
HeteroCore GPU to Exploit
TLP-Resource Diversity

Xia Zhao , Zhiying Wang,Member, IEEE, and Lieven Eeckhout , Fellow, IEEE

Abstract—Graphics processing units (GPUs) are widely adopted as compute accelerators in cloud computing environments and

supercomputers. Sharing GPU resources in such environments requires effective multitasking support. Unfortunately, conventional

GPUs lack the ability to adapt to diverse thread-level parallelism (TLP) resource demands among co-executing kernels. Previous work

such as SM partitioning and simultaneously multitasking (SMK) increase system throughput, however, they degrade per-application

performance significantly. This paper proposes the HeteroCore GPU to significantly improve multitasking performance with a similar

area cost as a conventional GPU. After rebalancing TLP-related SM resources, a HeteroCore GPU consists of two types of SMs to

support diverse TLP-resource demands. Dynamic scheduling performs low-overhead spatial profiling during runtime across the

different SM types and steers scheduling decisions based on the TLP-resource demands of the co-executing kernels. Compared to a

conventional GPU, HeteroCore GPU improves system throughput by 20.1 percent on average (up to 80.9 percent) and per-application

performance by 29.8 percent on average (up to 50.3 percent), for workload mixes composed of kernels with different TLP-resource

demands.

Index Terms—Heterogeneous, graphics processing units (GPUs), thread level parallelism (TLP), scheduling

Ç

1 INTRODUCTION

GRAPHICS processing units (GPUs) have become increas-
ingly important components in modern computer sys-

tems because of their ability to accelerate highly data-
parallel GPU-compute applications [33]. With each technol-
ogy generation, GPUs have seen a dramatic increase in raw
computational power, e.g., the latest Nvidia Pascal GPU
delivers performance in the TFlops range [31]. The huge
computational power at relatively low energy has spurred
the integration of GPUs in supercomputers, cloud comput-
ing infrastructures as well as warehouse-scale computers,
where GPUs are virtualized and shared by multiple
users [11], [12], [37]. A key requirement to support GPU
sharing is the ability to support multitasking or concurrent
execution of independent kernels.

Timemultiplexing is amultitasking techniquewidely used
in CPUs which divides time into slices to time-share the CPU
among co-executing applications. An application is pre-
empted by an another application if it runs out of its current
time slice. Unfortunately, unlike CPUs, the architecture state
of a GPU kernel is large, and hence the overhead of saving
and restoring it is high [34], [40], [49]. To make things worse,
preemptive multitasking does not make effective use of the

available hardware resources, e.g., memory bandwidth may
be overutilized and underutilized at different timeswhen exe-
cuting a memory-intensive versus compute-intensive kernel
in a time-sharingGPU environment.

In contrast, spatial multitasking divides GPU resources
in space rather than time among co-executing kernels [3],
[4], [35], [40]. By concurrently running multiple kernels on
different streaming multiprocessors (SMs), spatial multi-
tasking avoids the context switching overhead, and better
utilizes the available hardware resources, thereby improv-
ing overall system performance. While the number of SMs
in GPUs keeps increasing [31], [32]—making spatial multi-
tasking increasingly promising—an inevitable problem in
GPU multitasking is that co-executing kernels exhibit differ-
ent thread-level parallelism (TLP) resource demands that
are left unexploited in conventional GPUs.

A GPU kernel features so-called cooperative thread arrays
(CTAs) that group threads, out of which warps are formed
consisting of 32 threads for SIMD execution. When one warp
is stalled, the GPU switches to an another warp to execute to
hide memory access latency. The number of CTAs one SM
can execute is limited by the available per-SM TLP-related
hardware resources, including the register file, shared mem-
ory, and the warp slots. These per-SM TLP resources are identi-
cal for all SMs which leaves significant performance on the
table and leads to suboptimal hardware utilization when exe-
cuting diversemultitaskingGPU-computeworkloads.

In particular, for thick-TLP kernels, the available per-SMTLP
resources are insufficient to hide memory access latency—
these kernels can achieve higher performance if given more
TLP resources. In contrast, for lean-TLP kernels, the available
TLP resources exceed the kernel’s TLP resource demands,
and performance does not change or even increaseswhen exe-
cuted on SMs with less TLP resources. These kernels either

� X. Zhao and L. Eeckhout are with the Department of Electronics and
Information Systems, Ghent University, Gent 9000, Belgium.
E-mail: {xia.zhao, lieven.eeckhout}@UGent.be.

� Z. Wang is with the State Key Laboratory of High Performance Computing,
National University of Defense Technology, Changsha 410073, China.
E-mail: zywang@nudt.edu.cn.

Manuscript received 9 Feb. 2018; revised 28 June 2018; accepted 1 July 2018.
Date of publication 10 July 2018; date of current version 12 Dec. 2018.
(Corresponding author: Xia Zhao.)
Recommended for acceptance by M. Kandemir.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2854764

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019 93

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:
mailto:

saturate memory bandwidth and/or suffer from cache con-
tention. Unfortunately, current GPUs lack the ability to
dynamically adapt to and exploit different TLP resource
demands among co-executing kernels. In contrary to what
conventional GPUs provide, a thick-TLP kernel needs addi-
tional TLP resources whereas a lean-TLP kernel does not need
asmany TLP resources.

Previous solutions including SM partitioning [3] and
simultaneous multi-kernel execution (SMK) [49], [51]
increase hardware utilization in multitasking GPUs, how-
ever, they fall short for workload mixes with different per-
SM TLP resource demands, which leads to severe per-appli-
cation performance degradation. In particular, co-executing
a thick-TLP kernel with another kernel on a single SM, as
done in SMK, significantly degrades thick-TLP kernel per-
formance. Per-application performance degradation is par-
ticularly problematic in the context of fairness, quality-of-
service (QoS) and service-level agreements (SLAs) [11], [12],
[19].

This paper proposes the HeteroCore GPU architecture to
improve both system throughput and per-application perfor-
mance by exploiting different TLP resource demands among
co-executing GPU kernels. The core idea of the HeteroCore
GPU is to ‘rebalance’ per-SM TLP resources in an area-nor-
malized way. The proposed HeteroCore GPU supports two
types of SMs, the big-SM and small-SM. In particular, we
reduce the size of the TLP resources in a small-SM and
‘migrate’ these TLP resources to a big-SM. Unlike the widely
explored heterogeneous multicore CPU composed of core
types with different performance characteristics (e.g., ARM’s
big.LITTLE), in HeteroCore GPU, the more complex big-SMs
and the simpler small-SMs are both used to improve perfor-
mance. By ‘migrating’ TLP resources from a small-SM to a
big-SM, while keeping the number of functional units and
cache size unchanged, we maintain (or even improve) lean-
TLP kernel performance while significantly improving thick-
TLP kernel performance.

To improve multitasking performance on a HeteroCore
GPU, the intuition is to enhance thick-TLP kernel perfor-
mance by executing on big-SMs while maintaining lean-
TLP kernel performance by executing on small-SMs.
Although the intuition is simple, designing an effective
scheduling algorithm is not. Dynamically discerning thick-
TLP kernels from lean-TLP kernels during runtime at low
overhead is challenging. To this end, we propose spatial
profiling and TLP resource-aware scheduling to optimize
total system throughput and per-application performance:
we profile the co-executing kernels on different SM types at
low overhead; after the online profiling phase, our schedul-
ing algorithm decides on the kernel-to-SM mapping based
on the kernel’s TLP resource characteristics. In addition, we
deploy an adaptive preemption policy to minimize the
impact of context switching.

Although the HeteroCore GPU architecture is motivated
by GPU multitasking, it still maintains single-task perfor-
mance: lean-TLP kernels perform similarly on the big-SMs
and small-SMs—which is why they are lean-TLP kernels—
while thick-TLP kernels do worse on the small-SMs but
make up for it with better performance on the big-SMs.

In summary, we make the following contributions in this
paper:

� We show that kernels exhibit different per-SM TLP-
resource demands which previously proposed techni-
ques to improve hardware utilization in multitasking
GPUs such as SM partitioning and simultaneous
multi-kernel execution, fail to exploit while balancing
system throughput and per-application performance.

� We introduce the HeteroCore GPU architecture con-
sisting of big-SMs and small-SMs varying in the
degree of TLP resources to significantly improve mul-
titasking performance while keeping hardware cost
and single-task performance unchanged.

� We explore HeteroCore GPU scheduling policies
to balance system throughput and per-application
performance.

� We propose TLP resource-aware scheduling to fully
exploit the potential of the HeteroCore GPU architec-
ture by dynamically scheduling kernels to the most
suitable SM type, based on a low-overhead spatial
profiling phase to dynamically learn a kernel’s TLP-
resource characteristics.

� We demonstrate the potential of the HeteroCore GPU
architecture and comprehensively evaluate its perfor-
mance. Compared to a conventional GPU with simi-
lar hardware cost, the HeteroCore GPU improves
system throughput by 20.1 percent on average (up to
80.9 percent) and per-application performance by
29.8 percent on average (up to 50.3 percent) for multi-
tasking workloads composed of kernels with differ-
ent TLP-resource characteristics.

2 MOTIVATION

Wefirst characterize the TLP resource demands in GPU-com-
pute workloads and classify them into thick-TLP versus lean-
TLP kernels. We do so based on the observed performance
changes as we increase the TLP resources per SM. In particu-
lar, we vary the register file size, sharedmemory and number
of warp slots relative to our baseline SMwhichwe denote as 1
unit of TR (TLP Resource). We evaluate performance on a
GPU with SMs of size 1=2 � TR, TR, and 3=2 � TR. (1=2 � TR
means that the per-SM TLP resources are half the size of our
baseline SM.) All other resources, including the number of
functional units, cache size and off-chip memory bandwidth,
are kept unchanged. (See Section 5 for a detailed description
of our experimental setup.)

2.1 Thick-TLP Kernels

Fig. 1 shows normalized performance (instructions executed
per cycle or IPC) as a function of the per-SMTLP resources for
the thick-TLP kernels in our benchmark set. Increasing the

Fig. 1. Thick-TLP kernels: Performance improves when given more per-
SM TLP resources; performance significantly degrades when given less
per-SM TLP resources.

94 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

TLP resources per SM, e.g., fromTR to 3=2 � TR, enablesmore
CTAs to execute on an SMwhich in turn leads to more poten-
tial for latency hiding and thus better performance, i.e., there
is more opportunity to hide latency by scheduling warps
when a particular warp is stalled. On the contrary, decreasing
the number of TLP resources makes things worse as now
there are fewerwarps to hide latency.

Conclusion. Thick-TLP kernel performance improves
when given more per-SM TLP resources, and significantly
degrades when given fewer TLP resources.

2.2 Lean-TLP Kernels

Fig. 2 shows similar results for the lean-TLP kernels in our
benchmark set. Performance saturates or even degrades
with increasing TLP resources per SM. It is interesting to
investigate why these benchmarks do not benefit from exe-
cuting on SMs with more TLP resources.

Performance is unaffected for the four benchmarks on
the left. These benchmarks are memory-intensive applica-
tions that do not see their performance improve because
high TLP induces a large number of memory accesses which
saturate the memory system.

We observe a different trend for the two benchmarks on
the right-hand side: performance degrades with increasing
per-SM TLP resources. Both applications are cache-sensi-
tive: increasing TLP resources enables more CTAs to con-
currently execute per SM. This increases contention in the
private (per-SM) caches, which as a result leads to a large
number of memory accesses being sent to the (shared) L2
cache through the interconnection network, which degrades
performance as the memory system stalls under the flood of
memory requests.

Conclusion. Lean-TLP kernel performance does not
degrade (and in some cases even improves) when given less
per-SM TLP resources.

2.3 Opportunity

The observation that kernels exhibit different per-SM TLP
resource demands creates an opportunity to improve perfor-
mance in a GPU multitasking environment. In spatial multi-
tasking on a conventional GPU, thick-TLP kernels and lean-
TLP kernels execute on disjoint SMs which all provide the
same TLP resources. However, for thick-TLP kernels, these
TLP resources are insufficient for optimum performance.
Meanwhile, the lean-TLP kernels do not need as many TLP
resources, and can maintain (or even improve) performance
when given less TLP resources. By ‘rebalancing’ the TLP
resources from small-SMs to big-SMs, the HeteroCore GPU

exploits TLP-resource diversity among co-executing kernels
while keeping the hardware cost unchanged. By scheduling
thick-TLP kernels on big-SMs and lean-TLP kernel on small-
SMs, we may improve overall system performance. This key
insight motivates the proposal for the HeteroCore GPU
architecture.

2.4 Why Existing Solutions Fail

Before describing the HeteroCore GPU architecture in more
detail, we first quantify and argue why existing solutions,
including SM partitioning and simultaneous multi-kernel
execution, are inadequate to exploit TLP-resource diversity.
SMpartitioning [3] partitions the available SMs among the co-
executing kernels. Extending SM partitioning to be TLP
resource-aware can be done by assigning more SMs to the
thick-TLP kernel and fewer SMs to the lean-TLP kernel.
Simultaneous multi-kernel execution is a GPU multitasking
approach inwhich two kernels co-execute on a single SM [49],
[51]. Making SMK TLP resource-aware can be done by grant-
ing more TLP resources to the thick-TLP kernel while grant-
ing fewer to the lean-TLP kernel.

We first qualitatively compare the different ways for
exploiting TLP diversity. Fig. 3 illustrates even and uneven
SM partitioning, SMK and HeteroCore. The thick-TLP kernel
and lean-TLP kernel oversubscribe and undersubscribe the
per-SM TLP resources, respectively. Even and uneven parti-
tioning, see Figs. 3a and 3b, do not fundamentally address the
imbalance problem. SMKmakes things evenworse: the thick-
TLP can use even less TLP resources compared to running in
isolation, see Fig. 3c. HeteroCore on the other hand rebalances
the per-SM TLP resources so that the available per-SM TLP
resources better match the characteristics of the co-executing
kernels, see Fig. 3d.

We now compare the four strategies quantitatively. We
consider optimum results for SM partitioning and SMK,
while reporting effective numbers for HeteroCore. The opti-
mum results are obtained through off-line analysis. In par-
ticular, for SM partitioning, we pick the optimum SM
partitioning through offline analysis by changing the num-
ber of SMs assigned to either kernel in the workload mix in
increments of two. For SMK, we identify the optimum parti-
tioning of an SM by exploring all possible combinations of
co-executing two kernels on an SM. (To avoid the unfairness
caused by GTO under SMK, we use a loose round-robin
warp scheduler to guarantee fairness while achieving high
STP by first selecting kernels in a round-robin way and then
selecting warps within a kernel to issue instructions follow-
ing the GTO policy [36].)

Fig. 4 quantifies overall system throughput (STP) and per-
application performance (ANTT) for all four strategies rela-
tive to even partitioning. Uneven SM partitioning slightly

Fig. 3. Possible ways to exploit TLP diversity in a GPU with 4 SMs. Het-
eroCore better exploits TLP-resource diversity.

Fig. 2. Lean-TLP kernels: Performance saturates or degrades with
increasing per-SM TLP resources; performance saturates or signifi-
cantly improves when given less per-SM TLP resources.

ZHAO ETAL.: HETEROCORE GPU TO EXPLOIT TLP-RESOURCE DIVERSITY 95

improves overall system performance. Assigning more SMs
to the thick-TLP kernel improves its performance, however,
taking away SMs from the lean-TLP kernel degrades its per-
formance. This leads to a net albeit modest improvement in
overall system performance compared to even partitioning.
Per-application performance degrades because lean-TLP ker-
nel performance suffers.

SMK significantly improves system throughput (by 14
percent on average), however it severely degrades per-
application performance (by 76.7 percent on average).1 The
primary reason for the severe degradation in ANTT is that
the thick-TLP kernel suffers substantially from not being
able to allocate all the TLP resources per SM. Recall that a
thick-TLP kernel, by definition, is very sensitive to the
assigned TLP resources per SM; hence decreasing the
assigned TLP resources leads to a severe per-SM perfor-
mance drop. In addition, co-executing two kernels on the
same SM unavoidably leads to intra-SM contention in vari-
ous resources including the L1 cache and/or the load/store
units [13]. Intra-SM contention may slowdown one kernel
or in some cases both kernels. The drop in per-SM perfor-
mance is not compensated for by executing on twice the
number of SMs compared to even partitioning. This
explains the significant drop in per-application performance
under SMK.

Although SMK and uneven SM partitioning both lead to
(severe) ANTT degradation compared to even partitioning,
this does not necessarily imply that a combination of both
also leads to ANTT degradation. One option to combine
SMK with uneven SM partitioning may be to apply SMK for
some multi-kernel workloads and uneven partitioning for
others. This approach could potentially achieve the best of
both worlds as some multi-kernel workloads prefer SMK
while others prefer uneven SM partitioning. Our evaluation
shows that for some workloads however, both SMK and
uneven SM partitioning lead to an ANTT performance deg-
radation. Another option may be to assign a subset of the
SMs to one kernel exclusively and share the remaining SMs
among the various kernels through SMK. This will lead to
inferior performance compared to either approach, i.e., if
SMK yields better performance on a subset of the SMs, it
will be beneficial to apply SMK to all SMs, and if it yields

worse performance, then it will be beneficial to apply
uneven SM partitioning and not SMK.

In contrast to SMK and uneven SM partitioning, Hetero-
Core significantly improves both system throughput and
per-application performance. The fundamental reason is
that thick-TLP kernels significantly benefit from being given
more per-SM resources when running on big-SMs; the lean-
TLP kernels do not see their performance degrade when
running on small-SMs.

Conclusion. Existing solutions (SM partitioning and SMK),
even when made TLP resource-aware and under optimum
offline analysis, are ineffective at exploiting TLP-resource
diversity. The HeteroCore architecture on the other hand
significantly improves thick-TLP kernel performance while
not degrading (and in some cases even improving) lean-
TLP kernel performance. This leads to a significant improve-
ment in both overall system throughput and per-application
performance.

3 HETEROCORE GPU

In this section, we first discuss the hardware support pro-
vided in an SM to exploit TLP. We then propose our Hetero-
Core GPU architecture to exploit varying TLP resource
demands among co-running kernels. We finally describe
multitasking support.

3.1 TLP-Related Hardware Structures

As shown in Fig. 5, GPUs typically consist of a number of SMs
that are connected to the last-level cache andmemory control-
lers through the interconnection network. When launching a
kernel to the GPU, the CTAs within the kernel are assigned to
the SMs by the CTA scheduler in a (typically) round-robin
fashion. The number of CTAs that an SM can execute concur-
rently is determined by various hardware resource con-
straints such as the register file, shared memory, warp and
CTA slots [23]. No CTAs will be dispatched to an SM if one of
these resources is insufficient to support a new CTA.We now
describe these TLP-related structures in more detail, as previ-
ously detailed in the literature [5], [29], [44], [52].

Register file. The maximum number of concurrent threads
per SM is a function of register file capacity on the one hand,
and the number of registers allocated per thread on the other
hand. To reduce hardware cost, instead of employing amulti-
ported register file, GPUs typically feature amultibanked reg-
ister file in which a crossbar network and operand collectors
are used to transport operands from the banks to the execu-
tion units [5], [29]. Within an SM, 32 threads from a given
CTA are grouped into a warpwhich is the basic unit to sched-
ule and issue. The execution context of all warps executing on
the SM is stored in the register file.

Shared Memory. The shared memory is on-chip scratch-
pad memory that is allocated per CTA and is visible to all
threads within the same CTA. The amount of shared mem-
ory required per CTA is specified by the programmer. The
shared memory not only provides a mechanism for inter-
thread communication within a CTA, but also serves as a
software-managed cache due to its small access latency and
high bandwidth. Similar to the register file, shared memory
is typically multibanked and connected through a crossbar
network [5], [29].

Fig. 4. STP and ANTT improvement across all workloads relative to even
SM partitioning: Uneven SM partitioning improves system throughput
(STP) slightly but degrades per-application performance (ANTT). SMK
improves STP substantially but severely degrades ANTT. HeteroCore
on the other hand significantly improves both STP and ANTT.

1. Optimum SMK here maximizes STP. If optimum SMK were to
minimize ANTT, the ANTT degradation is still as high as 62.4 percent
while decreasing the STP improvement to 4.8 percent.

96 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Warp Slots. The number of warp slots is the third resource
that may limit the maximum number of CTAs per SM [44],
[52]. As mentioned before, a warp is the basic unit to schedule
and issue instructions on a GPU. As shown in Fig. 5, the num-
ber of warp slots is related to various components in different
pipeline stages, such as the program counter array (PC array),
instruction buffer (I-Buffer), SIMT stack and scoreboard.

CTA Slots. The CTA slots administer the CTAs currently
running on an SM. Hence, the number of CTA slots puts a
cap on the maximum number of CTAs one SM can execute,
e.g., Fermi GPUs have 8 CTA slots per SM [2].

3.2 HeteroCore SM Architecture

As mentioned before, the basic idea of the HeteroCore GPU
architecture is to ‘rebalance’ the per-SM resources in an
area-normalized way to exploit different TLP resource
demands in concurrently executing kernels. The Hetero-
Core GPU consists of two types of SMs: the big-SM exploits
thick-TLP kernels whereas the small-SM is optimized for
lean-TLP kernels. The number of threads or warps an SM
can support depends on the available TLP resources such as
the register file, shared memory, warp slots and CTA slots.
In our baseline GPU, there are 16 SMs, all configured the
same way. To achieve an area-normalized rebalancing of
per-SM TLP resources, the HeteroCore GPU ‘migrates’ TLP
resources from half the SMs to the other half, to effectively
construct a HeteroCore GPU with 8 big-SMs and 8 small-
SMs. Compared to an SM in the baseline GPU, the big-SM
consumes more chip area as it features larger TLP resources.
On the other hand, the reduced small-SM consumes less
area. As we will later show in the evaluation section, the
total chip area of the HeteroCore GPU is indeed nearly the
same as the baseline conventional GPU. It is worth noting
that by reducing the number of TLP resources in the small-
SM while keeping cache size constant, each thread benefits
from a larger effective cache space.

The detailed SM configurations for the baseline GPU and
HeteroCore GPU are listed in Table 1. The HeteroCore GPU
SMs are configured by modifying the size of the TLP-related
structures only; we do not change the structures themselves.
For example, to increase the size of the register file, we only
increase the size of each bank instead of increasing the num-
ber of banks. By doing so, the other components of the regis-
ter file such as the crossbar network remains unchanged.

Cycle Time. One concern may be that because the big-SM
has larger sized structures compared to the baseline SM, cycle
time and therefore clock frequency may be affected, and as a

result, the HeteroCore GPU may not be clocked as fast as a
conventional GPU. Previous work has shown that the warp
scheduler of the issue unit is on the critical path as it needs to
access the scoreboard to identify the ready warps among all
active warps and then choose the readywarpwith the highest
priority to issue [6], [52]. We hence focus the discussion here
on the warp scheduler. Although GPUs typically employ
multiple warp schedulers per subset of warps, increasing the
number ofwarp slots in the big-SM leads eachwarp scheduler
to considermorewarps, whichmay affect cycle time. To solve
this problem, we divide the warp slots per scheduler into two
groups: the first group contains as many warps slots as the
baseline SM; the other group consists of the remaining warp
slots. Initially, the warp scheduler only considers the first
group. If the warp scheduler cannot find a ready warp, it will
consider the other group in the next cycle. Thewarp scheduler
continues considering one group until it cannot find ready
warps. Although switching between groups incurs a lost
cycle, this does not impact big-SMperformancemuch because
(i) switching typically happens when the system suffers from
severe resource contention, e.g., memory contention, inwhich
case a one-cycle bubble is small compared to the longmemory
access latency [16]; and (ii) this problem only occurs when
both groups are used, i.e., because of limitations in the other
TLP-related resources, many thick-TLP applications may
only use the warp slots in the first group. We take this one-
cycle switching overhead into account in our evaluation.

3.3 HeteroCore GPU Multitasking Support

To efficiently utilize the available hardware resources,
architectural extensions such as spatial multitasking have
been proposed for sharing the GPU among kernels from dif-
ferent processes [3], [40]. Spatial multitasking divides the
SMs in a GPU into several disjoint subsets and allows con-
currently executing kernels to run on different subsets of

Fig. 5. Overview of a conventional GPU architecture. The per-SM TLP resources are highlighted.

TABLE 1
SM Configurations for the Baseline Conventional GPU versus
the Big-SM and Small-SM Configurations in the HeteroCore

GPU Architecture

TLP resource Baseline Big-SM Small-SM

Register File 32768 (registers) 49152 16384
Shared Memory 48 KB 64 KB 32 KB
Threads Slots 1536 (threads) 2304 768
Warp Slots 48 (warps) 72 24
CTA Slots 8 (CTAs) 10 6

ZHAO ETAL.: HETEROCORE GPU TO EXPLOIT TLP-RESOURCE DIVERSITY 97

SMs. When a new kernel is launched, it can preempt some
SMs to execute and this avoids the starvation of the newly
arrived kernel.

To fully supportmultitasking in aHeteroCoreGPU, a good
preemption policy is critical. Previously proposed GPU pre-
emption policies include SM draining and context switch-
ing [35], [40]. The SM draining policy exploits the GPU
execution model that different CTAs are independent from
each other. After finishing a CTA, no information of the fin-
ished CTA needs to be stored. In the SM draining policy, if an
SM is preempted, no more CTAs are allowed to be issued on
the SM. After finishing all the executing CTAs, the SM
becomes idle after which it can execute CTAs from another
kernel. Unlike the SM draining policy, the context switching
policy saves the contexts for all threads currently running on
the SM. GPUs support up to a few thousand threads per SM,
which incurs significant overhead for saving and restoring
architecture statewhich can be as large as 256 KB for the regis-
ter file and 48KB for sharedmemory per SM. The SM is halted
and can no longer execute instructions during preemption.

Simply employing the draining policy or the context
switching policy in the HeteroCore GPU without considering
a kernel’s execution characteristics is not the best choice. In
particular, if the CTAs of the currently executing kernel are
likely to finish soon, the draining policy seems a better fit as it
avoids the overhead of saving and restoring architecture state
which may incur significant memory contention and increase
the preemption latency. On the other hand, if the CTAs cur-
rently running on the SM need a very long time to finish their
execution, the draining policy would increase the preemption
latency. The high preemption latency may also significantly
decrease overall system performance as the SMs cannot uti-
lize the available hardware while draining the SM. In this
case, context switching is the better option. As these two pre-
emption policies are suitable to different kernels and execu-
tion contexts, the proposed HeteroCore GPU exploits an
adaptive preemption policy that chooses either the draining
policy or the context switching policy based on the kernel’s
execution characteristics, as we describe in the following
section.

4 HETEROCORE GPU SCHEDULING

Scheduling kernels onto the different SM types is critical to
HeteroCore GPU performance. In this section we describe
different scheduling algorithms which we then evaluate in
Section 6. We consider two kernels when describing these
algorithms, however, this does not affect the generality—the
algorithms are easily extended tomore than two co-executing
kernels. We further consider a baseline conventional GPU
with 16 SMs versus a HeteroCore GPU with 8 big-SMs and 8
small-SMs.

4.1 TLP Resource-Agnostic Scheduling

A naive TLP resource-agnostic scheduling algorithm simply
divides the 8 big-SMs and 8 small-SMs into two groups and
assigns each of the co-executing kernels 4 big-SMs and 4
small-SMs. By not considering the TLP resource characteris-
tics of the co-executing kernels, TLP resource-agnostic sched-
uling is the simplest yet naive approach for scheduling
kernels on the HeteroCore GPU. Although TLP resource-

agnostic scheduling avoids the overheads incurred by the off-
line and online algorithmsdescribed in the following sections,
it is unable to fully exploit the performance potential of the
HeteroCore GPU. In particular, when a lean-TLP kernel and a
thick-TLP kernel co-run, TLP resource-agnostic scheduling
assigns 4 big-SMs and 4 small-SMs to the lean-TLP kernel,
which unfortunately does not improve its performance; what
is even worse, the thick-TLP kernel suffers from a perfor-
mance degradation by executing (in part) on the small-SMs.

4.2 Static TLP Resource-Aware Scheduling

TLP resource-aware scheduling tackles this shortcoming.
Although our final goal is a dynamic scheduling algorithm,
we first describe static scheduling as it will serve as a point
of comparison for our dynamic scheduler. We consider
three static TLP-aware scheduling policies: (i) classification,
(ii) STP-optimized, and (iii) STP/ANTT-balanced scheduling.

4.2.1 Classification Scheduling

Classification scheduling first classifies kernels in either the
thick-TLP versus lean-TLP category. We first run each ker-
nel in isolation on a GPU with 8 baseline SMs, 8 big-SMs
and 8 small-SMs. We then compare the performance results
and classify kernels accordingly. A kernel for which perfor-
mance does not degrade relative to the baseline, when run-
ning on the small-SMs, is classified as a lean-TLP kernel. All
other kernels are classified as a thick-TLP kernel.

Classification schedulingmaps the thick-TLP kernel to big-
SMs and the lean-TLP kernel to small-SMs. This way, the
thick-TLP kernel benefits a significant performance improve-
ment by exploitingmore TLP on the big-SMs. Meanwhile, the
lean-TLP kernel does not suffer and in some cases, perfor-
mance even improves by executing on the small-SMs. How-
ever, when two applications with the same TLP resource
characteristics co-execute, classification scheduling reverts to
TLP resource-agnostic scheduling and assigns 4 big-SMs and
4 small-SMs to each kernel.

4.2.2 STP-Optimized Scheduling

STP-optimized scheduling aims at optimizing system
throughput. This policy is motivated by the observation
that classification scheduling as just described does not fully
exploit the potential of the HeteroCore GPU in case kernels
from the same category need to be co-scheduled. For exam-
ple, two co-running thick-TLP kernels only get half the big-
SMs assigned which leads to suboptimal performance.
Higher overall system throughput can be achieved by
scheduling the kernel that benefits the most from running
on the big-SM, on the big-SMs.

STP-optimized scheduling, during the offline profiling
phase, runs each of the two kernels on the conventional GPU
with 16 baseline SMs and on the HeteroCore GPU with just
the 8 big-SMs and just the 8 small-SMs. The respective perfor-
mance numbers are then used to determine the schedule that
optimizes overall system throughput, seeAlgorithm 1. Perfor-
mance scheduling computes overall system throughput for
both scheduling options, i.e., kernel K0 on the big-SMs and
kernel K1 on the small-SMs, and vice versa, and then picks
the schedule that maximizes performance. Note that system
performance is computed following the notion of the system

98 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

throughput metric [15] (which is equivalent to weighted
speedup), aswe detail in Section 5.

4.2.3 STP/ANTT-Balanced Scheduling

STP/ANTT-balanced scheduling aims at balancing system
throughput and per-application performance. STP-optimized
scheduling severely degrades per-application performance
for some workload mixes. In particular, if two thick-TLP ker-
nels co-execute concurrently, STP-optimized scheduling
assigns all big-SMs to the thick-TLP kernel that benefits the
most. This, however, penalizes the other thick-TLP kernel,
which gets executed on small-SMs and hence experiences a
severe performance degradation. To achieve better per-appli-
cation performance, it is better to assign both kernels half the
big-SMs and half the small-SMs, as done in classification
scheduling.

Algorithm 1. Static TLP-Aware STP-Optimized
Scheduling

1: IPCbase
Ki
 IPC for kernelKi on 16 baseline SMs

2: IPCB
Ki
 IPC for kernelKi on 8 big-SMs

3: IPCS
Ki
 IPC for kernelKi on 8 small-SMs

4: STPK0ðBÞ K1ðSÞ ¼
IPCB

K0

IPCbase
K0

þ IPCS
K1

IPCbase
K1

 estimate STP for K0 on

big-SMs andK1 on small-SMs

5: STPK1ðBÞ K0ðSÞ ¼
IPCB

K1

IPCbase
K1

þ IPCS
K0

IPCbase
K0

 estimate STP for K1 on

big-SMs andK0 on small-SMs

6: if STPK0ðHÞ K1ðLÞ > STPK1ðHÞ K0ðLÞ then

7: mapK0 on 8 big-SMs andK1 on 8 small-SMs
8: else
9: mapK1 on 8 big-SMs andK0 on 8 small-SMs
10: end if

STP/ANTT-balanced scheduling achieves the best of both
classification and STP-optimized scheduling. If both kernels
benefit from executing on the big-SMs, STP-ANTT balanced
scheduling assigns 4 big-SMs and 4 small-SMs to each
kernel—just like classification scheduling. Otherwise, it
assigns all 8 big-SMs to the kernel that benefits the most—just
like STP-optimized scheduling. It is worth noting that for
workload mixes consisting of two lean-TLP kernels, STP/
ANTT-balanced schedulingworkswell asmost lean-TLP ker-
nels do not see their performance degrade when executing on
big-SMs; a lean-TLP kernel that gets executed on a small-SM
might see a performance benefit. This improves both STP and
ANTT.

4.2.4 Performance Evaluation

We now evaluate the different static TLP-aware scheduling
policies. We report STP and ANTT relative to a conventional
GPU for TLP-agnostic scheduling, versus TLP-aware classifi-
cation, STP-optimized and STP/ANTT-balanced scheduling.
We sort the workloads along the horizontal axis, see Fig. 6.
(See Section 5 for details regarding the experimental setup.)
There are two key take-away messages: (i) the HeteroCore
GPU clearly outperforms the conventional GPU, and (ii) the
scheduling policy plays a critical role in improving STP and
ANTT. STP-optimized scheduling clearly outperforms the
other three scheduling policies in terms of STP. However, its

impact on ANTT is also obvious: for some workload mixes
that consist of two thick-TLP kernels, ANTT may degrade by
up to 87.4 percent. Classification scheduling does not lead to a
significant drop in ANTT, however, STP is not nearly as good
as for STP-optimized scheduling. STP/ANTT-balanced sched-
uling hits the middleground by balancing STP and ANTT, i.e.,
STP is comparable to STP-optimized scheduling, yet ANTT
does not degrade as much for thick-TLP kernel workload
mixes. Overall, across all multikernel workloads, STP/ANTT-
balanced scheduling improves STP by 13.9 percent on average
(up to 90.4 percent) and improves ANTT by 23.8 percent on
average (up to 52.3 percent).

4.3 Dynamic TLP Resource-Aware Scheduling

Static TLP-aware scheduling relies on offline profiling
which is impractical. To this end, we propose dynamic TLP
resource-aware scheduling which is inspired by static TLP-
aware STP/ANTT-balanced scheduling, yet performs pro-
filing during runtime at low overhead.

When launching two kernels to co-execute on the Hetero-
Core GPU (i.e., when two kernels start their execution at the
same time, or when a new kernel comes in while another
kernel was already running), we first initiate a spatial profil-
ing phase in which we partition the HeteroCore GPU into
two groups with 4 big-SMs and 4 small-SMs each. Each ker-
nel gets to run on a partition with 4 big-SMs and 4 small-
SMs, during which we measure big-SM and small-SM per-
formance. After this profiling phase, we determine the types
of the two co-executing kernels. If both kernels favor
big-SMs, i.e., they are both thick-TLP kernels, we assign 4
big-SMs and 4 small-SMs to each kernel. Otherwise, we
determine which kernel benefits most from running on the
big-SM. We then assign all the big-SMs to the application
that benefits the most from big-SM execution towards over-
all system throughput; the other application gets to run on
the small-SMs. We re-initiate spatial profiling whenever a
kernel finishes its execution and a new kernel is launched.

Algorithm 2 describes the dynamic scheduling algorithm
in more detail. Spatial profiling takes 40K cycles in our setup,

Fig. 6. Offline analysis: STP and ANTT improvement for various Hetero-
Core scheduling policies over a conventional GPU.

ZHAO ETAL.: HETEROCORE GPU TO EXPLOIT TLP-RESOURCE DIVERSITY 99

of which we consider the first 20K cycles for warmup, andwe
thenmeasure performanceduring the next 20K cycles. To esti-
mate system throughput for the different scheduling alterna-
tives, we need an arbitrarily chosen baseline to normalize to.
Static TLP-aware scheduling considers a conventional GPU
as its baseline. Unfortunately, we cannot measure baseline
SM performance during online profiling. Hence we have to
estimate it. This is done by re-scaling the big-SM and small-
SM performance numbers relative by the number of CTAs
running on either SM type, as shown in the below formulas,

with #CTABaseline
Ki

, #CTAbig
Ki

and #CTAsmall
Ki

the number of

CTAs per SM in the conventional GPU, big-SM and small-
SM, respectively. These numbers are easy to compute as the
resource requirements per CTA are known as well as the
amount of resources per SM.

IPCbase
Ki
¼ IPCscaled � ðIPCbig

Ki
� IPCsmall

Ki
Þ þ IPCsmall

Ki

IPCscaled ¼
#CTAbase

Ki
�#CTAsmall

Ki

#CTAbig
Ki
�#CTAsmall

Ki

As mentioned before, to reduce preemption latency, the
HeteroCore GPU exploits an adaptive preemption policy that
chooses between the draining versus context switching policy
based on the kernel’s execution characteristics. In particular,
the adaptive preemption policy considers the kernel’s execu-
tion behavior during warmup. If a kernel can finish a CTA’s
execution during thewarmup phase, it is likely to assume that
other CTAs will also finish soon, hence the adaptive preemp-
tion policy employs the draining policy to preempt the SMs
occupied by this kernel. If not, the adaptive policy employs
context switching.

Algorithm 2. Dynamic TLP-Aware Scheduling

1: if new kernel gets launched then
2: initiate profiling phase
3: end if
4: if execution phase then
5: IPCB

Ki
 measured IPC on big-SMs

6: IPCS
Ki
 measured IPC on small-SMs

7: IPCbase
Ki
 estimated IPC on baseline SMs

8: if IPCB
K0

> IPCS
K0

and IPCB
K1

> IPCS
K1

then

9: mapK0 andK1 to 4 big-SMs and 4 small-SMs
10: else
11: compute STPK0ðBÞ K1ðSÞ ¼

IPCB
K0

IPCbase
K0

þ IPCS
K1

IPCbase
K1

12: compute STPK1ðBÞ K0ðSÞ ¼
IPCB

K1

IPCbase
K1

þ IPCS
K0

IPCbase
K0

13: if STPK0ðBÞ K1ðSÞ > STPK1ðBÞ K0ðSÞ then

14: mapK0 on 8 big-SMs andK1 on 8 small-SMs
15: else
16: mapK1 on 8 small-SMs andK0 on 8 big-SMs
17: end if
18: end if
19: end if

Note that dynamic TLP resource-aware scheduling relies
on an initial profiling phase whenever a new kernel comes in.
This works because GPU kernels are made up of many CTAs

that exhibit relatively consistent behavior, so we can use some
initial CTAs to help us guide scheduling for future CTAs [27].
Although fine-grained phase behavior may be observed at
thewarp level [21], [44], this gets leveled out at the SM level as
several CTAs execute concurrently on an SM.

Finally, new CUDA features such as dynamic parallelism
inwhich parent kernels can launch child kernels to run along-
side the parent kernels, may affect kernel launch. Although
our current evaluation infrastructure does not support
dynamic parallelism,we believe that dynamic parallelism can
be supported by regarding a child kernel as a new incoming
kernel. In that case, when a child kernel is launched, we re-ini-
tiate the spatial profiling phase. One potential limitation may
occur for workloads with many small child kernels, which
may lead to considerable profiling overhead. In such a case,
we may need to employ an adaptive approach in which we
dynamically determine whether or not to initiate spatial pro-
filing—such a decision can be made based on the number of
CTAs per kernel, i.e., a kernel with a large number of CTAs is
likely to run longer than a kernel with a small number of
CTAs, hence it may be worth paying the profiling overhead.
The evaluation of such a mechanism falls beyond the scope of
this paper and is left for futurework.

5 EXPERIMENTAL SETUP

Simulated System. We use a modified version of GPGPU-sim
v3.2.2 [5] to evaluate the proposed HeteroCore GPU architec-
ture. The modifications allow GPGPU-sim to run multiple
applications concurrently through spatialmultitasking. Table 2
lists the configuration for our baseline GPU architecture. The
HeteroCore GPU architecture consists of 8 big-SMs and 8
small-SMs. Apart from the SM-type specific configuration
parameters listed in Table 1, the HeteroCore GPU parameters
are the same as for the baseline configuration. To estimate
power consumption and chip area, we useGPUWattch [29].

Context Switching. Upon a context switch, the context of
the currently executing kernel is switched out and stored in
off-chip memory. To incorporate the overhead of context
switching in our measurements, not only because of stalling
the preempted SM but also because of increased network

TABLE 2
Baseline GPU Architecture

Parameter Value

Streaming Multiprocessors (SM) 16 SMs, 700 MHz
Warp Size 32
Schedulers/Core 2 (GTO)
Number of Threads/Core 1536
Registers/Core 32768
Shared Memory/Core 48 KB
Constant/Core 8 KB
L1 Data Cache/Core 16 KB, 4-way, LRU, 128B line
Memory Controllers 6
L2 Cache/MC 128 KB, 8-way, LRU, 128B line
Interconnection Network Crossbar, 32B channel width
DRAMModel and Bandwidth FR-FCFS, 16 banks/MC,

177.4GB/s
GDDR5 Timing tCL = 12, tRP = 12, tRC = 40,

tRAS = 28,
tRCD = 12, tRRD = 6, tCCD = 2,
tWR = 12

100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

and memory contention, we implement context switching in
our simulator by simulating the packets transferring the con-
text through the interconnection network as well as writing
tomainmemory.When an SM is preempted, it is stalled until
it finishes sending all packets to main memory. The number
of packets is calculated based on the size of the context.

Workloads.We consider a wide range of CUDAGPU-com-
pute benchmarks from a range of application domains
including data mining, search, deep learning, engineering,
compression, etc., see Table 3 These benchmarks are selected
fromRodinia [8], Parboil [39], CUDASDK [1], PolyBench [17]
and GPGPU-sim [5]. KMEANS, Bþ TREE andNN constitute
of two kernels; the other benchmarks consist of a single ker-
nel. We classify these benchmarks into two classes following
the procedure described in Section 2.2 For generating multi-
kernel workloads, we pair all the thick-TLP and lean-TLP
applications (see Table 3 for the classification) to obtain 66
multikernel workloads. Based on the TLP resource demands
of the constituting benchmarks, the 66workloads can be clas-
sified into two categories, named heterogeneous workloads
and homogeneous workloads. The multikernel workloads in
the heterogeneous workload category consist of two kernels
with different TLP resource demands, i.e., one thick-TLP ker-
nel and one lean-TLP kernel. The workloads in the homoge-
neous workload category consist of two kernels with similar
TLP resource demands.

Performance and Power Metrics. We simulate for 10 million
cycles. If a benchmark finishes before others, it is re-launched
and re-executed from the beginning.3 The reported perfor-
mance results pertain the whole execution. System through-
put and average normalized turnaround time (ANTT) [15]
are used to evaluate multikernel performance. STP takes a
system’s perspective and quantifies total system through-
put—STP is also referred to as weighted speedup. ANTT
takes a user’s perspective and quantifies average per-applica-
tion performance. Energy per instruction (EPI) is used tomea-
sure energy efficiency.

6 EVALUATION

We now evaluate the HeteroCore GPU architecture. We first
quantify the improvement in STP and ANTT. We then eval-
uate the impact on hardware cost and energy efficiency,
and we evaluate single-kernel and four-kernel performance.
Finally, we perform sensitivity analyses.

6.1 STP and ANTT

We first evaluate howHeteroCore affects system throughput
(STP) and per-application performance (ANTT) compared to
our baseline GPU. These results assume that we profile and
schedule kernels during runtime. In other words, we account
for the overhead of spatial profiling and context switching.
Obviously, TLP resource-agnostic scheduling does not incur
any overhead as it does not require a profiling phase, in con-
trast to dynamic TLP resource-aware scheduling. We also
compare against static TLP resource-aware performance
scheduling to quantify the impact of profiling and context
switching overhead.

Fig. 7 quantifies STP improvement for theHeteroCoreGPU
over the conventional GPU under TLP resource-agnostic,

TABLE 3
Benchmarks Considered in This Paper

Benchmark Abbr. CTAs/SM CTAs/ Big-SM CTAs/Small-SM TLP Demand

LavaMD [8] LAVAMD 6 9 3 Lean-TLP
Symmetric Rank-k Operations [17] SYRK 6 9 3 Lean-TLP
K-means [8] KMEANS 6 9 1 Lean-TLP
Symmetric Rank-2k Operations [17] SYR2K 6 9 1 Lean-TLP
Neural Network [5] NN 8 10 4 Lean-TLP
Streamcluster [8] SC 3 4 1 Lean-TLP
3D Finite-Difference Time-Domain [1] FDTD3D 2 3 1 Thick-TLP
N-Queens Solver [5] NQU 3 4 2 Thick-TLP
StoreGPU [5] STO 3 4 2 Thick-TLP
B+TREE Search [8] B+TREE 5 9 3 Thick-TLP
DirectX Texture Compressor [1] DXTC 8 10 6 Thick-TLP
Histogram [39] HISTO 8 10 6 Thick-TLP

Fig. 7. STP improvement over a conventional GPU under dynamic sched-
uling. Dynamic TLP-aware scheduling improves STP by 20.1 percent on
average and up to 80.9 percent for the heterogeneousworkloadmixes.

2. Note that when a benchmark is classified as a lean-TLP applica-
tion, that does not mean that the benchmark performs poorly on a
GPU. In contrast, the lean-TLP benchmarks achieve very high perfor-
mance (average IPC of 107 and up to 467). These benchmarks are classi-
fied as lean-TLP because performance does not improve when given
more TLP-related resources per SM over the baseline, see Section 2.

3. We verified that 10 million cycles is representative for all work-
loads, i.e., performance characteristics do not change afterwards, which
is in line with current practice [49], [50], [51]. For some workloads, we
need to re-launch (and thus re-profile) up to 3 times.

ZHAO ETAL.: HETEROCORE GPU TO EXPLOIT TLP-RESOURCE DIVERSITY 101

static and dynamic TLP resource-aware scheduling. Clearly,
the HeteroCore GPU with dynamic TLP resource-aware
scheduling outperforms the conventional GPU. The runtime
overhead of spatial profiling and context switching is minor,
i.e., dynamic scheduling is nearly as effective as static schedul-
ing. Overall, the HeteroCore GPU improves system perfor-
mance by 20.1 percent on average, and up to 80.9 percent, for
workloads composed out of kernels with different TLP-
resource characteristics. Across all workloads considered in
this work, HeteroCore GPU improves performance by 11 per-
cent on average. For only a few workloads does the Hetero-
Core GPU lead to a performance degradation of at most 6.7
percent. This happens when two memory-intensive kernels
experience similar performance benefits from executing on
the big-SMs. In such a case, assigning all 8 big-SMs to one ker-
nel is not the best choice as this kernel may clog memory
resources slowing down the other kernel, which in the end
degrades overall system performance; assigning 4 big-SMs
and 4 small-SMs to each of the co-executing kernels leads to
higher performance.

Fig. 8 provides similar curves for ANTT. HeteroCore with
dynamic TLP resource-aware scheduling leads to significant
improvements in ANTT for all heterogeneous workloads, by
29.8 percent on average and up to 50.3 percent, see Fig. 8b.
The fundamental reason is that thick-TLP kernel performance
improves substantially by running on big-SMs; at the same
time, lean-TLP kernel performance does not degrade and in
some cases even improves. Across all workloads, see Fig. 8a,
we observe substantial improvements in per-application per-
formance (by 20.2 percent on average). For some workload
mixes that consist of two thick-TLP kernels, ANTT decreases
by at most 14 percent. For these thick-TLP kernels which both
favor big-SMs, the performance benefits on big-SMs is less
than the performance degradation on small-SMs.

We also find dynamic scheduling to be within 3 and 3.6
percent of static scheduling for STP and ANTT, respectively.
For some workloads, the performance gap between static and

dynamic scheduling is somewhat higher, and the worst is
17.3 percent. We find this to be the case for a multikernel
workload that consists of two lean-TLP kernels that both favor
small-SMs. The initial profiling is not that accurate and hap-
pens to make the wrong scheduling decision. However, even
for this particular workload, HeteroCore still outperforms a
conventional GPU by 8.3 percent.

6.2 Hardware Cost and Energy

We now evaluate area cost and energy consumption using
GPUWattch [29]. The per-SM TLP resources (shared mem-
ory, register file, warp slots and CTA slots) change across
SM types; the ALUs and other components are not affected.
Compared to a baseline SM, the area of a big-SM increases
by 6.9 percent whereas the area of a small-SM decreases by
3.1 percent. Overall, the total area of the HeteroCore GPU
increases by 3.8 percent over the conventional GPU. Taking
into account the fraction taken up by the SMs relative to the
entire chip, based on the Nvidia Fermi die photo [14], this
translates into the HeteroCore GPU occupying 1.8 percent
more chip area. Note that a 3.8 percent increase in chip area
is (much) smaller than the area cost of one SM. Moreover,
even when assuming that GPU performance increases line-
arly with SM count in the ideal scenario, increasing the
number of SMs from 16 to 17 would improve performance
by at most 6.2 percent.

The HeteroCore GPU improves energy consumption per
instruction by 11.2 percent for the heterogeneous workloads
and is energy-neutral for the homogeneous workloads.
Overall, the HeteroCore GPU improves energy consump-
tion per instruction by 7.2 percent on average. The reduction
in energy consumption comes from improved performance
which compensates for the slight power consumption
increase of 4.1 percent on average for the HeteroCore GPU.

6.3 Single-Kernel Performance

So far we considered multikernel workloads. Obviously, in
a real execution context, there might be periods of execution
during which only a single kernel is running. The question
then is what performance to observe on the HeteroCore
GPU. Fig. 9 reports single-kernel performance, normalized
to the conventional GPU, along with big-SM and small-SM
performance. Overall, performance is largely unaffected for
the majority of the benchmarks. A couple benchmarks, i.e.,
NQU, STO, B+TREE, DXTC and HISTO, experience a per-
formance degradation of at most 6.3 percent (B+TREE). A
couple benchmarks, i.e., NN, SC and FDTD3D, experience a
significant performance improvement reaching up to 46.6
percent (SC).

Fig. 8. ANTT improvement over a conventional GPU under dynamic
scheduling. Dynamic TLP-aware scheduling improves ANTT by 29.8
percent on average and up to 50.9 percent for the heterogeneous work-
load mixes.

Fig. 9. Single-kernel performance: HeteroCore does not degrade single-
kernel performance.

102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Most of the lean-TLP kernels, see Fig. 9 on the left, are unaf-
fected because big-SM and small-SM performance is similar.
We observe a significant performance improvement for the
cache-sensitive applications NN (9.9 percent) and SC (46.6
percent). The reason is high performance on the small-SM
because of less cache contention when co-executing fewer
CTAs. For the thick-TLP kernels, see Fig. 9 on the right, high
performance is achieved on the big-SMs, as expected. The
improvement is not as big as the performance drop on the
small-SMs, hence a net but small performance degradation
for most thick-TLP kernels. The exception is FDTD3D with a
performance improvement of 19.9 percent: FDTD3D is a
memory-intensive benchmark that greatly benefits from
increasedmemory access latency hidingwhen running on the
big-SMs.

6.4 Four-Kernel Performance

We next evaluate the performance of the HeteroCore GPU
architecture with more than two co-executing kernels. In par-
ticular, we generate 310 4-kernel workloads containing ker-
nels with different TLP characteristics, such as 3T1L, 2T2L
and 1T3L (3T1L means 3 thick-TLP kernels co-running with 1
lean-TLP kernel), out of which we randomly choose 50 work-
loads. The dynamic TLP resource-aware performance sched-
uling algorithm employed here for 4 co-running kernels is a
straightforward extension upon the onedescribed in Section 4:
we first profile performance for each kernel on 2 big-SMs plus
2 small-SMs, and then determine the kernel-to-SM mapping
thatmaximizes STP assuming that each kernel occupies either
4 big-SMs or 4 small-SMs. The results are in line with the ones
for two kernels: the HeteroCore GPU improves STP by 19.0
percent on average (and up to 59.8 percent), while at the same
time improvingANTTby 33.2 percent on average.

6.5 Sensitivity Analyses

As a final step in the evaluation, we perform two sensitivity
analyses to better justify the design choices made in this
work. First, we compare our dynamic scheduling policy with
optimal scheduling. Second, we explore different forms of
heterogeneity with 4 big-SMs and 12 small-SMs versus 12 big-
SMs and 4 small-SMs.

Optimal Scheduling. Recall from Section 4 that we assign 8
SMs of the same type to both co-running kernels in a hetero-
geneous workload mix. The question may be asked whether
this is optimal. Why do we evenly split the SMs and why do
we give all big-SMs to one kernel? Why not give more SMs
to one kernel? And why do all SMs assigned to a given

kernel need to be from the same type? To answer this ques-
tion, we consider uneven distributions (i.e., give 4 SMs to
one kernel and 12 to the other), and for each of those 4 SMs
assigned, we consider all possible combinations of big-SMs
(B) versus small-SMs (S), i.e., 4B, 1B3S, 2B2S, 1B3S and 4S,
and pick the optimum. The results are shown in Fig. 10 for
the heterogeneous workloads: the first bar shows our pro-
posed scheduling algorithm that dynamically assigns 8 SMs
to both kernels; the second bar shows the optimum deter-
mined statically across all possible combinations of 4, 8 or
12 SMs for either kernel. The key conclusion is that our pro-
posed solution is within 3.5. percent on average compared
to the optimum; we conclude that assigning 8 SMs to both
kernels is optimal and no additional performance benefit is
obtained through an uneven split of SMs to kernels.

Exploring Heterogeneity. Another question that may be
raised is why we consider 8 big-SMs and 8 small-SMs. Why
not 4 big-SMs and 12 small-SMs, or vice versa, 12 big-SMs and
4 small-SMs? To answer this question we construct Hetero-
Core GPUs with the same hardware area cost using the fol-
lowing scenario: we keep the small-SM configuration
unchanged but change the big-SM configuration accordingly
in an area-normalized way. Hence, when there are only 4 big-
SMs, they are sized bigger with 81,920 registers, 96 KB shared
memory and 120 warp slots; when there are 12 big-SMs, they
are sized with 38,229 registers, 53 KB shared memory and 56
warp slots. In this experiment we also exhaustively enumer-
ate all scheduling possibilities and pick the optimum. The
results are also shown in Fig. 10. For the HeteroCore GPU
with 4 big-SMs and 12 small-SMs, we observe that the opti-
mum scheduling policy assigns 12 small-SMs to the lean-TLP
kernel and 4 big-SMs to the thick-TLP kernel. This keeps STP
nearly unchanged, however ANTT suffer severely (by 34.4
percent)—although per-SM performance improves for the
thick-TLP kernel, its overall performance degrades because it
has fewer SMs assigned. For the HeteroCore GPU with 12
big-SMs and 4 small-SMs, the available TLP resources are too
little in the big-SMs, so that the thick-TLP kernel does not ben-
efit much; the lean-TLP kernel suffers from limited SMs. This
leads to both STP andANTTdegradation.

7 RELATED WORK

TLP in GPUs. TLP is fundamental to GPU performance. To
increase TLP without incurring extra hardware, Yoon
et al. [52] propose the Virtual Thread (VT) architecture: by
storing the context of inactive CTAs in shared memory, VT
enables assigning more CTAs to an SM. Vijaykumar
et al. [44] introduce Zorua, a resource virtualization frame-
work for on-chip TLP-related resources. On the other hand,
Kayıran et al. [23] and Lee et al. [28] make the observation
that performance decreases with an increasing number of
CTAs per SM for some kernels, and hence modulate TLP by
allocating the optimal number of CTAs per SM to improve
performance. Recent work by Wang et al. [45] analyze the
resource contention problem in GPGPU multitasking and
propose pattern-based bandwidth management policies to
find the proper TLP configuration for each application.
Compared to these previous works, our work is different in
scope and contribution by rebalancing the architecture to
benefit both thick-TLP and lean-TLP kernels.

Fig. 10. Sensitivity analyses: Proposed HeteroCore configuration
against optimum configuration with 8 big-SMs and 8 small-SMs, versus
4 big-SMs and 12 small-SMs, versus 12 big-SMs and 4 small-SMs.

ZHAO ETAL.: HETEROCORE GPU TO EXPLOIT TLP-RESOURCE DIVERSITY 103

GPU Heterogeneity. Kayıran et al. [24] propose mC-states to
power-gate or clock-gate datapath components upon under-
utilization and/or when memory contention happens. A het-
erogeneous GPU consisting of big SMs and small SMs is pro-
posed with a different number of streaming processors (SP),
special function units (SFU) and load/store (LDST) units. To
our knowledge, this is the only work introducing heterogene-
ity in the GPU. However, the nature of heterogeneity is
completely different in the HeteroCore GPU: we focus on het-
erogeneity to exploit TLP-resource diversity and do not
change the number of SPs, SFUs and LDSTs per SM.

GPUMultitasking and Dynamic Parallelism. GPU multitask-
ing has been explored through software-only solutions [18],
[34], [48]. On the architecture side, spatial multitasking has
been proposed and optimized to co-execute kernels on the
GPU [3], [4], [22], [35], [40]. In particular, these prior works
focus on SM allocation [3], [4], memory scheduling [22] and
preemption policies [35], [40]. Instead of executing tasks on
different SMs, simultaneous multi-kernel execution [49] and
Warp-Slicer [51] co-execute CTAs from different kernels on
the same SM to exploit kernel diversity. Maestro [36] dynami-
cally selects SMK versus spatial multitasking. A number of
papers target dynamic parallelism (DP), in which a kernel
launches child kernels to increase resource utilization, and
reduce the launch overhead, exploit data locality and improve
load balancing [9], [20], [41], [46], [47]. All of these prior works
focus on resource partitioning and optimization within a con-
ventional GPU; none of these prior works explore the oppor-
tunity for exploiting TLP-resource diversity.

Heterogeneity in CPUs. A sizable body of work has looked
into exploiting heterogeneity in the CPU world. Kumar
et al. [25], [26] were the first to exploit the potential of intro-
ducing heterogeneity on a CPU chip. Follow-onwork [7], [10],
[30], [38], [42], [43] looked into further improving heteroge-
neous multicore performance through scheduling. The moti-
vation for HeteroCore GPU is completely different from
heterogeneous CPUs.Whereas heterogeneousCPUs aremoti-
vated by power efficiency, the key idea for the HeteroCore
GPU is to ‘rebalance’ TLP resources from the small-SM to the
big-SM, while keeping the number of functional units and
cache size unchanged to improveGPUperformance.

8 CONCLUSION

Current GPUs lack the ability to adapt to TLP-resource
diversity among co-executing kernels in multitasking GPU-
compute workloads. As a result, thick-TLP kernels lose the
opportunity of achieving high performance due to insuffi-
cient TLP resources within an SM, whereas lean-TLP ker-
nels waste the available TLP resources without getting any
performance benefit. In this paper, we propose the Hetero-
Core GPU architecture consisting of different SM types to
improve multitasking performance by exploiting TLP-
resource diversity. A big-SM features a bigger register file,
bigger shared memory and more warp slots than a small-
SM, while keeping the number of ALUs, load/store units
and L1 cache size the same. HeteroCore GPU employs spa-
tial profiling to learn big-SM versus small-SM performance
during runtime at low overhead, and dynamically sched-
ules kernels to the big-SMs or small-SMs based on the ker-
nels’ TLP resource characteristics. Experimental results

show that HeteroCore GPU delivers significantly higher
performance. For the multitasking workloads with different
TLP-resource characteristics, HeteroCore GPU improves
overall system throughput by 20.1 percent on average (up
to 80.9 percent) and per-application performance by 29.8
percent on average (up to 50.3 percent) compared to a con-
ventional GPU with similar hardware cost. Moreover, sin-
gle-task performance is unaffected on average.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. We thankHPC-UGent for the computing infrastructure.
This work is supported by the European Research Council
(ERC) Advanced Grant agreement No. 741097, FWO projects
G.0434.16N andG.0144.17N, NSFC under Grant No. 61572508
and 61672526, NUDT Research Project No. ZK17-03-06. Xia
Zhao is supported through a CSC scholarship and UGent-
BOF co-funding.

REFERENCES

[1] NVIDIA CUDA SDK Code Samples. (2011). [Online]. Available:
https://developer.nvidia.com/cuda-downloads

[2] NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. (2009). [Online]. Available: https://www.nvidia.com/
content/PDF/fermi_white_papers/NVIDIA_Fermi_Com pute_
Architecture_Whitepaper.pdf.

[3] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The
Case for GPGPU Spatial Multitasking,” in Proc. 18th Int. Symp.
High-Perform. Comput. Archit., Feb. 2012, pp. 1–12.

[4] P. Aguilera, K. Morrow, and N. S. Kim, “Fair share: Allocation of
GPU resources for both performance and fairness,” in Proc. 32nd
IEEE Int. Conf. Comput. Des., Oct. 2014, pp. 440–447.

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt, “Analyzing CUDA workloads using a detailed
GPU simulator,” in Proc. Int. Symp. Perform. Anal. Syst. Softw.,
Apr. 2009, pp. 163–174.

[6] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,
J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, and
K. Sankaralingam, “Enabling GPGPU low-level hardware explora-
tions with MIAOW: An open-source RTL implementation of a
GPGPU,” ACM Trans. Archit. Code Optim., vol. 12, no. 2, Jun. 2015,
Art. no. 21.

[7] M. Becchi and P. Crowley, “Dynamic thread assignment on het-
erogeneous multiprocessor architectures,” in Proc. 3rd Conf. Com-
put. Frontiers, May 2006, pp. 29–40.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. Int. Symp. Workload Characterization,
Oct. 2009, pp. 44–54.

[9] G. Chen and X. Shen, “Free launch: Optimizing GPU dynamic
kernel launches through thread reuse,” in Proc. 48th Annu. Int.
Symp. Microarchitecture, Dec. 2015, pp. 407–419.

[10] J. Chen and L. K. John, “Efficient program scheduling for hetero-
geneous multi-core processors,” in Proc. 46th Des. Autom. Conf,
Jul. 2009, pp. 927–930.

[11] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers,” in Proc.
22nd Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2017, pp. 17–32.

[12] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: QoS awareness
and increased utilization for non-preemptive accelerators in ware-
house scale computers,” in Proc. 21th Int. Conf. Architectural Sup-
port Program. Lang. Operating Syst., Apr. 2016.

[13] H. Dai, Z. Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou,
“Accelerate GPU concurrent kernel execution by mitigating mem-
ory pipeline stalls,” in Proc. Int. Symp. High Perform. Comput.
Archit., Mar. 2018, pp. 208–220.

[14] B. Dally, “Next gen CUDA GPU architecture, code-named
“Fermi”,” 2014. [Online]. Available: http://storageapplicationsinc.
com/html/nvidia_fermi_external.pdf

104 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

https://developer.nvidia.com/cuda-downloads
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Com pute_Architecture_Whitepaper.pdf.
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Com pute_Architecture_Whitepaper.pdf.
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Com pute_Architecture_Whitepaper.pdf.
http://storageapplicationsinc.com/html/nvidia_fermi_external.pdf
http://storageapplicationsinc.com/html/nvidia_fermi_external.pdf

[15] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53,
May/Jun. 2008.

[16] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “A hierarchical thread scheduler
and register file for energy-efficient throughput processors,” ACM
Trans. Comput. Syst., vol. 30, no. 2, pp. 8:1–8:38, Apr. 2012.

[17] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cava-
zos, “Auto-tuning a high-level language targeted to GPU codes,”
in Proc. Innovative Parallel Comput., May 2012, pp. 1–10.

[18] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-grained
resource sharing for concurrent GPGPU kernels,” in Proc. 4th
USENIX Conf. Hot Topics Parallelism, Jun. 2012, pp. 10–10.

[19] H. Guan, J. Yao, Z. Qi, and R. Wang, “Energy-efficient SLA guar-
antees for virtualized GPU in cloud gaming,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 9, pp. 2434–2443, Sep. 2015.

[20] I. E. Hajj, J. Gomez-Luna, C. Li, L. W. Chang, D. Milojicic, and
W. M. Hwu, “KLAP: Kernel launch aggregation and promotion
for optimizing dynamic parallelism,” in Proc. 49th Annu. Int.
Symp. Microarchitecture, Oct. 2016, pp. 1–12.

[21] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “GPU register
file virtualization,” in Proc. 48th Int. Symp. Microarchitecture,
Dec. 2015, pp. 420–432.

[22] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of GPU
memory system for multi-application execution,” in Proc. Int. Symp.
Memory Syst., Oct. 2015, pp 223–234.

[23] O. Kay{ran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more
nor Less: Optimizing thread-level parallelism for GPGPUs,” in
Proc. 22nd Int. Conf. Parallel Archit. Compilation Tech., Sep. 2013,
pp. 157–166.

[24] O. Kayıran, A. Jog, A. Pattnaik, R. Ausavarungnirun, X. Tang,
M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R. Das, “mC-States:
Fine-grained GPU datapath power management,” in Proc. 25th
Int. Conf. Parallel Archit. Compilation, Sep. 2016, pp. 17–30.

[25] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen, “Single-ISA heterogeneous multi-core architec-
tures: The potential for processor power reduction,” in Proc. 36th
Int. Symp. Microarchitecture, Dec. 2003, Art. no. 81.

[26] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas, “Single-ISA heterogeneous multi-core architectures
for multithreaded workload performance,” in Proc. 31st Int. Symp.
Comput. Archit., Jun. 2004, Art. no. 64.

[27] J. Lee and H. Kim, “TAP: A TLP-aware cache management policy
for a CPU-GPU heterogeneous architecture,“ in Proc. 18th Int.
Symp. High Perform. Comput. Archit., Feb. 2012, pp. 1–12.

[28] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU resource utilization through alternative thread
block scheduling,” in Proc. 20th Int. Symp. High Perform. Comput.
Archit., Feb. 2014, pp. 260–271.

[29] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “GPUWattch: Enabling energy
optimizations in GPGPUs,” in Proc. 40th Int. Symp. Comput.
Archit., Jun. 2013, pp. 487–498.

[30] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing hetero-
geneity into a core,” in Proc. 45th Int. Symp. Microarchitecture,
Dec. 2012, pp. 317–328.

[31] Nvidia, NVIDIA GP100 Pascal Architecture, White paper, 2016.
[Online]. Available: http://www.nvidia.com/object/pascal-
architecture-whitepaper.html

[32] Nvidia, NVIDIA Tesla V100 GPU Architecture The Worlds Most
AdvancedData Center GPU,White paper, 2017. [Online]. Available:
http://www.nvidia.com/object/volta-architecture-whitepaper.
html

[33] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[34] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving
GPGPU concurrency with elastic kernels,” in Proc. 18th Int. Conf.
Architectural Support Program. Lang. Operating Syst., Mar. 2013,
pp. 407–418.

[35] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative
preemption for multitasking on a shared GPU,” in Proc. 20th
Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Mar. 2015, pp. 593–606.

[36] J. J. K. Park, Y. Park, and S. Mahlke, “Dynamic resource manage-
ment for efficient utilization of multitasking GPUs,” in Proc. 22th
Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2017, pp. 527–540.

[37] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar,
“Supporting GPU sharing in cloud environments with a transpar-
ent runtime consolidation framework,” in Proc. 20th Int. Symp.
High Perform. Distrib. Comput., Jun. 2011, pp. 217–228.

[38] D. Shelepov, J. C. S. Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS: A scheduler
for heterogeneous multicore systems,” SIGOPS Oper. Syst. Rev.,
vol. 43, no. 2, pp. 66–75, Apr. 2009.

[39] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. W. Hwu, “Parboil: A revised bench-
mark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[40] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and
M. Valero, “Enabling preemptive multiprogramming on GPUs,”
in Proc. 41st Int. Symp. Comput. Architecuture, Jun. 2014,
pp. 193–204.

[41] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim,
M. T. Kandemir, and C. R. Das, “Controlled kernel launch for
dynamic parallelism in GPUs,” in Proc. 23rd Annu. Int. Symp. High
Perform. Comput. Archit., Feb. 2017.

[42] K. VanCraeynest, S. Akram,W.Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-
cores,” in Proc. 22nd Int. Conf. Parallel Archit. Compilation Tech.,
Sep. 2013, pp. 177–188.

[43] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance
impact estimation (PIE),” in Proc. 39th Int. Symp. Comput. Archit.,
Jun. 2012, pp. 213–224.

[44] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha,
S. Ghose, A. Jog, P. B Gibbons, and O. Mutlu, “Zorua: A holistic
approach to resource virtualization in GPUs,” in Proc. 49th Int.
Symp. Microarchitecture, Oct. 2016, pp. 1–14.

[45] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “Efficient
and fair multi-programming in GPUs via effective bandwidth
management,” in Proc. Int. Symp. High Perform. Comput. Archit.,
Feb. 2018, pp. 247–258.

[46] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic
thread block launch: A lightweight execution mechanism to sup-
port irregular applications on GPUs,” in Proc. 42nd Annu. Int.
Symp. Comput. Archit., Jun. 2015, pp. 528–540.

[47] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “LaPerm:
Locality aware scheduler for dynamic parallelism on GPUs,” in
Proc. 43rd Annu. Int. Symp. Comput. Archit., Jun. 2016, pp. 583–595.

[48] L. Wang, M. Huang, and T. El-Ghazawi, “Exploiting concurrent
kernel execution on graphic processing units,” in Proc. Int. Conf.
High Perform. Comput. Simulation, Jul. 2011.

[49] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel GPU: Multi-tasking throughput pro-
cessors via fine-grained sharing,” in Proc. 22nd IEEE Symp. High
Perform. Comput. Archit., Mar. 2016, pp. 583–595.

[50] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of service support for fine-grained sharing on GPUs,” in
Proc. 44th Annu. Int. Symp. Comput. Archit., June 2017, pp. 269–281.

[51] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-
slicer: Efficient intra-SM slicing through dynamic resource parti-
tioning for GPU multiprogramming,” in Proc. 43th Int. Symp. Com-
put. Archit., Jun. 2016, pp. 230–242.

[52] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram,
“Virtual thread: Maximizing thread-level parallelism beyond
GPU scheduling limit,” in Proc. 43th Int. Symp. Comput. Archit.,
Jun. 2016, pp. 609–621.

Xia Zhao received the MS in computer science
from the National University of Defense Technol-
ogy (NUDT), Changsha, China, in 2015. He is a
third year PhD student at Ghent University,
Belgium. His research interests include GPGPU
architecture in general, and multi-program execu-
tion and network-on-chip (NoC) design more in
particular.

ZHAO ETAL.: HETEROCORE GPU TO EXPLOIT TLP-RESOURCE DIVERSITY 105

http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html

Zhiying Wang received the PhD degree in electri-
cal engineering from the National University of
Defense Technology (NUDT), Changsha, China, in
1988. He is a professor with the School of Com-
puter, NUDT. He has contributed more than 10
invited chapters to book volumes, published 240
papers in archival journals and refereed confer-
ence proceedings, and deliveredmore than 30 key-
notes. His main research fields include computer
architecture, computer security, VLSI design, reli-
able architecture, multicore memory system, and
asynchronous circuit. He is amember of the IEEE.

Lieven Eeckhout received the PhD degree in
computer science and engineering fromGhent Uni-
versity, in 2002. He is a professor with Ghent Uni-
versity, Belgium. His research interests include
computer architecture, with a specific interest in
performance analysis, evaluation and modeling.
He is the current editor-in-chief of the IEEE Micro
(2015-2018). He is the recipient of the 2017
Maurice Wilkes Award. His research is funded by
the European Research Council under the Euro-
pean Communitys Horizon 2020 Programme/ERC

AdvancedGrant agreement no. 741097, aswell as Research Foundation –
Flanders (FWO) grants no. G.0434.16N and G.0144.17N. He is a fellow of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

106 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

