among a set of benchmarks. The BSM is based on the
notion of the Weighted Summary Distance (WSD) between
two benchmarks. We define an importance vector v to repre-
sent the program behavior of each benchmark as follows:

v ¼ fwm1; wm2; . . . ; wmi; . . . ; wmkg; (11)

with wmi the value of the i-th important metric, and k the
total number of metrics used to describe the behavior of a
benchmark, e.g., the n important metrics selected for MKP.
The WSD between two benchmarks is then calculated as the
Manhattan distance between the two corresponding impor-
tance vectors vp and vq

ManhattanDistðvp; vqÞ ¼
Xk

i¼1

jwmp
i � wmq

i j; (12)

with wmp
i the value of the i-th important metric of bench-

mark p, and wmq
i the value of the i-th important metric of

benchmark q. Note that we choose Manhattan distance
because it has the advantage that it weights more heavily
differences in each dimension compared to the Euclidean
distance, i.e., being closer in the x-dimension does not get
you any closer in the y-dimension.

The BSM is a novel and intuitive tool to visually summa-
rize the (dis)similarity between a set of benchmarks. BSMs
are triangles (bottom half of a matrix), in which the blue
scale of a point represents the similarity between two bench-
marks, see Fig. 5 for an example. A point ðx; yÞ in the BSM
ðx � yÞ represents the (dis)similarity between benchmarks x

Fig. 4. Overview of MIA-based Kiviat plot. m1, m2, . . . , m8 are the 8
important metrics of a Hadoop workload in terms of IPC or DPS (note
that we use n = 8 as example to illustrate MKP). The relative importance
for each metric varies between 0 and 1.

Fig. 5. An overview of the benchmark similarity matrix.

1376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018

and y. (Dis)similarity is quantified by the WSD between the
two corresponding vectors of the two benchmarks. The blue
scale of a point ðx; yÞ denotes (dis)similarity: the darker
the point, the more similar the benchmarks are; the lighter
the point, the more dissimilar the benchmarks are.

4 EXPERIMENTAL SETUP

4.1 Hardware Platform

We use a Hadoop cluster consisting of one master (control)
node and eight slave (data) nodes. All the nodes are
equipped with two 1GB/s Ethernet cards and are con-
nected through two Ethernet switches. The A switch is used
for global clock synchronization whereas the B switch is
used to route Hadoop communication. Each node has three
2 TB disks, 16GB memory, and two Intel Xeon E5620 multi-
core (Westmere) processors. The detailed configuration of
each processor is shown in Table 3. Each processor contains
8 cores, with each core being a 4-wide superscalar architec-
ture. The operating system running on each node is Ubuntu
12.04, kernel version 3.2.0. The versions of Hadoop and JDK
are 1.0.3 and 1.7.0, respectively.

4.2 Measurement Tools

We measure the microarchitecture-level characteristics
using oprofile v0.98 which reads the hardware perfor-
mance counters through sampling. We use sysstat v9.06
to collect system-level metrics. In addition, we read the log
file of the Hadoop framework every 5 seconds to observe
the Hadoop job features. Finally, we also read /proc/net/dev
every 5 seconds to obtain runtime characteristics of the
network.

4.3 Benchmarks

The benchmarks considered in this paper are summarized
in Table 4. Next to the SZTS benchmarks described in [27],
we also consider benchmarks from HiBench [1] and Clou-
drank-D 1.0 [2]. The inputs for the latter benchmark suites
are synthetically generated. The SZTS benchmarks on the
other hand come with real-life inputs. Note that a Hadoop
program may consist of multiple jobs. Each job typically
consists of a map task and a reduce task. From this point of
view, a Hadoop job is actually a small Hadoop program.
Hence, we treat different jobs of the same program as differ-
ent benchmarks. The no. jobs column in Table 4 lists the
number of jobs per program.

4.4 Generating Training Samples

We generate the training examples as follows. We run all
program-input pairs on our Hadoop cluster and collect the
values for all metrics shown in Tables 1 and 2. These values
are stored in the DPSV and IPCV vectors from Equations (2)
and (3), respectively. This is done for all N program-input
pairs, with N ¼ 133. Out of these 133 DPSVs, we sample 80
percent training examples which we use to construct the
DPS data model; the remaining 20 percent is used for evalu-
ation purposes (i.e., cross-validation setup in which the
training set and evaluation set are disjoint). The same is
done for the IPC model.

We use the R language and libraries to build our RT,
GLM, RS, ANN, SVM, and SGBRT models. The source code
for RT is adapted from [43]. The R libraries for GLM, RS,
ANN, and SVM are ‘stats’, ‘rsm’, ‘nnet’, and ‘e1071’, respec-
tively. The ANN is a feed-forward single-hidden-layer neu-
ral network. Although there exist other ANN architectures
that can produce more accurate results, they need (much)
more training examples and in turn much longer time to
collect the training data. For SGBRT, we develop our own
implementation by leveraging the ‘gbm’ library.

5 RESULTS AND ANALYSIS

5.1 Model Accuracy

We first evaluate the accuracy of the SGBRT model and
compare it against the SVM and ANNmodels which are the
most accurate ones shown in Section 2.2. In fact, we build
two prediction models, one for IPC as shown in Equation (7)
and one for DPS as shown in Equation (6). For the IPC
model, we consider two scenarios, one in which we only
consider microarchitecture-level metrics as its input (the
mj’s in Equation (7) can only be microarchitecture-level
metrics), and one in which we consider both microarchitec-
ture and job-level metrics; likewise for the DPS model. We
employ cross-validation and consider different data sets for
training versus evaluation, as mentioned before.

The error is reported in Fig. 6. The error is the lowest
when metrics are considered from both the microarchitec-
ture and job levels for SGBRT. In particular, the average
error drops from 10.6 to 4.3 percent for the IPC model when

TABLE 3
Processor Configuration

Item Value

CPU type Intel Xeon E5620
cores 8 cores, 2.4GHz
threads 16 threads
sockets 2
I-TLB 4-way, 64 entries
D-TLB 4-way, 64 entries
L2 TLB 4-way, 512 entries
L1 DCache 32KB, 8-way, 64 bytes/line
L1 ICache 32KB, 4-way, 64 bytes/line
L2 Cache 256KB, 8-way, 64 bytes/line
L3 Cache 12MB, 16-way, 64 bytes/line

TABLE 4
Benchmarks and their Input Data Sets

Benchmark Suite No. jobs Input data set (GB)

terasort HiBench 1 100, 400, . . ., 1000
sort HiBench 1 20, 40, . . ., 400
wordcount HiBench 1 20, 40, . . ., 400, 500
kmeans HiBench 2 26, 50, 80, 107, 201
pagerank HiBench 2 12, 24, 53, 80, 109
hive-aggre HiBench 1 23, 61, 83, 100, 140
hive-join HiBench 3 23, 61, 83, 100, 140
grep CR-D 1 50, 100, 160, 200, 300
hmm CR-D 1 50, 100, 160, 200, 300
nbayes CR-D 4 10, 30, 50, 80, 100
sztod SZTS 1 20, 50, 100, 160, 200
hotregion SZTS 1 50, 100, 160, 200, 300
mapm SZTS 1 2, 4, 8, 12, 16
hotspot SZTS 2 50, 100, 160, 200, 300
secsort SZTS 2 50, 100, 160, 200, 300

YU ETAL.: MIA: METRIC IMPORTANCE ANALYSIS FOR BIG DATA WORKLOAD CHARACTERIZATION 1377

considering metrics at both levels as opposed to only con-
sidering the microarchitecture-level metrics. Similarly, the
average error drops from 13 to 8.2 percent for the DPS
model when considering metrics at both levels as opposed
to job-level metrics only. The underlying reason is that there
exists correlation between the job and microarchitecture
level metrics; we analyze these correlations in more detail
in subsequent sections.

In contrast, the errors of models built by ANN and SVM
using the same training data as those of SGBRT models are
substantially higher. Even when considering both job-level
and microarchitecture-level metrics, the average error of the
ANN models equals 18.3 and 77 percent for IPC and DPS,
respectively. Likewise, the average IPC and DPS error of the
SVMmodels is 18 and 35 percent, respectively.

5.2 MIA Results

Having shown the accuracy of the SGBRT model, we now
move towards the MIA analysis. We first present the MIA
results for predicting IPC and then for DPS.

5.2.1 Metric Importance for IPC

Fig. 7 shows the MIA analysis when considering both job-
and microarchitecture-level metrics for constructing an IPC
model. LLC-MPKI is the most important factor in terms of
IPC with an importance of 15 percent. Interestingly, the sec-
ond most important metric is TMRF, or the ratio between
the time spent in the map versus reduce functions. The next
five metrics are all microarchitecture-level metrics. The fact
that TMRF is the second most important metric for the IPC
model confirms that there exists correlation between job-
level characteristics and the observed microarchitecture-
level behavior. The fact that TMRF is found to correlate
with IPC can be explained as follows. Generally speaking,
the map function is in charge of reading and processing

data while the reduce function shuffles and processes the
data. If the reduce function is compute-intensive and needs
to perform significant processing compared to the map
function, this will have its impact on node-level perfor-
mance, affecting IPC.

5.2.2 Metric Importance for DPS

Fig. 8 reports a similar analysis for the DPS model. TMI is
the most important factor for DPS with an importance equal
to 11.8 percent. The next important metrics are MOI, LLC-
MPKI, and SMI, which have almost the same importance. It
is interesting to note that LLC-MPKI, which is an important
microarchitecture-level metric for predicting IPC, is also
important for predicting DPS. This suggests that LLC-MPKI
significantly affects single-node IPC, which in its turn,
affects the overall DPS throughput of a node, which makes
intuitive sense.

Note that metric importance might or might not change
when cluster size changes, depending on whether particular
components get saturated. For example, consider a work-
load that consumes all the available memory bandwidth in
a cluster of 16 servers but other resources are plenty. Chang-
ing the cluster size to 32 is likely to still saturate memory
bandwidth, hence the relative metric importance may be
unaffected. In other cases where the performance bottleneck
changes with changing cluster size, the relative metric
importance may change.

5.3 Program Similarity Analysis

Having identified the n most important metrics for predict-
ing IPC and DPS, we now characterize the three big data
benchmark suites in terms of these metrics using MKP and
BSM visualization. We start with the Kiviat plots, focusing
on IPC first, followed by DPS analysis. Throughout this sec-
tion, we consider n ¼ 13 metrics accounting for 80 percent
of the cumulative importance, see also Figs. 7 and 8.

5.3.1 MIA Kiviat Plots for IPC

We now employ MKP to investigate how the Hadoop
benchmarks considered in this study differ from each
other in terms of IPC, see Fig. 11. (The SZTS benchmarks
are shown in shaded sub-figures). There are a number of
interesting observations to be made here. For one, similar
MKP results in similar IPC. For example, the MKPs are
quite similar to each other for pagerank-s1, hive-

aggre and hive-join-s1. Their IPC is also very similar,

Fig. 6. Average modeling error for the IPC and DPS models when con-
sidering metrics at the respective level only (‘single’) versus considering
metrics at both the microarchitecture and job levels (‘multiple’).

Fig. 7. Importance of the microarchitecture- and job-level metrics on IPC.

Fig. 8. Importance of the microarchitecture- and job-level metrics
on DPS.

1378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018

see Fig. 9. The same applies to kmeans-s1 and kmeans-

s2, and hmm and secsort-s1. This reconfirms that MKP
is indeed an accurate visualization of the workloads’ key
characteristics.

Second, similar IPC does not necessarily imply similar
program behavior. For instance, the IPC values of the ter-

asort, pagerank-s2, hmm, and bayes-s1 benchmarks
are almost the same as shown in Fig. 9. However, the MKPs
are significantly different as illustrated in Fig. 11. This indi-
cates that a compound metric such as IPC may conceal
underlying behavioral differences, which reinforces the
need for a visualization tool such as MKP.

Third, the more important metrics affect IPC and DPS
more significantly than less important ones. For example,
LLC-MPKI is the most important metric for predicting IPC.
Hence, programs with a high IPC are likely to have a
low LLC-MPKI: we find that benchmarks hive-join-s2,

hive-join-s3, bayes-s2, bayes-s3, bayes-s4, and
hotspot have much higher IPC than the other programs,
see Fig. 9. We find that these programs indeed have a low
LLC-MPKI, see Fig. 11.

5.3.2 MIA Kiviat Plots for DPS

We now analyze job-level behavior in terms of DPS using
MKP visualization, see Fig. 12. We make a number of inter-
esting observations here. First, similarly to IPC, similar pro-
gram behavior observed in the kiviat plots corresponds to
similar DPS, see also Fig. 10; but not vice versa. For exam-
ple, Fig. 12 illustrates that kmeans-s1 has a similar kiviat
plot as kmeans-s2, which is confirmed by the same DPS
shown in Fig. 10. On the contrary, the DPS of terasort is
very close to wordcount, however their kiviat plots are
very different. The same is true for the hotregion and
pagerank-s1 benchmarks.

Fig. 9. IPC for SZTS and the other Hadoop benchmarks (HiBench and
CloudRank-D). Fig. 10. The data processing speed (DPS) of SZTS and other Hadoop

programs (HiBench and CloudRank-D).

Fig. 11. The MIA kiviat plots for IPC. The most important metric with respect to IPC is shown at the 12 o’clock position, and the importance of metrics
decreases following the clockwise direction. The values of the metrics are normalized using Equation (10).

YU ETAL.: MIA: METRIC IMPORTANCE ANALYSIS FOR BIG DATA WORKLOAD CHARACTERIZATION 1379

Second, as was the case for IPC as well, the more impor-
tant metrics in terms of DPS affect DPS more significantly
than the less important ones. Fig. 10 reports the highest DPS
for kmeans-s1, kmeans-s2, grep, hmm, sztod, and sec-

sort-s1. From MIA, we know that TMI is the most impor-
tant metric in terms of DPS, and lower is better. We
therefore infer that the TMIs of these benchmarks should be
low. Looking at Fig. 12, we confirm that TMI is indeed small
for these benchmarks. This reconfirms that our MIA identi-
fies the most important metrics.

Third, it is interesting to note that program behavior (dis)
similarity in terms of DPS is significantly different from
what we observe in terms of IPC, and vice versa. For exam-
ple, hotregion, secsort-s2, and pagerank-s1 exhibit
similar behavior (MKP) in terms of IPC while they are sig-
nificantly different when considering DPS MKP. In contrast,
sztod and secsort-s1 are fairly similar to hmm in terms
of DPS, however sztod is quite unique when considering
the MKP for IPC. This suggests that only observing program
behavior at one layer is not enough to comprehensively
understand the characteristics of big data workloads. We
must consider and analyze program behavior from multiple
layers to obtain a complete performance picture.

5.4 Case Study: SZTS versus Other Hadoop
Benchmarks

We now consider a case study to illustrate a potential use
case of MIA kiviat plots. We compare the behavior of the
SZTS benchmark suite against the other Hadoop bench-
marks; the SZTS benchmarks are shown in the gray shaded

kiviat plots in Figs. 11 and 12. There are a number of inter-
esting observations to be made here.

First, we find that the area of the MKP for IPC is much
smaller for the SZTS benchmarks than for the other Hadoop
programs, see Fig. 11. This indicates an interesting insight:
the values for several metrics tend to be close to zero. Since
most of the metrics in the MKP for IPC are harmful to IPC,
we infer that the SZTS benchmarks have a relatively lower
IPC than the other Hadoop programs. This is confirmed by
the results shown in Fig. 9: only one SZTS benchmark exceeds
an IPC of 0.6 while many other Hadoop benchmarks exceeds
that—the average IPC for the SZTS benchmarks equals 0.55,
in contrast to 0.63 for the otherHadoop programs.

Second, FSPKC (the number of instruction fetch stalls) is
close to zero for the SZTS benchmarks, in contrast to some
other Hadoop programs, see Fig. 11. This indicates that the
SZTS benchmarks exhibit better instruction locality, which
results in fewer instruction fetch stalls.

Third, as shown in Fig. 11, most SZTS benchmarks have a
relatively high LLC-MPKI compared to the Hadoop pro-
grams. Since LLC-MPKI is the most important factor for
IPC and lower is better, the IPC of the SZTS benchmarks is
lower than that of the other Hadoop programs, which re-
confirms the above analysis.

Fourth, the average TMI equals 2.4 for the SZTS bench-
marks, whereas that for the other Hadoop programs equals
3.3. This indicates that the average DPS of the SZTS bench-
marks is noticeably higher than for the other Hadoop pro-
grams because the TMI is the most important factor for DPS
and lower is better. Fig. 10 confirms this result.

Fig. 12. The MIA kiviat plots for DPS. The most important metric with respect to DPS is shown at the 12 o’clock position, and the importance of met-
rics decreases following the clockwise direction. The values of the metrics are normalized using Equation (10).

1380 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018

Finally, the conclusion that the area of the MKP of each
SZTS benchmark is smaller than those of other Hadoop pro-
grams in terms of IPC does not hold true when considering
DPS, see Fig. 12. For example, the area of the MKPs for DPS
is much larger for mapmatching and secsort-s2 than
for hmm and pagerank-s1.

5.5 Case Study: Efficient Performance Optimization

We now employ another case study to demonstrate the
applicability of MIA for steering performance optimization.
As shown in Fig. 8, MIA reports that TMI is more important
than TMRF with respect to DPS.

By carefully analyzing the relationship between various
Hadoop configuration parameters and the TMI and TMRF
metrics, we find that the configuration parameters io.sort.fac-
tor and the number of reducers are most tightly related to TMI
and TMRF, respectively. io.sort.factor specifies how many
fragmented files on disk can be merged at once. A small
value of it leads to a large amount of TMI because some of
the fragmented files are re-read and re-written multiple
times when the files are merged. the number of reducers
directly affects the execution time of reduce functions,
deciding the value of TMRF.

Taking the terasort benchmark with 400 GB of input
data as an example, we adjust the values of io.sort.factor and
the number of reducers to observe its execution time variation.
As shown in Fig. 13, execution time decreases from 94.9
minutes to 59.3 minutes when increasing the value for io.
sort.factor from 10 (default) to 80, reflecting a 37.5 percent
reduction in execution time. In contrast, the execution time
decreases from 99.2 to 80.2 minutes only when increasing
the number of reducers from 8 to 72, implying an execution
time reduction of merely 19.2 percent. Without MIA, one
may take a lot of effort tuning the number of reducers instead
of tuning io.sort.factor, achieving less performance improve-
ment. This indicates that MIA can help users optimize
workloads more efficiently by focusing on the more impor-
tant metrics.

Note that it only takes us half of an hour effort to identify
the tight relationship between io.sort.factor and TMI by read-
ing the Apach Hadoop reference guide about configura-
tions [53]. The guide describes that io.sort.factor specifies the
number of fragmented files that can be merged at once. If its
value is small, it causes a large number of merge operations
and in turn produces a large amount of accumulated tempo-
rary data (TMI). Therefore, we infer that io.sort.factor is
important because we know TMI is important with the help
of MIA. Moreover, the relationship between the configura-
tion parameters and the job metric is static and does not

vary across benchmarks, which can be incorporated with
MIA to efficiently optimize Hadoop programs.

5.6 Benchmark Similarity Matrices

We now summarize the (dis)similarity of all the experi-
mented benchmarks using Benchmark Similarity Matrix
visualization. Fig. 14 shows the BSM in terms of IPC. BSM
visualization provides an intuitive perspective for analyzing
the (dis)similarity among workloads. For example, the ter-
asort benchmark is quite different from all other bench-
marks (light blue boxes at the bottom row), while being
quite similar to secsort-s2, see the rightmost point at the
bottom row. The sort benchmark (row above terasort)
is even more different from the other programs but is
slightly less similar to secsort-s2 compared to tera-

sort. The wordcount benchmark is the outlier benchmark
here: its behavior is significantly different from the other
benchmarks because there are no dark points in the third
row and third column. Also mapmatching is significantly
different from the other benchmarks.

Fig. 15 provides a similar view for DPS. The sort bench-
mark is the outlier at the system level because the respective
row and column are the lightest. The second most outlier
benchmark is bayes-s1. Interestingly, these two bench-
marks did not appear as the most extreme outliers at the
node level (see the BSM for IPC). This reconfirms that char-
acterizing big data workloads in a comprehensive way
requires analyzing performance at multiple layers in the
system stack.

5.7 Generalization of MIA

We now discuss the generalization of MIA. We build the
performance model using an ensemble learning algorithm,
Stochastic Gradient Regression Tree, based on the training
set produced by 15 programs, each with more than 5 differ-
ent input datasets. Therefore, the identified important met-
rics are the same for all the experimented program-input
pairs. When we study a new program, if the characteristics
of the program are similar to those of one of the experi-
mented program (using the technique described in Section
3.5 to measure the similarity between two programs), it is

Fig. 13. Execution time optimization for terasort by adjusting io.sort.
factor and the number of reducers.

Fig. 14. Benchmark similarity matrix for IPC. A dark point indicates that
the two benchmarks (represented by the corresponding X and Y points)
are similar in terms of IPC.

YU ETAL.: MIA: METRIC IMPORTANCE ANALYSIS FOR BIG DATA WORKLOAD CHARACTERIZATION 1381

unnecessary to retrain the model. The important metrics can
also be applied to the new program. However, if the new
program is significantly different from the experimented
ones which produce the training set, we need to retrain the
model by adding the vectors defined by Equations (2) and
(3) to matrices (4) and (5), respectively. In such a case, the
model retraining is inevitable for all machine learning and
the like modeling techniques.

Moreover, MIA can also be used to build an accurate per-
formance model and identify the important metrics for a
single program as long as a large enough training set can be
collected. This can be done by running the program with a
large enough number of different input datasets and each
run collects the vectors defined by Equations (2) and (3),
respectively.

6 RELATED WORK

6.1 Workload Characterization

Although workload characterization is extremely important
for computing system design and performance evaluation,
there are only few of studies focusing on the methodology
itself. Eeckhout et al. [17] propose a Principal Component
Analysis (PCA) based approach to characterize workloads
for computer architecture research. While PCA is a good
way to identify the main characterization of a workload, it
obfuscates information from the original metrics because
the principal components are computed as linear combina-
tions of the original metrics. In contrast, MIA identifies the
most important metrics among the original metrics, which
yields a more intuitive and comprehensive way to analyze
and understand workload behavior.

Hoste and Eeckhout [18] propose a linkage-clustering
based dendrogram to visualize the (dis)similarity among
workloads. The difference in workload behavior is com-
puted using the principal components. One limitation of
this repesentation is that it does not illustrate why two
workloads are dissimilar from each other. Indeed, a large
linkage distance implies dissimilar behavior, however, there
could be various reasons that are not apparent from the
linkage distance. The MIA-based Kiviat Plots, on the other

hand, provide a comprehensive picture explaining why two
workloads are (dis)similar.

A number of previous works use Kiviat plots to visualize
workload characterization results. For example, Zhang
et al. [48] use Kiviat plots to show the envelop of eight met-
rics for many-task computing programs. Che et al. [49]
employ Kiviat plots to compare the (dis)similarity of differ-
ent GPGPU workloads. None of these studies however
explain how and why they choose the specific metrics they
choose; MIA on the other hand selects the most important
workload metrics in a systematic way.

6.2 Big Data Workload Analysis

Big data processing places unprecedented demands on
computing systems, which makes evaluating and under-
standing big data systems challenging. Benchmarking big
data systems therefore attracts significant attention.

The traditional benchmark suite for database systems is
TPC [5]. Big data imposes severe challenges on database
systems and impels these systems to improve for big data
processing, see TPC-DS [5] and BigBench [11]. Another
database benchmark suite for big data processing is YCSB
which is designed for evaluating Yahoo!’s cloud platform
and data storage systems [7]. YCSB mainly consists of
online service workloads—so-called ‘Cloud OLTP’ work-
loads. More recently, Armstrong et al. [8] released the Link-
Bench benchmark suite based on Facebook’s social graph.
These benchmark suites focus on database systems which
are fairly different from Hadoop-based systems.

Several big data benchmark suites have been proposed
that do not focus on databases exclusively. Ferdman
et al. [9] study the microarchitecture-level characteristics of
scale-out workloads in the cloud. Wang et al. [10] propose a
big data benchmark suite named BigDataBench for evaluat-
ing Internet services. Jia et al. [12] characterize data analysis
workloads in the data center. Early Hadoop benchmarks
include GridMix [13], Sort [14], and TeraSort [15], [16].
Zhang et al. [26] propose a parameterizable benchmarking
framework for MapReduce programs [26]. The closest
related works are HiBench [1], CloudRank-D [2], and
SZTS [25]. None of these prior works do provide a way to
identify the important workload characteristics. In this
work, we propose MIA to do so.

7 CONCLUSIONS

Big data workloads and systems pose significant bench-
marking challenges as it requires performance metrics to
be measured at various levels in the system stack. These
performance metrics are correlated, further complicating
the analysis. In this paper, we propose a novel ensemble-
learning based methodology to quantify the importance
of metrics, named Metric Importance Analysis. We lever-
age MIA and propose MIA-based Kiviat plots and the
Benchmark Similarity Matrix to visualize a workload’s
characteristics and ease the comparison of the behavior
among a set of workloads. Our workload characterization
shows that MIA indeed is a powerful tool that reveals
insight, and provides intuitive and visually easy-to-grasp
information about the program behavior (dis)similarity
among big data workloads.

Fig. 15. Benchmark similarity matrix for DPS. A dark point indicates that
the two benchmarks (represented by the corresponding X and Y points)
are similar with respect to DPS.

1382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018

ACKNOWLEDGMENTS

We thank the reviewers for their thoughtful comments and
suggestions. This work is supported by the National Key
R&D Program of China under no. 2016YFB1000204; NSFC
under grants no. 61672511, 61702495; outstanding technical
talent program of CAS. Additional support is provided by
the major scientific and technological project of Guangdong
province (2014B010115003), Shenzhen Technology Research
Project (JSGG20160510154–636747), and Key technique
research on Haiyun Data System of NICT, CAS under grant
no. XDA06010500. Lieven Eeckhout is partly supported by a
Chinese Academy of Sciences (CAS) visiting professorship
for senior international scientists.

REFERENCES

[1] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
benchmark suite: Characterization of the MapReduce-based data
analysis,” in Proc. IEEE 26th Int. Conf. Data Eng. Workshops, 2010,
pp. 41–51.

[2] C. Luo, et al., “Cloudrank-D: Benchmarking and ranking cloud
computing systems for data processing applications,” Frontiers
Comput. Sci., vol. 6, no. 4, pp. 347–362, 2012.

[3] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang,
“Map-matching for low-sampling-rate GPS trajectories,” in Proc.
17th ACM SIGSPATIAL Int. Conf. Advances Geographic Inf. Syst.,
2009, pp. 352–361.

[4] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architecture implications,” in Proc. Int.
Conf. Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[5] Active TPC Benchmarks. [Online]. Available: http://www.tpc.
org/information/ benchmarks.asp, Accessed on: May 12, 2017.

[6] Apach Hive. [Online]. Available: http://hive.apache.org/,
Accessed on: May 12, 2017.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in Proc.
1st ACM Symp. Cloud Comput., 2010, pp. 143–154.

[8] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,
“LinkBench: A database benchmark based on the Facebook social
graph,” in Proc. SIGMOD Conf., 2013, pp. 1185–1196.

[9] M. Ferdman, et al., “Clearing the clouds: A study of emerging
workloads on modern hardware,” in Proc. Annu. Int. Conf. Archit.
Support Program. Languages Operating Syst., 2012, pp. 37–48.

[10] L. Wang, et al., “BigDataBench: A big data benchmark suite from
internet services,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit., 2014, pp. 488–499.

[11] A. Ghazal, et al., “BigBench: Towards an industry standard bench-
mark for big data analytics,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2013, pp. 1197–1208.

[12] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing
data analysis workloads in data centers,” in Proc. IEEE Int. Symp.
Workload Characterization, 2013, pp. 66–76.

[13] GridMix Program. Available in Hadoop source distribution,
[Online]. Available: src/benchmarks/gridmix

[14] Sort program. Available in Hadoop source distribution, [Online].
Available: src/examples/org/apache/hadoop/examples/sort

[15] TeraSort. [Online]. Available: http://sortbenchmark.org/,
Accessed on: May 12, 2017.

[16] Hadoop TeraSort program. Available in Hadoop source distribu-
tion since 0.19 version, [Online]. Available: src/examples/org/
apache/hadoop/examples/terasort

[17] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,
“Quantifying the impact of input data sets on program behavior
and its applications,” J. Instruction-Level Parallelism, vol. 5, no. 1,
pp. 1–33, 2003.

[18] K. Hoste and L. Eeckhout, “Microarchitecture-independent work-
load characterization,” IEEE Micro, vol. 27, no. 3, pp. 63–72, May/
Jun. 2007.

[19] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl,
“Benchmarking big data systems and the BIGDATA TOP100 list,”
Big Data J., vol. 1, no. 1, pp. 60–64, 2013.

[20] The Fifth Workshop on Big Data Benchmarking. (2014). [Online].
Available: http://clds.sdsc.edu/wbdb2014.de, Accessed on: May
12, 2017.

[21] BPOE-5: The Fifth Workshop on Big Data Benchmarks, Perfor-
mance, and Emerging Hardware. (2014). [Online]. Available:
http://prof.ict.ac.cn/bpoe_5_vldb, Accessed on: May 12, 2017.

[22] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl,
“Setting the direction for big data benchmark standards,” Sel.
Topics Perform. Eval. Benchmarking, vol. 7755, pp. 197–208, 2013.

[23] J. H. Friedman, “Stochastic gradient boosting,” Comput. Statist.
Data Anal., vol. 38, no. 4, pp. 367–378, 2002.

[24] J. H. Friedman and J. J. Meulman, “Multiple additive regression
trees with application in epidemiology,” Statist. Med., vol. 22,
no. 9, pp. 1365–1381, 2003.

[25] W. Xiong, et al., “A characterization of big data benchmarks,” in
Proc. IEEE Int. Conf. Big Data, 2013, pp. 118–125.

[26] Z. Zhang, L. Cherkasova, and B. T. Loo, “Parameterizable bench-
marking framework for designing a MapReduce performance
model,” J. Concurrency Comput.: Practice Experience, vol. 26,
pp. 2005–2026, 2014.

[27] W. Xiong, Z. Yu, L. Eeckhout, Z. Bei, F. Zhang, and C. Xu, “SZTS:
A novel big data transportation system benchmark suite,” in Proc.
44th Int. Conf. Parallel Process., 2015, pp. 819–828.

[28] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Symp. Operating Syst. Des. Imple-
mentation, 2004, pp. 137–150.

[29] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/,
Accessed on:May 12, 2017.

[30] J. M. Calcagni, “Shape in ranking Kiviat graphs,” ACM SIGMET-
RICS Perform. Eval. Rev., vol. 5, no. 1, pp. 35–37, Jan. 1976.

[31] M. F. Morris, “Kiviat graphs: Conventions and figures of metric,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 3, no. 3, pp. 2–8, Oct.
1974.

[32] H. E. Barry Merrill , “A technique for comparative analysis of Kiv-
iat graphs,” ACM SIGMETRICS Perform. Eval. Rev., vol. 3, no. 1,
pp. 34–39, Mar. 1974.

[33] H. W. Barry Merrill , “Further comments on comparative evalua-
tion of Kiviat graphs,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 4, no. 1, pp. 1–10, Jan. 1975.

[34] K. W. Kolence and P. J. Kiviat, “Software unit profiles & Kiviat fig-
ures,” ACM SIGMETRICS Perform. Eval. Rev., vol. 2, no. 3, pp. 2–
12, Sep. 1973.

[35] D. A. Freedman, Statistical Models: Theory and Practice. Cambridge,
U.K.: Cambridge Univ. Press. 2009.

[36] N. John and W. Robert, “Generalized linear models,” J. Roy. Stat-
ist. Soc., vol. 135, no. 3, pp. 370–384, 1972.

[37] I. J. Hastie and R. J. Tibshirani, Generalized Additive Models.
London, U.K.: Chapman & Hall/Boca Raton, FL: CRC. 1990.

[38] C. Cortes and V. Vapnik, “Support-vector networks,” Mach.
Learn., vol. 20, no. 3, pp. 273–295, 1995.

[39] M. Minsky and S. Papert, An Introduction to Computational Geome-
try. Cambridge, MA, USA: MIT Press, 1969.

[40] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” Ann. Statist., vol. 29, pp. 1189–1232, 2001.

[41] J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On, “A benchmark
characterization of the EEMBC benchmark suite,” IEEE Micro,
vol. 29, no. 5, pp. 18–29, Sep./Oct. 2009.

[42] W. Jia, K. A. Shaw, and M. Martonosi, “Stargazer: Automated
regression-based GPU design space exploration,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw., 2012, pp. 2–13.

[43] W. Jia, K. A. Shaw, and M. Martonosi, “Starchart: Hardware and
software optimization using recursive partitioning regression
trees,” in Proc. 22nd Int. Conf. Parallel Archit. Compilation Techn.,
2013, pp. 257–267.

[44] W. Jia, K. A. Shaw, and M. Martonosi, “GPU performance and
power tuning using regression trees,” ACM Trans. Archit. Code
Optimization, vol. 12, no. 2, 2015, Art. no. 13.

[45] A. E. Gencer, D. Bindel, E. G. Sirer, and R. V. Renesse, “Configuring
distributed computations using response surfaces,” in Proc. Annu.
ACM/IFIP/USENIXMiddleware Conf., 2015, pp. 235–246.

[46] E. Ipek, S. A. McKee, R. Caruana, B. R. de Supinski, and
M. Schulz, “Efficiently exploring architectural design spaces via
predictive modeling,” in Proc. 12th ACM Int. Conf. Archit. Support
Program. Languages Operating Syst., 2006, pp. 195–206.

[47] A. Spark Team, Aparch Spark. 2016. [Online]. Available: http://
spark.apache.org/

YU ETAL.: MIA: METRIC IMPORTANCE ANALYSIS FOR BIG DATA WORKLOAD CHARACTERIZATION 1383

http://www.tpc.org/information/ benchmarks.asp
http://www.tpc.org/information/ benchmarks.asp
http://hive.apache.org/
src/benchmarks/gridmix
src/examples/org/apache/hadoop/examples/sort
http://sortbenchmark.org/
src/examples/org/apache/hadoop/examples/terasort
src/examples/org/apache/hadoop/examples/terasort
http://clds.sdsc.edu/wbdb2014.de
http://prof.ict.ac.cn/bpoe_5_vldb
http://hadoop.apache.org/
http://spark.apache.org/
http://spark.apache.org/

[48] Z. Zhang, D. S. Katz, M. Wilde, J. M . Wozniak, and I. Foster,
“MTC envelope: Defining the capability of large scale computers
in the context of parallel scripting applications,” in Proc. ACM Int.
Symp. High-Perform. Parallel Distrib. Comput., 2013, pp. 37–48.

[49] S. Che, et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44–54.

[50] F. Azmandian, M. Moffie, J. G. Dy, J. A. Aslam, and D. R. Kaeli,
“Workload characterization at the virtualization layer,” in Proc.
19th Annu. Int. Symp. Model. Anal. Simul. Comput. Telecommun.
Syst., 2011, pp. 63–72.

[51] H. H. Huang, S. Li, A. Szalay, and A. Terzis, “Performance model-
ing and analysis of flash-based storage devices,” in Proc. 27th
IEEE Symp. Mass Storage Syst. Technol., 2011, pp. 1–11.

[52] L. Palden and Z. Xiaobo, “AROMA: Automated resource alloca-
tion and configuration of MapReduce environment in the cloud,”
in Proc. 9th ACM Int. Conf. Autonomic Comput., 2012, pp. 63–72.

[53] [Online]. Available: https://hadoop.apache.org/docs/r1.0.4/
mapred-default.html

Zhibin Yu received the PhD degree in computer
science from Huazhong University of Science
and Technology (HUST), in 2008. Now he is a
professor in the SIAT, CAS. His research interests
include computer architecture, workload charac-
terization and generation, performance evalua-
tion, multi-core architecture, GPGPU
architecture, big data processing and so forth. He
won the outstanding technical talent program of
Chinese Academy of Science (CAS), in 2014. He
also won the first award in teaching contest of

HUST young lectures in 2005 and the second award in teaching quality
assessment of HUST in 2003. He serves for ISCA, MICRO, and HPCA.

Wen Xiong received the BS degree from Wuhan
Institute of Technology, in 2005 and the MS
degree from HuaZhong University of Science and
Technology, in 2008. He is working toward the
PhD degree in Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. His
research focuses on big data benchmarking and
distributed storage system.

Lieven Eeckhout received the PhD degree from
Ghent University, in 2002. He is a professor with
the Ghent University, Belgium. His research inter-
ests include computer architecture with a specific
emphasis on performance evaluation methodolo-
gies and dynamic resource management. He is
the recipient of the 2017 ACM SIGARCH Maurice
Wilkes Award. His work has been awarded with
two IEEE Micro Top Pick awards and a Best
Paper Award at ISPASS 2013. He published a
Morgan & Claypool synthesis lecture monograph

in 2010 on performance evaluation methods. He was the program chair
for HPCA 2015, CGO 2013 and ISPASS 2009; and currently serves as
the editor-in-chief of the IEEE Micro and as associate editor of the ACM
Transactions on Architecture and Code Optimization and the IEEE
Transactions on Computers.

Zhendong Bei received the BS degree from
National University of Defense Technology, in
2006 and the MS degree from Central South Uni-
versity, in 2009. He is working toward the PhD
degree in Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Sciences. His
research interests include performance optimiza-
tion of big data system, data mining, machine
learning, and image processing.

Avi Mendelson received the BSc and MSc
degrees from the CS Department, Technion, in
1979 and 1982, respectively, and the PhD degree
from the University of Massachusetts at Amherst
(UMASS), in 1990. He is a professor in the CS
and EE Departments Technion, and the head of
the EE Department at the School of Engineering,
Kinneret College, Israel. He has a blend of indus-
trial and academic experience. As part of his
industrial role, he worked for Intel 11 years, where
he served as a senior researcher and principle

engineer in the Mobile Computer Architecture Group, in Haifa Israel.
While in Intel, he was the chief architect of the CMP (multi-core-on-chip)
feature of the first dual core processors Intel developed. His research
interests span over different areas such as computer architecture, oper-
ating systems, power management, reliability, fault-tolerance, cloud
computing, HPC, and GPGPU.

Chengzhong Xu received the PhD degree from
the University of Hong Kong, in 1993. He is cur-
rently a tenured professor of Wayne State Univer-
sity and the director of the Institute of Advanced
Computing and Data Engineering of Shenzhen
Institute of Advanced Technology of Chinese
Academy of Sciences. His research interests
include parallel and distributed systems and
cloud computing. He has published more than
200 papers in journals and conferences. He
serves on a number of journal editorial boards,

including the IEEE Transactions on Computers, the IEEE Transactions
on Parallel and Distributed Systems, the IEEE Transactions on Cloud
Computing, the Journal of Parallel and Distributed Computing and the
China Science Information Sciences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 6, JUNE 2018

https://hadoop.apache.org/docs/r1.0.4/mapred-default.html
https://hadoop.apache.org/docs/r1.0.4/mapred-default.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

