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Abstract—Resource sharing is a critical issue in simultaneous multithreading (SMT) processors as threads running simultaneously on

an SMT core compete for shared resources. Symbiotic job scheduling, which co-schedules applications with complementary resource

demands, is an effective solution to maximize hardware utilization and improve overall system performance. However, symbiotic job

scheduling typically distributes threads evenly among cores, i.e., all cores get assigned the same number of threads, which we find to

lead to sub-optimal performance. In this paper, we show that asymmetric schedules (i.e., schedules that assign a different number of

threads to each SMT core) can significantly improve performance compared to symmetric schedules. To leverage this finding, we

propose thread isolation, a technique that turns symmetric schedules into asymmetric ones yielding higher overall system

performance. Thread isolation identifies SMT-adverse applications and schedules them in isolation on a dedicated core to mitigate their

sharp performance degradation under SMT. Our experimental results on an IBM POWER8 processor show that thread isolation

improves system throughput by up to 5.5 percent compared to a state-of-the-art symmetric symbiotic job scheduler.

Index Terms—Simultaneous multithreading (SMT), symbiotic job scheduling, thread isolation

Ç

1 INTRODUCTION

SIMULTANEOUS multithreading (SMT) processors improve
hardware resource utilization and system throughput

over single-threaded processors by co-executing distinct
threads on the same core, i.e., instructions from different
threads may execute in the same cycle [1]. In an SMT pro-
cessor, most of the core execution resources, including the
L1 caches, reorder buffer, issue queues, functional units,
physical register file, etc. are shared among co-running
threads. The number of core resources that need to be repli-
cated is limited. Because of the dramatically improved sys-
tem throughput at low additional hardware cost, major
processor manufacturers such as Intel, AMD and IBM
offer high-performance SMT processors as their trademark
products.

Resource sharing is a key aspect of an SMT processor
design since threads co-running on a core share resources at
fine granularity. Basically, two main design approaches can
be employed to share a resource among co-executing
threads: static partitioning versus dynamic sharing. Parti-
tioning splits a resource in as many fixed-size parts as there
are supported threads. For instance, a 180-entry reorder
buffer (ROB) can be split into two 90-entry ROBs to support

two simultaneous threads, or in four 45-entry ROBs to
support four threads. To preserve high single-thread per-
formance, the entire ROB is still available when only a sin-
gle thread is running. In contrast, dynamic sharing allows
different threads to compete for and use a distinct portion
of a shared structure according to their requirements and
the management logic. For example, concurrent threads
dynamically compete for L1 cache space. Note that some
processor structures may be partitioned whereas others
may be dynamically shared.

When running in SMT mode, resource sharing harms
individual per-application performance in two ways.
First, for partitioned resources, a thread can only use its
assigned share. As a result, its performance will be infe-
rior compared to running in isolation. Second, for the
shared resources, threads interfere with each other when
competing through dynamic sharing. In particular,
resource sharing makes the performance of individual
threads and, consequently, the throughput of an SMT
core, strongly dependent on the characteristics of the co-
executing threads. Co-scheduling applications that do
not stress the same shared resources minimizes interfer-
ence and maximizes SMT throughput.

For this reason, scheduling applications on SMT cores is
key to achieving high overall system performance, i.e., deter-
mining which applications to co-run has a severe impact on
performance. Symbiotic job scheduling or intelligently select-
ing which applications to co-run on an SMT core, has been
widely explored, see for example [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12]. Almost all previous work on job
symbiosis propose symmetric schedules where the same
number of applications is mapped to each core. Only the
works by Gomaa et al. [5] and De Vuyst et al. [7] explore
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asymmetric schedules but, unlike our work, the focus of their
works is on thermal and energy efficiency aspects rather than
performance. Gomaa et al. [5] use asymmetric temperature-
aware schedules to favor cool cores and let hot cores cool
down. De Vuyst et al. [7] devise asymmetric schedules that,
combined with the ability to power down idle cores, provide
significant improvements in energy-delay product (EDP)
compared to symmetric schedules.

Unlike prior work, in this paper we propose asymmetric
scheduling to improve SMT throughput. Our proposal is
based on the finding that the performance gap between sin-
gle-threaded (ST) mode, i.e., an application runs in isolation,
versus SMT mode, i.e., an application co-runs with other
applications, varies widely across applications. In other
words, some applications are SMT-friendly whereas others
are SMT-adverse, i.e., they see their performance signifi-
cantly degrade under SMT execution. Considering all
applications equally under symbiotic SMT scheduling
therefore leads to suboptimal performance.

To leverage the previous finding, we propose thread isola-
tion, a technique to improve the performance of symmetric
schedules by turning them into asymmetric ones. Thread iso-
lation works on top of a state-of-the-art symbiotic scheduler,
which obtains the best symmetric schedule by mapping
application pairs per core. Thread isolation then identifies
the application that experiences a sharp performance degra-
dation when running in SMT mode. Pairs of applications
that include such an SMT-adverse application are broken
down and the SMT-adverse application is scheduled to run
in isolation on a dedicated core. The other application is
added to a different pair, forming a 3-application combina-
tion thatwill run on another SMT core. This leads to an asym-
metric schedule in which one application runs on a
dedicated core in ST mode and the other three applications
co-run in SMT mode on another core. These operations are
driven by SMT interference models to ensure that the asym-
metric schedule devised by thread isolation outperforms the
original symmetric schedule.

The experimental evaluation, carried out on an IBM
POWER8 processor, shows that thread isolation significantly
improves system throughput compared to a symbiotic
scheduler when the workload composition is favorable to
asymmetric schedules. The maximum speedups for 6-appli-
cation, 8-application, 10-application workloads amount to
5.5, 4.8, and 4.2 percent, respectively, compared to a state-
of-the-art symbiotic scheduler that only devises symmetric
schedules. When the workload is not suitable to asymmetric
schedules, thread isolation is not applied and the achieved
performance matches that of the symbiotic scheduler.

To sum up, we make the following contributions in this
work:

� We analyze the performance of the SPEC CPU2006
applications when scheduled in sets of two and three
applications on the same SMT core. The results
shows that performance degradation widely varies
depending on the application and SMT level. While
SMT-adverse applications suffer a severe perfor-
mance degradation, the performance of SMT-friendly
applications reduces moderately. This observation
stresses the interest in asymmetric scheduling.

� We study the performance of asymmetric sched-
ules and find out that they can achieve higher sys-
tem throughput than state-of-the-art symmetric
symbiotic schedules. Asymmetric schedules run
SMT-adverse applications in ST mode on a single
core and allocate SMT-friendly applications
together on other cores. The performance benefit
obtained by the SMT-adverse applications exceeds
the performance degradation suffered by the
SMT-friendly ones.

� We propose thread isolation, an new scheduling
approach that turns symmetric symbiotic schedules
into asymmetric ones yielding higher overall system
performance.

The rest of the paper is organized as follows. Section 2
analyzes the performance degradation when two and three
applications are co-scheduled on an SMT core. Section 3
studies the potential for asymmetric scheduling and identi-
fies the application that benefit more when running in isola-
tion. Section 4 explains the proposed thread thread isolation
algorithm. Section 5 describes the experimental setup.
Section 6 presents the experimental evaluation of the pro-
posal. Finally, Section 7 discusses related work and Section 8
presents concluding remarks.

2 PERFORMANCE CHARACTERIZATION IN SMT
EXECUTION

Before quantifying the impact of resource interference on
SMT performance, we first revisit how SMT core hardware
resources are shared among co-executing threads.

2.1 SMT Resource Sharing

Resource sharing is a critical design aspect of SMT pro-
cessors. As introduced before, each resource can be
implemented to be statically partitioned or dynamically
shared when multiple threads run simultaneously. Parti-
tioned resources are easier to implement and provide
two interesting features: performance isolation and
predictability. However, dynamically shared resources
potentially provide higher system performance since
they can adapt to the varying requirements that threads
experience along their execution. Modern SMT process-
ors combine both flavors of resource sharing for different
processor structures to provide the best of both worlds.

In the IBM POWER8 (our experimental platform), the
L1 caches (both the instruction and the data cache), the
(unified) L2 cache, the reorder buffer, the rename regis-
ters, as well as some issue queues and execution pipe-
lines are dynamically shared among the co-running
threads. However, it follows a hybrid approach for the
main issue queue and execution pipelines (e.g., fixed-
point, floating-point and load/store units). In SMT
mode, threads are divided into two subsets and each
subset is assigned to an issue queue half and its associ-
ated execution units. When co-running only two threads,
these resources behave as statically partitioned resources.
However, when the SMT degree increases, several
threads are assigned to each thread subset, and these
threads dynamically share the respective assigned issue
queue half and execution pipelines.
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2.2 Resource Interference

This section analyzes the sensitivity of per-application per-
formance when running in SMT mode relative to ST mode.
Fig. 1 shows normalized IPC for the SPEC CPU2006 bench-
marks when running on an SMT core of the IBM POWER8
for any possible two-application and three-application com-
bination. Data is presented as a box-and-whisker plot,
which shows the distribution of the values into quartiles.
The box, divided by the median value, represents 50 percent
of the data around the median (25 percent above and
below the median). The remaining data points fall within
the whiskers. Values that differ more than 1.5 times the
inter-quartile range from the whiskers (above it for the top
edge and below it for the bottom edge) are considered
outliers and are represented as dots. The median value is
highlighted with an X mark. We now discuss how resource
sharing affects SMT performance for the two- and three-
application combinations.

2.2.1 Two-Application Combinations

We start the analysis by studying how pairs of applications
perform under SMT. The analysis provides hints as to how
applications react differently to SMT execution due to
reduced allocation of partitioned resources versus interfer-
ence with co-runners in shared resources. Intuitively, the
height of the box-and-whisker relates to whether the perfor-
mance degradation of an application is mainly caused by
partitioned versus shared resources.

Focusing on xalancbmk, we observe that its box-and-whis-
ker is tall, which indicates that performance is highly sensi-
tive to the interference caused by its co-runner. SMT
execution with some co-runners leads to a slight perfor-
mance degradation (normalized IPC of 0.95); in contrast,
SMT execution with other co-runners leads to a large perfor-
mance drop (normalized IPC below 0.53). On the other
hand, we observe a short box-and-whisker for other appli-
cations such as zeusMP with a normalized IPC ranging
between 0.58 and 0.65. A short box-and-whisker suggests
that performance degradation primarily comes from parti-
tioned resources since all co-runners affect an application’s
performance similarly.

The most interesting finding, however, is to observe that
the performance degradation due to resource sharing varies
widely across applications. On the one hand, applications

such as milc or bwaves do not suffer from a severe perfor-
mance degradation as its normalized IPC under SMT execu-
tion is above 0.7. On the other hand, applications such as
leslie3d, cactusADM and zeusMP, see their performance sig-
nificantly degrade irrespective of the specific co-runner. For
leslie3d, normalized performance can be as low as 0.45.

2.2.2 Three-Application Combinations

With three applications in a workload mix, the allocated
partitioned resources are further reduced and interference
in the shared resources potentially grows. A first observa-
tion is that, as we observed for the two-application combi-
nations, while some applications are more sensitive to
partitioned resources (short box-and-whisker), others are
more sensitive to dynamically shared resources (tall box-
and-whisker).

Nevertheless, note that applications such as libquantum
or xalancbmk move from a relatively tall box-and-whisker
under two-application combinations to a shorter box-
and-whisker under three-application combinations. This
behavior is explained by the fact that, as more applications
run simultaneously on an SMT core, each application
receives a smaller fraction of the partitioned resources.
When a partitioned resource becomes the main perfor-
mance bottleneck, the box-and-whisker gets shorter. From a
symbiotic scheduling perspective, the most interesting find-
ing is that applications such as mcf and milc do not suffer
from a significantly higher performance degradation when
running in three-application combinations versus two-
application combinations.

Taking into account the widely different performance
degradations observed for each application when running
two- and three-application combinations compared to iso-
lated execution, an intelligent scheduling policy should: (i)
isolate the applications that suffer the highest performance
degradations under SMT, and (ii) co-schedule applications
whose performance degradation is similar under two- and
three-application combinations, on a single core. Such an
asymmetric schedule can minimize the high performance
degradation that some applications suffer from under SMT.
Doing so will improve overall system throughput. This is
the case for example for a four-application workload com-
prised of leslie3d, mcf, zeusMP and lbm, for which an asym-
metric schedule in which leslie3d runs in isolation on a

Fig. 1. Box-and-whisker chart showing the distribution of the normalized IPC for the SPEC CPU2006 benchmarks in SMT mode for all possible two-
application and three-application combinations.
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separate core, while the other three applications (mcf,
zeusMP and lbm) co-run on another SMT core, improves sys-
tem throughput by 9.1 percent compared to a symbiotic
symmetric schedule in which the most frequent schedule
co-runs leslie3d with mcf on one core and zeusMP with lbm
on another core.

3 ASYMMETRIC SCHEDULING

3.1 Potential for Asymmetric SMT Schedules

To illustrate the potential benefits of asymmetric scheduling
on SMT cores, we devise the following experiment. Taking
the SPEC CPU2006 benchmarks, we build 1400 random four-
application workloads. Eachworkload includes at least one of
the following benchmarks: mcf, gamess, zeusMP, cactusADM,
leslie3d, soplex or gemsFDTD. (These are the seven benchmarks
with the highest performance degradation when running in
two-application combinations, as shown in Fig. 1.) We will
refer to these benchmarks as the target applications.We evalu-
ate the performance of each workload running on two cores
using two scheduling algorithms: (i) a state-of-the-art symbi-
otic scheduler that dynamically selects the best predicted
symmetric schedule [11], [12], which we refer to as the symbi-
otic symmetric schedule; and (ii) a scheduling policy that
assigns the target application to a core in isolation and the
three remaining applications together to the other core — we
refer to this schedule as the asymmetric schedule.

Fig. 2 presents the results of this experiment. Fig. 2a
shows the percentage of workloads for which the asym-
metric schedule outperforms the symbiotic symmetric
schedule. The figure shows that workloads including les-
lie3d, zeusMP and cactusADM perform better with the
asymmetric schedules for 46, 23 and 18 percent of the eval-
uated workloads, respectively. These results confirm that
thread isolation can indeed improve the performance of
workloads including SMT-adverse applications. The per-
centage is somewhat lower for the workloads that include
mcf, gemsFDTD, and soplex but still reach higher perfor-
mance under asymmetric schedules for 11, 8, and 7 percent
of the evaluated workloads, respectively. Finally, work-
loads including gamess only achieve higher performance
when gamess is isolated on a core in an asymmetric sched-
ule in 3.7 percent of the workloads.

To complement the previous observation, Fig. 2b on the
right reports the average system throughput improvements

that the asymmetric schedule achieves over the symbiotic
symmetric schedule. These results only consider the work-
loads where the asymmetric schedule outperforms the sym-
biotic symmetric schedule. For instance, the figure indicates
that for the workloads that include leslie3d, the average
improvement achieved by the asymmetric schedule
amounts to 5.3 percent, if we only take into account the 46
percent workloads where the asymmetric schedule effec-
tively outperforms the symbiotic symmetric schedule. Simi-
larly, the average performance benefits that thread isolation
provides for workloads including cactusADM and zeusMP
amount to 3.8 and 2.9 percent, respectively. Workloads
including GemsFDTD and mcf obtain lower speedups of 2.6
and 2.2 percent, respectively. Note that these workloads do
not benefit as much from asymmetric schedules, as previ-
ously discussed. Finally, as discussed above, workloads
including soplex and gamess seldomly witness a performance
improvement with asymmetric schedules. On average,
across the workloads for which performance is improved,
this benefit amounts to 1.3 percent for soplex and to 1.0 per-
cent for gamess.

In summary, these experiments show that there is a
potential performance benefit through thread isolation.
However, not all workloads benefit equally. In general, as
normalized performance of the application to be isolated in
the asymmetric schedule is higher, the frequency at which
asymmetric schedules outperform the symbiotic symmetric
ones reduces, and so does the average performance benefit
achieved. Consequently, only when a workload includes
one of the applications that suffer the highest performance
degradation when running in two-application combinations
is there high potential for thread isolation. Therefore, it is
important to identify those applications to provide overall
system throughput benefits.

3.2 Identifying SMT-Adverse Applications

To classify applications as SMT-adverse or SMT-friendly, we
devise a new threshold referred to as the SMT-affinity thresh-
old. This threshold is based on the normalized IPC that
applications experience when running in two-application
combinations. It only considers this IPC because the goal
of the threshold is to estimate when an application running
in a symmetric schedule can greatly benefit from running in
isolation on a core.

We set the SMT-affinity threshold for our experimental
platform as follows, but it can be easily tuned towards other
systems and applications. To determine the threshold,we first
take the upper quartile (the value that divides the upper box
and the whisker) for each application in the two- and three-
application combinations and we calculate the upper quartile
average (uqa) performance of the applications in the two- and
three-application combinations. The upper quartile denotes
the combinations that suffer the least from SMT interference;
in other words, these are the best combinations and the ones
selected by the symbiotic symmetric scheduler. On our plat-
form, uqa performance equals 0.72 and 0.60 for the two- and
three-application combinations, respectively.

We compute the SMT-affinity threshold using the two-
and three-application uqa’s, as follows. We compute what
the best average normalized performance would be if we
were to execute three applications simultaneously and the

Fig. 2. Percentage of workloads including the applications on the horizon-
tal axis that improve performance in an asymmetric schedule compared
to the symbiotic symmetric schedule and their average performance
improvement.
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fourth in isolation, i.e., this amounts to ð3� 0:60Þ þ 1. And
we compare this against the average best performance if we
were to execute the applications in pairs, i.e., this amounts
to ð2� 0:72Þ þ ð0:72þ PerfSMT2=ST Þ, with PerfSMT2=ST the
application’s normalized performance in a symmetric
schedule. This comparison can be expressed as follows:

ð3� 0:60Þ þ 1 > ð2� 0:72Þ þ ð0:72þ PerfSMT2=ST Þ
PerfSMT2=ST < 0:64:

(1)

In other words, this means that if an application’s nor-
malized performance in a symmetric schedule is less than
0.64, we classify the application as SMT-adverse. We conser-
vatively increase the SMT-affinity threshold to 0.65 because
it is only used to determine whether thread isolation should
be evaluated, but the performance predicted by the SMT
interference models in the end determines whether thread
isolation should be engaged or not.

The dotted line in Fig. 1 plots the SMT-affinity threshold
of 0.65 for our platform. Looking at the normalized IPC of
applications when running in two-application combina-
tions, we can infer that mcf, zeusMP, cactusADM, leslie3d,
and GemsFDTD will be classified as SMT-adverse most of
their execution time because their normalized performance
seldomly exceeds 0.65 with any co-runner. Note that these
are the five benchmarks that benefit more from isolated exe-
cution, as shown in Fig. 2. Nevertheless, the proposed
scheduler does not classify benchmarks statically, but based
on the normalized performance that they achieve dynami-
cally at runtime and thus, phase behavior can make some
benchmarks move between SMT-adverse and SMT-friendly
categories along their execution.

There are other benchmarks that do not frequently bene-
fit from asymmetric scheduling such as gamess but could
still be classified as SMT-adverse based on their normalized
IPC when running with some co-runners. This situation,
however, is unlikely to occur when running with the symbi-
otic scheduler because applications usually run with good
co-runners to maximize performance. Furthermore, even if
they are classified as SMT-adverse, the interference models
(see Section 4.1) should detect that an asymmetric schedule
isolating such applications would not improve performance
over a symbiotic symmetric schedule and, consequently, it
should keep the symmetric schedule.

By identifying the SMT-adverse applications, we avoid
evaluating asymmetric schedules by isolating all applica-
tions in the workload, which reduces the scheduling over-
head. Note that a higher threshold requires evaluating
thread isolation with more applications. In addition, the
SMT-adverse threshold prevents that model deviations end
up scheduling asymmetric schedules that perform worse
than the symmetric combinations. This situation is not fre-
quent but can occur at the beginning of the execution, where
correction factors (see Section 4.4) are not warmed up yet.

4 THREAD ISOLATION

Thread isolation is applied on top of the symbiotic sched-
uler previously proposed by Feliu et al. [11], [12]. To adapt
to time-varying execution behavior, the symbiotic scheduler

estimates the optimal symmetric schedule, for each quan-
tum. Once the symmetric schedule has been chosen, the
newly proposed thread isolation technique evaluates
whether any of the applications would benefit from an
asymmetric schedule. If so, the identified application is iso-
lated to run on a dedicated core; the other applications are
then co-scheduled to run on SMT cores. Otherwise, the sym-
metric schedule is maintained.

To understand how thread isolation works, we first pro-
vide a brief background about symbiotic scheduling. We
next discuss the thread isolation proposal.

4.1 Symbiotic Scheduling

SymbiosisModels.The baseline symbiotic scheduler used in this
paper is the one developed by Feliu et al. [11] [12]. This sched-
uler uses SMT interference models, which leverage CPI stacks
to estimate job symbiosis. The left part of Fig. 3 shows a simpli-
fiedCPI stackwith only three components: the base component
plus two stall components, namely resource and miss, which
account for cycles during which no instructions are commit-
ted. SMT symbiosis models predict the slowdown of each
application in a workload mix if this mix would be scheduled
to run on an SMT core. To this end, the CPI stack of each appli-
cation in single-threaded mode (i.e., when executed alone
on the core) is normalized and interpreted as a probability
distribution. For instance, there is approximately a 30 percent
chance that application 2 executes instructions on a cycle (base
component), a 25 percent chance of suffering a resource stall,
and a 45 percent chance of suffering amiss stall. Then, the nor-
malized stacks are used to calculate the probabilities of the
events to generate interference if the applications would run
concurrently on an SMT core. This interference introduces
some performance degradation and increases the components
of the SMT CPI stacks. Finally, the sum of the predicted SMT
CPI components for the SMT execution is a prediction for the
application’s performance under SMT. The ratio of the pre-
dicted SMT CPI and the isolated CPI is a prediction for the
per-application SMT slowdown.

We use regression models to predict the components of
SMT CPI stacks based on the ST CPI stack components. The
models follow the equation

C0
i ¼ aC þ bCCi þ gC

X

j6¼i

Cj þ dCCi

X

j6¼i

Cj; (2)

in which Ci refers to the C component for application i in
the ST stack and C0

i refers to the same component when

Fig. 3. Overview of the symbiosis model: first, measured CPI stacks are
normalized to obtain probabilities; then, the model predicts the increase
of the components and the resulting slowdown under SMT.
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application i co-runs with the other applications in SMT
mode. The j variable iterates over all applications that form
the evaluated schedule except i, and Cj refers to the C com-
ponent in the ST stacks of application j. Hence,when evaluat-
ing a two-application combination i refers to the application
of which the model is estimating the slowdown and j refers
to the co-runner. In the case of a three-application combina-
tions jwould iterate over the two co-runners of application i.
The parameters aC , bC , gC and dC capture a component’s spe-
cific behavior when multiple applications run simulta-
neously on the same SMT core.

We obtain an SMT interference model for each number
of applications co-scheduled in the same core. The models
are trained offline using experimental training data of the
applications when running alone, and in two- and three-
application combinations. We use linear regression to
obtain the parameters for each component aC , bC , gC and
dC from the ST and SMT CPI stacks of the applications.
Note that the parameters are tied to CPI components and
SMT level but not to applications. Therefore, as long as the
training set is representative, the model can be trained
once and used to schedule any set of applications. We refer
the interested reader to [11] and [12] for further details on
the symbiosis models.

Algorithm 1. Thread Isolation Algorithm

INPUT:
Optimal symbiotic schedule: couples of applications (C1 ¼
{A1, A2} to CN ¼{A2N�1, A2N })

1: do {
2: Max_Asym_benefit ¼ 0
3: Thread_isolation_applied ¼ FALSE

4: for all Ci, Cj : i 6¼ j ^
9 A2Ci[Cj : PerfSMT2=ST ðAÞ < 0:65 do

5: STPSymb ¼ STP_couple(Ci) + STP_couple(Cj)
6: {STPAsym, Asym_combination} =

Find_best_asym_combination(Ci[Cj)
7: Asym_benefit = STPAsym � STPSymb

8: if Asym_benefit > Max_Asym_benefit then
9: Max_Asym_benefit ¼ Asym_benefit
10: Max_Asym_combination ¼ Asym_combination
11: end if
12: end for
13: ifMax_Asym_benefit > 0 then
14: Apply_to_schedule(Max_Asym_combination)
15: Thread_isolation_applied ¼ TRUE

16: end if
17: }while (Thread_isolation_applied)

Scheduling Algorithm. Estimating the performance for
each possible co-schedule is a computationally challenging
problem because the number of possible schedules quickly
grows with the number of cores and applications. To effi-
ciently cope with the large number of possible schedules,
the symbiotic scheduler uses the technique proposed by
Jiang et al. [13]. The scheduling problem is modeled as a
minimum-weight perfect matching graph problem. Appli-
cations are represented as graph nodes and the weight of
each edge connecting every two nodes represents the slow-
down that the two connected applications will suffer if they
run simultaneously on a SMT core. Hence, the perfect

matching graph with minimum weight represents the
schedule with the lowest performance degradation. Mod-
eled as a graph, the scheduling problem can be solved in
polynomial time using the blossom algorithm [14]. Again,
see [11] and [12] for further details.

4.2 Thread Isolation Algorithm

The symbiotic scheduler, as just described, predicts the best
symmetric schedule for each quantum. However, as shown
in Section 3, this schedule is not always the optimal one.
Depending on the workload, an asymmetric schedule could
possibly lead to higher overall system performance. There-
fore, after obtaining the symmetric schedule, we propose to
evaluate the potential performance benefit from thread iso-
lation. The thread isolation algorithm checks, for each possi-
ble pair of applications, whether an asymmetric schedule in
which we isolate one application to a dedicated core while
consolidating the other three applications on another SMT
core, outperforms the predicted best symmetric schedule. If
it does, the asymmetric schedule is applied.

Algorithm 1 presents pseudocode for the thread isolation
algorithm. It takes pairs of applications as input; these pairs
were previously selected through symbiotic scheduling.1

The algorithm consists of a main loop (lines 1 to 17), which
is repeated either until no improvement can be obtained by
applying thread isolation, or there are less than two couples
of applications remaining and thus thread isolation cannot
be further applied.

The algorithm iterates over each possible pair of applica-
tion couples Ci and Cj, and for any application A in any of
these couples that potentially benefits from thread isolation,
the algorithm looks for the asymmetric combination that
provides the highest performance benefit among all the pos-
sible pairs of couples (see lines 5 to 11). Once the best asym-
metric combination is found, it is applied (lines 13 to 16)
and the main loop starts again with the remaining applica-
tion couples. Finally, the algorithm returns the new sched-
ule. This schedule can be formed by applications running in
isolation, couples of applications mapped to the same core,
and triplets of applications consolidated to run together.

As discussed in Section 3, the workload mixes for which
thread isolation can improve performance are limited. Only
when the mix includes an SMT-adverse application does
thread isolation have a good chance of improving perfor-
mance. To identify SMT-adverse applications (Algorithm 1,
line 4) the SMT-affinity threshold is used (see Section 3.2).
Every quantum, the scheduler updates for each application
PerfSMT2=ST , the performance of the application in two-
application combinations normalized to its isolated perfor-
mance. If PerfSMT2=ST is below 0.65 the application is consid-
ered SMT-adverse for the next quantum.

PerfSMT2=ST is calculated using the IPC that each appli-
cation achieved during the last quantum it ran in any two-
application combination and in isolation, respectively.
These values are dynamically updated by the scheduler
every quantum each application runs in either mode. In
addition, a sampling phase is periodically triggered (see

1. We use a symbiotic scheduler to select the best pairs of applica-
tions but thread isolation can also be applied when these pairs are
selected following any other criteria.

364 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Gent. Downloaded on June 29,2020 at 12:52:46 UTC from IEEE Xplore.  Restrictions apply. 



Section 5.4) to ensure that both the performance in isola-
tion and in two-application combinations are recent
enough to properly classify applications. At runtime, mcf,
zeusMP, cactusADM, leslie3d and gemsFDTD are frequently
classified as SMT-adverse. Other applications such as soplex
are also classified as SMT-adverse depending on their exe-
cution phase and workload. Note that limiting thread isola-
tion to sets of applications where there is good probability
of improving performance reduces the overhead of the
algorithm, since evaluating all the possible sets of four
applications can become too costly for workloads with a
high application count.

If a four-application combination includes an SMT-
adverse application, the performance of the best asymmetric
schedule and the symbiotic symmetric schedule are com-
pared (line 7). The performance (STP) of the symmetric
combination is computed with the STP estimated for the
Ci and Cj couples proposed by the symbiotic scheduler
(line 5), whereas the best asymmetric schedule and its esti-
mated performance are obtained through the Find_best_
asym_combination function (line 6). Algorithm 2 presents the
pseudocode for this function. The function receives as input
a four-application workload (i.e., 2 applications from each
couple Ci and Cj) and just evaluates the asymmetric sched-
ules that isolate an SMT-adverse application. The predicted
STP for these asymmetric combinations is calculated as
the predicted STP of the application running alone plus the
STP of the triplet composed of the remaining applications
running on the same core. To estimate the performance
of triplets, we leverage the interference model for three-
application combinations. The model estimates the slow-
down of an application when it is co-scheduled on the core
with two co-runners using the ST CPI stack of each applica-
tion. We obtain the performance of each application in the
triplet individually and the STP of the three-application
combination is the sum of all of them.

Algorithm 2. Find_best_asym_combination Function

INPUT:
Set of 4 applications S ¼ {A1, A2,A3, A4}

1: STPMax = 0
2: for all A2S: Anorm IPC < 0:65 do
3: STP ¼ STPalone(Ai) þ STPtriplet(S � {Ai})
4: if STP > STPMax then
5: STPMax = STP
6: Best_Asym ¼ (Ai, S � {Ai})
7: end if
8: end for
OUTPUT:
STPMax and Best_Asym

4.3 More than Two Applications per Core

Up to now, we assumed workloads with two applications
per core. We now generalize thread isolation to schedule
larger workloads. The main difference with the algorithm
explained in Section 4.2 is that input schedules (C1 to CN in
the input statement of Algorithm 1) will not be couples of
applications, but combinations of applications to be sched-
uled on the same core. For example, if we consider work-
loads where the number of applications ranges from more

than two applications per core to less than three, input
schedules should be formed by couples and triplets of
applications. Consequently, the Find_best_asym_combination
function (Algorithm 2) should also be extended to addition-
ally evaluate thread isolation on sets of five applications (a
couple and a triplet). The extension of this function itself is
straightforward, as it only needs to use the interference
models to evaluate the performance of the possible sched-
ules when mapping an SMT-adverse application to a dedi-
cated core and the remaining applications to the other core.

Our initial experiments on these workloads, however,
revealed that the performance degradation when schedul-
ing four applications on the same core is high and hinders
most performance benefits of thread isolation. We therefore
extended Algorithm 1 to evaluate thread isolation taking
combinations of three applications — Algorithm 1 takes
them in pairs (line 4). In addition, we extended the Find_-
best_asym_combination function to take seven applications
as input (two couples and one triplet) and find the best
combinations mapping an SMT-adverse application to a
dedicated core and two groups of three applications each
to two different cores.

4.4 Correction Factors

The accuracy of the symbiosis models is key for the effec-
tiveness of thread isolation. If asymmetric schedules are
erroneously applied due to symbiosis model deviations,
performance can be significantly degraded. To solve this
issue and make the predictions more accurate, we use cor-
rection factors as in [11].

After a schedule has been executed during a quantum,
the scheduler updates the correction factors. Correction fac-
tors are defined as the actual performance divided by the
performance estimated by the model. The scheduler keeps
one correction factor per possible combination of applica-
tions in each SMT mode. When predicting the slowdown of
an application for the next quantum, we multiply the pre-
dicted performance with the corresponding correction fac-
tor. This way, we learn from previous observations and
dynamically make the predictions more accurate. At the
end of each quantum, correction factors are updated using
an exponential moving average function, which smooths
out sudden changes in execution behavior. To update the
correction factors, we need to know the isolated perfor-
mance for each application. Isolated performance is
obtained by very sparsely executing each application in ST
mode on a core (see Section 5.4 for scheduler implementa-
tion details).

5 EXPERIMENTAL SETUP

Before presenting our experimental results, we first detail our
methodology. This includes the system that we use, the work-
loads, themetrics and the scheduler’s implementation details.

5.1 System Features

We perform all experiments on an IBM Power System S812L
server, which is a POWER8 machine consisting of 10 cores
in total [15]. This processor is a dual-chip module (DCM) in
which two chips with 5 cores each operate as a shared-
memory machine. Each core can execute up to 8 SMT
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hardware threads simultaneously. The cores feature a 64 KB
L1 data cache, a 32 KB L1 instruction cache, and a 512 KB L2
cache; the L1 and L2 caches are private to a core. The on-
chip 80 MB last-level cache (LLC) is shared by all 10 cores.
Our IBM POWER8 system has 32 GB of DRAM installed on
a single memory module, and runs Ubuntu v16.04 with
Linux kernel v4.4.0.

The DCM design implies non-uniform memory access
(NUMA) effects, i.e., memory accesses from cores in one
chip module to the memory controllers located on the
other chip module incur higher latency and reach lower
bandwidth than the accesses to the memory controller on
the same chip module [12]. These NUMA effects arise
when more than 5 cores are used in our machine. To pre-
vent these NUMA effects from disturbing our experimental
results, we restrict our experiments to at most 5 cores, i.e.,
we limit our experiments to a single chip module. To eval-
uate a higher number of cores, the proposed algorithm
would need to be extended to consider NUMA effects.
This is left for future work.

5.2 Workloads

We evaluate thread isolation using randomly chosen multi-
program workloads composed out of SPEC CPU2006
benchmarks with reference input sets. For each benchmark,
we measure the number of instructions required to run
during 120 seconds in isolated execution and save this
number as the target number of instructions. This reduces
the amount of variation in the benchmark execution times
across the experiments. We run each multiprogram
experiment until the last application in the workload mix
completes its target number of instructions. When an appli-
cation reaches its target number of instructions before
others do, its performance number (useful instructions exe-
cuted per cycle or IPC) is saved and the application is
relaunched but its performance is no longer monitored.
This method ensures that we compare the same part of the
execution for each application, and that the effective work-
load is uniform during the full duration of the experiment,
i.e., a constant number of applications co-run at any point
in time.

5.3 Metrics

We use system throughput (STP) [16] as the target metric to
optimize for. STP is equivalent to weighted speedup [2].
STP is a higher-is-better metric and measures system-level
performance. To provide a more solid and insightful evalu-
ation, we also measure average normalized turnaround
time (ANTT) [16]. ANTT is a lower-is-better metric, and is a
measure for average per-application performance. ANTT
provides some notion of fairness as it effectively computes
the average per-application slowdown.

Running experiments on real hardware leads to non-
determinism, i.e., different runs of the same experiment
lead to slightly different performance results. We find
the 95 percent confidence intervals for our proposed sched-
uler to be �0:39%, �0:36% and �0:30% for the 6-, 8- and
10-application workloads, respectively. These are fairly
tight confidence intervals, much smaller than the perfor-
mance improvements that we report in this paper.

5.4 Scheduler Implementation

We implement the thread isolation algorithm in a user-
level scheduler, on top of the symbiotic symmetric sched-
uler by Feliu et al. [11], [12]. This scheduler uses libpfm-
4.8.0 to set and read performance counters, and uses Linux
system calls and the cpu affinity attribute of processes to
control the execution and the binding of applications in the
workload mix to the selected hardware contexts, respec-
tively. The main loop of the user-level scheduler performs
the following actions.

First, at the end of each quantum, the scheduler stops the
running applications, reads the performance counters, and
checks if any application has completed its target number of
instructions. If so, the IPC of the completed application is
saved and the application is relaunched to ensure that the
set of available applications is constant throughout the
experiment. Second, it runs the symbiotic scheduling algo-
rithm to determine which schedule to run in the next quan-
tum. As mentioned before, the scheduler first determines
the optimum symbiotic symmetric schedule. The thread iso-
lation algorithm subsequently determines whether there is a
potential benefit from an asymmetric schedule. If so, an
asymmetric schedule is installed. The assignment of appli-
cations to hardware threads determines on which core an
application is run as hardware threads are pinned to cores.
Finally, once the schedule is determined and installed, the
user-level scheduler goes to sleep until the next quantum.

We set the quantum length of our scheduler to 100 ms,
which offers a good compromise between scheduling over-
head and adaptability to the phase behavior of applica-
tions [11]. To obtain the performance in ST and in a two-
application combination of all benchmarks (the former one
is used to update the correction factors and to classify appli-
cations as SMT-adverse or SMT-friendly), the scheduler
triggers periodically a sampling phase. In this phase, the
scheduler (i) runs the applications alone on a core to record
its single-threaded performance, which takes two quanta
assuming that the workload consists of two applications per
core, and (ii) runs a symbiotic symmetric schedule (1 quan-
tum) to update the performance of applications in two-
application combinations. Quanta during the sampling
phase are set to 20 ms and sampling phases are only trig-
gered every 200 quanta (once every 20 seconds). Thus, they
only account for 0.3 percent of the total execution time.

6 EXPERIMENTAL EVALUATION

This section first analyzes the accuracy of the SMT interfer-
ence models that drive thread isolation and discuss how
accurate they are across the SPEC applications. Then, we
evaluate the performance benefits that thread isolation
achieves, study how thread isolation works on two sample
workloads, and present a sensitivity study varying the
workload size.

6.1 Model Accuracy

Fig. 4 presents the accuracy of the SMT interference models
used by the proposed scheduler when estimating the slow-
downs of each application when it is scheduled in two-
(Fig. 4a) and three-application (Fig. 4b) combinations. For
each model, the figure shows the raw model error and the
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error when the model is used by the scheduler in combina-
tion with correction factors.

To evaluate the raw model error of the devised models,
we use leave p-out cross-validation. In particular, to evalu-
ate the accuracy of the two-application combinations model,
we leave out two applications, build the interference model
with the data of the remaining applications, and evaluate
the model error (at multiple execution points) when esti-
mating the slowdown of the pair of applications left out
when constructing the model. These steps are repeated for
all possible two-application combinations and the obtained
results are aggregated to calculate the average error of the
model. The same methodology is applied to obtain the aver-
age error for the three-application combinations.

The error reported for the model used in combination
with correction factors is obtained from the execution of the
different workloads evaluated in Section 6.3. In this case, for
each quantum, we record the estimated slowdown of each
application in the schedule that is going to be executed and
its instruction count. After the schedule runs, we record the
IPC achieved by each application. Once the workload com-
pletes, we use a profile of the IPC of the applications when
running alone to obtain the actual slowdown that each
application suffered in each quantum. This data is aggre-
gated for all quanta and workloads to report the model
accuracy with correction factors. Unfortunately, this accu-
racy results are less statistically sound than the raw model
error. Note that they only consider the combinations of
applications that are run (we do not know the performance
of combinations that are not executed) and thus, they only
take accuracy data from a subset of the combinations.

The average error for the two-application combinations
model ranges from 5.0 percent (h264ref) to 13.9 percent
(zeusmP), reaching an average absolute error that amounts
to 7.6 percent across all evaluated applications. The average
error of the 3-application combinations interference model
grows for all applications. The average error ranges from
5.4 percent (povray) to 15.8 percent (zeumsMP) and reaches
an average of 10.3 percent across all evaluated applications.

Correction factors effectively reduce the modeling error
to average absolute errors of 5.6 and 8.9 percent for the two-
and three-application combinations models, respectively.
Correction factors efficacy varies across applications and
mostly depends on the phase behavior of the applications,
but they reduce the model error for all applications except
gemsFDTD, bwaves, and libquantum. The performance of the

former two is relatively sheer within very short intervals,
which makes correction factors less meaningful. Libquantum
has some relatively long steady phases and hence the
slightly lower accuracy obtained can be a side effect of not
considering all possible combinations.

6.2 Performance Evaluation

We now evaluate thread isolation in detail. We consider
four scheduling policies. They are all implemented in the
user-level scheduler and only differ in the scheduling policy
to ensure a fair comparison. The evaluated policies include:

� Random Scheduler. The random scheduler obtains a
random schedule for each quantum. The random
scheduler serves as the baseline throughout the
experimental evaluation.

� Linux CFS scheduler. The default scheduler in Linux
is the Completely Fair Scheduler (CFS). To ‘emulate’
the behavior of the Linux scheduler, we allow all the
applications in the workload mix to run on any of
the available hardware threads. Hence, the user-level
scheduler does not pin the applications to a particu-
lar hardware thread or core. By doing so, we let the
OS scheduler decide which hardware thread should
run which application. We also restrict the available
hardware threads to two threads per core as we
observe lower system throughput for Linux when
the eight hardware threads of each core in our exper-
imental platform are available for the OS to schedule
applications.

� Symbiotic Scheduler. This scheduler, proposed by
Feliu et al. [11], [12], uses symbiosis models to evalu-
ate the performance of each possible symmetric
schedule and the blossom algorithm to identify the
optimal one.

� TI-symbiotic scheduler. Our proposed scheduler,
which improves upon the symbiotic scheduler by
identifying applications that benefit from thread iso-
lation through asymmetric schedules.

6.3 System Throughput

Fig. 5 reports the system throughput improvements for the
TI-symbiotic, symbiotic and Linux schedulers relative to
random scheduling. We consider three scenarios with 3, 4
and 5 cores. In each scenario, the number of applications in
the workload mix equals twice the number of cores (i.e., 6

Fig. 4. Per-application average absolute error for the two- and three-application models without and with correction factors.
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applications for 3 cores, 8 applications for 4 cores, and 10
applications for 5 cores). Each point on the horizontal axis
represents a different workload, for a total of forty work-
loads in each scenario. Workloads are sorted according to
their normalized STP.

At first glance, the figures show that the TI-symbiotic
scheduler improves STP compared to the symbiotic scheduler
for a wide set of the evaluated workloads. This performance
benefit comes from the ability of the TI-symbiotic scheduler to
devise asymmetric schedules by isolating threads, while the
original symbiotic scheduler is constrained to symmetric
schedules only. We further note that both the TI-symbiotic
and symbiotic schedulers outperform the Linux scheduler
across all workloads. A deeper analysis of the results reveals
interesting trends,whichwe discuss next.

For the workloads on the left (i.e., the workloads with the
lowest STP improvement), the TI-symbiotic and symbiotic
schedulers achieve similar performance. This suggests that
these workloads do not include any of the SMT-adverse
applications. Consequently, none of the threads is isolated,
and as a result, the TI-symbiotic and symbiotic schedulers
achieve similar performance (within statistical bounds due
to non-determinism).

We note though that several workload mixes that do
include SMT-adverse applications (e.g., zeusMP, cactusADM

and leslie3d) — unexpectedly maybe — do not experience a
significant STP improvement from thread isolation. The rea-
son is that in order to improve overall system performance,
the other applications in the workload mix should not be
penalized too much from being consolidated on SMT cores.
This limits the opportunity from thread isolation.

It is interesting to note that the number of workloads
benefiting from thread isolation increases with workload
size: 55 percent of 6-application workloads benefit from
thread isolation versus 65% for the 8-application work-
loads versus 80 percent for the 10-application workloads.
(These data points are identified as the points where the
TI-symbiotic curve diverges from the symbiotic curve in
Fig. 5.) The intuitive explanation is that the more appli-
cations in the workload mix, the higher the likelihood is
to find a four-application combination for which thread
isolation does improve performance. Consequently, the
performance benefits of the TI-symbiotic scheduler are
more significant as the number of applications in the
workload mix increases.

Related to the previous observation, we note that,
although the number of workloads that benefit from thread
isolation increases, the maximum achieved performance
benefit decreases somewhat with workload size. The maxi-
mum performance benefit from thread isolation over symbi-
otic scheduling (compare TI-symbiotic scheduling versus
symbiotic scheduling) decreases from 5.5 to 4.8 to 4.2 percent
for the 6, 8 and 10-application workloads, respectively. This
is attributed to the observation that, as the number of appli-
cations in the workload increases, the relative improvement
due to each application is reduced.

Overall, we report significant improvements in STP
through symbiotic scheduling complemented with thread
isolation. The TI-symbiotic scheduler yields improvements
in system throughput up to 7.5, 6.6 and 5.8 percent for the 6-
, 8- and 10-application workloads, respectively, compared
to random scheduling. This is a significant improvement
compared to the previously proposed symbiotic scheduler,
with STP improvements of 2.7, 2.6 and 3.6 percent, respec-
tively. The Linux scheduler on the other hand, is perfor-
mance-neutral on average compared to random scheduling.
On average across the workloads that include at least
one SMT-adverse application, the SMT improvements of
the TI-symbiotic scheduler compared to the symbiotic
scheduler amount to 2.6, 3.0 and 1.8 percent for the 6-, 8-
and 10-application workloads, respectively. We thus con-
clude that thread isolation leads to substantial improve-
ments in system throughput. We want to re-emphasize that
these results were obtained on real hardware, hence these
system throughput improvements are readily available on
existing systems.

6.4 Per-Application Performance

Not only does thread isolation improve overall system
throughput, it also improves per-application performance.
Fig. 6 reports ANTT improvement (reduction) for the TI-
symbiotic, symbiotic and Linux schedulers, again relative to
random scheduling. The performance trends are similar to
the ones observed for STP, although the achieved improve-
ments are smaller. For the 6- and 8-application workloads,
the TI-symbiotic scheduler improves ANTT for about half

Fig. 5. STP improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling.
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of the workloads, with maximum improvements in ANTT
by 4.5 and 6.2 percent, respectively, compared to random
scheduling. For the 10-application workloads, the TI-symbi-
otic scheduler improves ANTT compared to the symbiotic
scheduler for about 50 percent of the workloads, even
though the symbiotic scheduler also outperforms the TI-
symbiotic scheduler for around 25 percent of the workloads.
Compared to the random scheduler, the TI-symbiotic sched-
uler improves ANTT by up to 4.1 percent.

The reason why the TI-symbiotic scheduler improves
STP more than ANTT is a result of the fact that thread isola-
tion is driven by STP, i.e., thread isolation is engaged if it is
predicted to improve STP. Improving STP may in some
cases lead to a (small) degradation in per-application per-
formance. We observe that the degradation in ANTT due to
thread isolation is limited — compare the TI-symbiotic ver-
sus symbiotic curves in Fig. 6. In fact, ANTT improvements
are more frequent and with higher magnitude than the
ANTT losses. This is a nice observation since thread isola-
tion boosts the performance of the isolated application
while adversely affecting the other consolidated applica-
tions. In other words, we conclude that the negative perfor-
mance impact of thread isolation on the consolidated
applications is limited.

6.5 Workload Case Study

We now present a case study for two particular workloads
to further gain insight into how thread isolation works and
affects performance. We consider two sample 10-applica-
tion workloads under the TI-symbiotic and symbiotic
schedulers. Fig. 7a and 7b present the IPC that each applica-
tion in the workloads achieves with either scheduler (IPC
normalized to isolated single-threaded execution). Fig. 8a
and 8b report the fraction of time during which the applica-
tions run in isolation, in a couple, or as a triplet under TI-
symbiotic scheduling. Note that the applications always run
in couples under the original symbiotic scheduler since it
only devises symmetric schedules.

Focusing on sample workload 1, we observe that the nor-
malized IPC of leslie3d greatly improves from 0.50 with the
symbiotic scheduler to 0.86 with the TI-symbiotic scheduler.
As Fig. 8a illustrates, this performance benefit is obtained
by running in isolation for around 70 percent of the time.
ZeusMP (20 percent) and lbm (7 percent) also run in isolation
for some fraction of time, which leads to somewhat
improved performance under TI-symbiotic scheduling. It is
an interesting observation that, even though zeusMP was
also classified as an SMT-adverse application, it runs more
than 40 percent of the time in a triplet. This situation occurs
because zeusMP does not suffer a much higher performance
degradation when running in triplets compared to couples,
as Fig. 1 shows. Consequently, when it does not run in isola-
tion on a core, it is a good candidate to be scheduled in a
triplet. The other applications run either in couples or in
triplets for the entire time and suffer from a small perfor-
mance degradation. The two instances of libquantum are the
ones that more frequently run in a triplet and consequently
suffer the highest, performance degradation (by 12 percent
at most).

Similar observations can be made for sample workload 2.
In this case, leslie3d runs in isolation for 75 percent of the

Fig. 6. ANTT improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling.

Fig. 7. Normalized IPC of individual applications when running the sam-
ple workloads under symbiotic and TI-symbiotic scheduling.
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execution time and the two instances of cactusADM also run
each one nearly 30 percent of the time alone. Note that two
applications can run in isolation on different cores at the
same time. Therefore, they improve their individual perfor-
mance compared to the symbiotic scheduler. On the con-
trary, mcf and bwaves are the ones that more frequently run
in a triplet and thus, suffer the highest performance degra-
dation, although the overall degradation is lower than the
total benefits obtained by leslie3d and cactusADM.

The analyzed results are not surprising. We could have
expected beforehand that the applications that run in isola-
tion would experience a performance improvement at the
cost of the other applications that run in couples or triplets.
However, the key point here is to observe how the perfor-
mance benefit from running in isolation exceeds the perfor-
mance losses from running in triplets, resulting in overall
system throughput improvement. In particular for the sam-
ple workloads 1 and 2, thread isolation improves STP by 3.2
and 3.4 percent while, at the same time, also improving
ANTT by 2.8 and 1.8 percent, respectively.

6.6 Workload Size Sensitivity Analysis

So far, we considered scenarios in which the number of appli-
cations is always twice the number of cores. Obviously, this
may not always be the case in practice. We therefore perform
a sensitivity analysis to evaluate the effectiveness of thread
isolation across different workload mixes in which the num-
ber of applications exceeds the number of cores by a factor of
two. Note that thread isolation could also be applied to
smallerworkloadswith less than two applications per core. In
fact, this is straightforward and leads to the same schedule as
the previously proposed symbiotic job scheduler. Hence, we
do not consider this case here further.

Figs. 9 and 10 report system throughput improvements
for the TI-symbiotic, symbiotic and Linux schedulers rela-
tive to random scheduling when running large workloads.
We evaluate workload mixes with 9 and 10 applications
considering 4 cores, and workload mixes with 11 and 12
applications considering 5 cores, respectively. The figures
show that thread isolation also improves STP over symbi-
otic scheduling for a large workload scenario. As expected,
performance benefits are higher when there are fewer appli-
cations per core as the opportunity for thread isolation is
higher, see 9 versus 10 applications on 4 cores as well as 11

Fig. 8. Frequency of operation under TI-symbiotic scheduling for the
applications of the sample workloads.

Fig. 9. STP improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling running large workloads
on 4 cores.

Fig. 10. STP improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling running large workloads
on 5 cores.
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versus 12 applications on 5 cores. As the number of applica-
tions grows, SMT-friendly applications are more likely to be
already scheduled in triplets and mapped to the same core
as the symbiotic schedule, which limits the ability of thread
isolation to find a schedule with higher performance.

7 RELATED WORK

Simultaneous multithreading was proposed by Tullsen
et al. [1] as a way to improve the utilization and throughput of
a superscalar out-of-order core by executing instructions from
different threads in the same cycle. Interestingly, most of the
large core resources can be shared or partitioned among the
concurrent threads; this includes the reorder buffer, issue
queues, functional units, physical register file, L1 caches, etc.
Only a limited number of resources need replication including
the program counter, global branch history, register map,
return address stack, etc. Different studies report that the chip
area overhead of SMT is limited to 5 to 20 percent [17], [18].
The SMT throughput benefits outweigh the chip area over-
heads by a significant margin. In addition to improving core
utilization and system throughput, recent research has shown
that SMT multicore processors are very flexible and can per-
form as well as or even better than heterogeneous multicores
that have a fixedproportion of big out-of-order cores and small
in-order cores [19]. When the active thread count is low, per-
thread performance is high (a single thread can use all of the
core resources); on the other hand, when the active thread
count is high, high throughput is achieved by running the
threads concurrently on the SMT core (at the cost of per-thread
performance). Not surprisingly, the high-performance pro-
cessors on the market today from IBM, Intel and AMD [20] all
implement the SMTparadigm to improve system throughput.

Due to fine-grained resource sharing among co-running
threads, the SMT throughput and effectiveness widely
varies across workloads. If the applications in the workload
balance their requirements among the shared resources,
hardware utilization is high which leads to high overall sys-
tem throughput. However, workloads composed of applica-
tions that severely compete for the same resources can have
a substantial impact of system throughput; one such exam-
ple may be cache thrashing [21], i.e., one application kicking
out data of another co-running application from cache. The
need to intelligently select which applications to co-run was
recognized soon after SMT processors were introduced.
Snavely and Tullsen [2] proposed symbiotic job scheduling,
a mechanism to decide which applications to co-run on a
core to maximize throughput. The proposed solution lever-
ages sampling periods, during which all (or a subset of) the
possible combinations are executed for a short duration of
time to quickly identify well-performing symbiotic sched-
ules, which are then selected to run for a longer duration.
Unfortunately, this mechanism does not scale well as the
number of possible combinations grows. To overcome the
sampling overhead, Eyerman and Eeckhout [8] propose
model-based SMT scheduling. An interference model pre-
dicts the slowdown each application would encounter
when co-scheduled with any of the other applications in the
workload mix, and the best performing combination is
selected. However, the inputs for the model require hard-
ware support not available in current processors. This

problem was recently avoided by Feliu et al. [11], [12], who
develop new interference models leveraging the CPI
accounting mechanism of the IBM POWER8 processor to
estimate the performance of combinations of application on
current real hardware.

Many other studies have followed different approaches
to maximize the throughput of SMT processors by schedul-
ing the best combinations of applications. Parekh et. al. [22]
propose thread-sensitive scheduling, a scheduling algo-
rithm that determines the best combinations based on the
applications’ IPCs and memory-related metrics. Following a
similar approach, Feliu et al. [9] propose to balance L1 cache
bandwidth requirements across the cores to reduce interfer-
ence and improve throughput. Cazorla et al. [23] guide the
allocation of applications to cores based on their memory
behavior and instruction-level parallelism. Other studies
have explored the use of models and profiling to estimate
the SMT benefit. Moseley et al. [24] use regression on perfor-
mance counter measurements to estimate the speedup of
SMT when co-executing two applications. Porter et al. [25]
estimate the speedup of a multithreaded application when
enabling SMT, based on performance counter events and
machine learning. Settle et al. [26] predict job symbiosis
using offline profiled cache activity maps. Mars et al. [27]
use microbenchmarks called bubbles to measure how much
an application suffers from pressure in the memory subsys-
tem; they do so by increasing the pressure imposed by the
bubble. Using this information, obtained during a character-
ization phase, the complexity for finding good co-schedules
of applications is reduced. In follow-up work, Zhang
et al. [28] propose a similar methodology to predict the
interference among threads on an SMT core. They develop
microbenchmarks called rulers that stress different core
resources, and by co-running each application with each
ruler in an offline profiling phase, the sensitivity of each
application to contention in each of the core resources is
measured. By combining resource usage and sensitivity to
contention, interference can be predicted and used to guide
scheduling. Finally, Radojkovi�c et al. [29] propose a method
based on Extreme Value Theory that allows for the predic-
tion of the performance of the optimal job assignment. They
state that by running a sample of the possible job assign-
ments is enough to capture a close to optimal assignment
with high probability.

As mentioned in the introduction, none of this prior
work considers thread isolation to improve SMT through-
put. In this work, we find that isolating SMT-adverse
threads to a dedicated core while consolidating the other
threads on other SMT cores can lead to significant improve-
ments in system throughput over previously proposed sym-
biotic SMT schedulers.

8 CONCLUSIONS

SMT processors share most of the hardware resources
among threads co-executing on the core. This design charac-
teristic makes SMT performance strongly dependent on
which applications are scheduled for concurrent execution.
Co-scheduling applications with minimum interference in
the shared resources reduces contention and improves per-
formance. Many symbiotic schedulers in the literature
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pursue this goal. However, as they target system through-
put, previously proposed symbiotic schedulers are
restricted to symmetric schedules, in which the same num-
ber of applications is mapped to each core.

In this paper, we show that asymmetric schedules, in
which the number of applications per core varies, can signif-
icantly outperform symmetric schedules. Such scenarios
arise due to the widely different performance degradations
that applications experience under SMT. Consequently, an
asymmetric schedule that intelligently isolates SMT-adverse
applications to a dedicated core can provide significant per-
formance benefits.

To leverage the previous finding, we propose thread iso-
lation as a useful complement to state-of-the-art symbiotic
(symmetric) scheduling. Thread isolation predicts whether
converting a symmetric schedule into an asymmetric sched-
ule by isolating an SMT-adverse applications to a dedicated
core is going to result in higher overall system performance.
If so, the asymmetric schedule is enforced. Our experimen-
tal evaluation on an IBM POWER8 server demonstrates that
thread isolation improves system performance by up to
5.5 percent over previously proposed state-of-the-art symbi-
otic schedulers that devise only symmetric schedules.
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